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Abstract

Spectral clustering has been widely adopted because it can
mine structures between data clusters. The clustering perfor-
mance of spectral clustering depends largely on the quality of
the constructed affinity graph, especially when the data has
noise. Subspace learning can transform the original input fea-
tures to a low-dimensional subspace and help to produce a
robust method. Therefore, how to learn an intrinsic subspace
and construct a pure affinity graph on a dataset with noise
is a challenge in spectral clustering. In order to deal with this
challenge, a new Robust Single-Step Spectral Clustering with
Intrinsic Subspace (RS®>CIS) method is proposed in this pa-
per. RS3CIS uses a local representation method that projects
the original data into a low-dimensional subspace through a
row-sparse transformation matrix and uses the ¢2,;-norm of
the transformation matrix as a penalty term to achieve noise
suppression. In addition, RS®>CIS introduces Laplacian ma-
trix rank constraint so that it can output an affinity graph with
an explicit clustering structure, which makes the final cluster-
ing result to be obtained in a single-step of constructing an
affinity matrix. One synthetic dataset and six real benchmark
datasets are used to verify the performance of the proposed
method by performing clustering and projection experiments.
Experimental results show that RS®CIS outperforms the re-
lated methods with respect to clustering quality, robustness
and dimension reduction.

Introduction

Spectral clustering has long been favored by researchers be-
cause of its ability to mine structures between data clusters.
The quality of the constructed affinity graph is crucial for
the clustering performance of spectral clustering, especially
when the data has noise. The existing optimization methods
for constructing affinity graphs in spectral clustering can be
roughly divided into two categories: global representation
(Nie et al. 2016; 2017; Nie, Li, and Li 2016; 2017; Ren et al.
2018) and local representation (Nie, Wang, and Huang 2014;
Zhu et al. 2017a).

Local representation methods tend to be more robust
than global representation methods due to using its neigh-
bor nodes to represent each data point, which can effec-
tively remove the influence of noise points (especially out-
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liers) (Roweis and Saul 2000; Yu 2009). Moreover, subspace
learning helps to produce a robust method, while feature se-
lection helps to produce an interpretable method (Gu, Li, and
Han 2011; Zhu et al. 2017b). This is also an important rea-
son that local representation methods are widely concerned.
In addition, the high-dimensional feature space of the origi-
nal dataset is actually located in a low-dimensional subspace
(Zhu et al. 2012; Vidal 2011).

The above advantages motivate researchers to focus on
local representations of data. The projected clustering with
adaptive neighbors (PCAN) method proposed by Nie et al.
(Nie, Wang, and Huang 2014) learns the data similarity ma-
trix and clustering structure simultaneously by projecting the
original dataset into a low-dimensional subspace. Although
PCAN has achieved certain noise suppression effect by re-
ducing the data dimension, the clustering performance of
PCAN is still greatly affected when there is more noise in
the data.

In addition, the /5 ;-norm has a good effect in feature
selection, noise suppression and redundant information re-
moval, etc., which has attracted the attention of many re-
searchers (Zhu et al. 2017a; Liao et al. 2018; Nie et al. 2010).
Inspired by these papers, we apply the £5 ;-norm to spectral
clustering to obtain a robust clustering performance.

Therefore, in this paper, we construct a low-dimensional
intrinsic subspace by projecting the original dataset into
a low-dimensional subspace using a row-sparse transfor-
mation matrix. The suppression of noise and outliers is
achieved by a row-sparse transformation matrix. At the same
time, the intrinsic affinity matrix is further studied according
to the low-dimensional intrinsic subspace. Different from
the previous method (Nie, Cai, and Li 2017; Li et al. 2018;
Nie et al. 2016), which learns an affinity matrix directly
from the original dataset, this paper proposes a new learn-
ing strategy for the intrinsic affinity matrix. We introduce
a row-sparse penalty term in our method and avoid those
trivial solutions by adjusting its coefficients. In terms of pa-
rameters, our method mainly focuses on the optimization of
the dimension reduction and the row-sparse penalty coeffi-
cient, which is relatively simple. Moreover, a new iterative
update method is used to optimize the newly added row-
sparse items, and this optimization problem is well solved
with our method.

In addition, affinity matrices constructed based on tradi-



tional spectral clustering algorithms are often criticized by
researchers (Nie, Li, and Li 2017; Li et al. 2018; Nie et al.
2017; Zhu et al. 2017a) because they do not have an explicit
clustering structure. And these methods (Huang, Nie, and
Huang 2013; Nie, Li, and Li 2016) often require a method
like K -means for post-processing to obtain the final label of
the dataset. However, the results obtained by this two-step
approach may be sub-optimal. In order to solve the above
problem, in this paper, we introduce Laplacian matrix rank
constraints in the learning of affinity matrices. The Lapla-
cian matrix rank constraint can make the learned affinity
graph have an explicit cluster structure with our method.
Therefore the final clustering label can be obtained in a
single-step of constructing an affinity matrix. For the above
reasons, we call our method Robust Single-Step Spectral
Clustering with Intrinsic Subspace (RS>CIS).

The proposed RS®CIS is compared with four classical
clustering methods and two related clustering methods on
the synthetic dataset and the real world benchmark dataset.
The final experimental results show that our method RS>CIS
has better clustering quality, robustness, and dimension re-
duction than that of the related methods.

In general, the main contributions of this paper are as fol-
lows:

e In our method RS3CIS, subspace learning is performed
by applying orthogonal constraints to the hash matrix, and
feature selection is achieved by adding row-sparse penalty

terms. Therefore, our method is robust and interpretable.

The proposed method can simultaneously learn an intrin-
sic subspace and an affinity graph with an explicit clus-
tering structure. Thus the final clustering result can be ob-
tained in a single-step of constructing an affinity matrix.

Since the optimization problem is non-smooth and diffi-
cult to solve, a new optimization method of /3 ;-norm is
proposed and the final optimization problem is solved ef-
fectively by an iterative update algorithm.

We have designed extensive experiments to verify the ef-
fectiveness of our method RS®>CIS. And in the projection
experiments, we prove that our method still maintains su-
periority under different reduced dimensions.

The Proposed RS?CIS Methodology
Notation

In the entire paper, we use uppercase letters to represent
matrices. For example, in the matrix M € R™*"2 we
define m; to represent the ¢-th column vector of the ma-
trix M, and m;; represents the j-th element of the col-
umn vector m;. The Frobenius norm and ¢ ;-norm of ma-

/ 2
2i 2. My, and
[Mll2,0 =32, />, m3;- In addition, we further define the

transpose, the trace, the rank, and the inverse of matrix M, as
MT, Tr(M), rank(M), M~!, respectively. 1 in the paper
represents a unit column vector, and [ represents an identity
matrix.

trix M are represented as ||M ||
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Initial affinity graph revisit

Constructing an affinity graph with high quality is criti-
cal to the performance of clustering tasks. Given a dataset
X = {2y, 29, ...,2,} € R>™ with k clusters, d is the fea-
ture dimension in the dataset X, n is the number of data
points, and 2; € R%*! is the i-th data point in dataset X.
A natural idea of constructing an affinity matrix is to mea-
sure similarity based on the distance between different data
points. That is, there is a high similarity between data points
that are close to each other in distance, and a low similar-
ity between data points that are far away from each other.
Based on this idea, Nie et al. (Nie, Wang, and Huang 2014)
proposed the following optimization goals:

n

min > Nl — z5l3855 + allS|F,
ij=1

5.t.,8>0,571=1,rank(Ls) =n —c,

(1)

where S € R™*" is the affinity matrix with the j-th element
as s; € R™*! and the i-th element of s; as s;;, Ls = Dg —
(ST + S)/2 is the Laplacian matrix of the affinity matrix
S, the degree matrix Dy is a diagonal matrix with the i-th
element as d;; = Zj (sij + s5i)/2, c is the number of 0
eigenvalues of the Laplacian matrix Lg, and s;; represents
the similarity between the data point x; and the data point
Xj.
The model in the problem (1) has an adaptive neighbor-
hood and can flexibly explore the affinity relationship be-
tween data points. However, it cannot learn the local struc-
ture of the intrinsic subspace with the initial affinity graph
construction method, thus the performance of clustering is
easily affected by noise and outliers.

Moreover, Zhu et al. (Zhu et al. 2017a) also proposed
a similar optimization objective function. They remove the
second item in the optimization problem (1), and modify the
constraints to S € C, where C = {Vi|s]1 = 1, s;; =
0, s;j > 0,if j € N(i),otherwise 0.}, N(¢) represents
the set of neighbor nodes of the -th data point. The number
of neighbor nodes is determined by cross-validation. This
method implements a local representation of each data point.
However, the number of its neighbor points is fixed, which is
inconvenient to the local flexible representation of the data
points. In addition, the above optimization problem does not
solve the local representation problem of the intrinsic sub-
space on the dataset.

Local representation of intrinsic subspace

Based on the superiority of local representation in the con-
struction of affinity graphs, we introduce a row-sparse trans-
formation matrix into our method. That is, we define a trans-
formation matrix W € R%*4 (where d’ < d) to project the
original dataset X to a low-dimensional intrinsic subspace,
where d’ is the feature dimension of the dataset X projected
to the low-dimensional subspace. This low-dimensional in-
trinsic subspace is represented as W7 X, which allows us to
further explore the intrinsic structure existing in the original
dataset and effectively suppress the noise points. Therefore,



we design the following optimization object function:

glg}z [WTa; = Whaj|3si; + v[|Wll2 + allS|E,
W L=
$4,8>0,sT1=1,W e R>? WIXXTW =1,
2

where v and « are the tuning parameters, s;; represents the
similarity between the data points in the corresponding low-
dimensional subspace (the s;; in the following equations has
the same meaning if the data point x; and the data point z;
are projection through the transformation matrix W.)

In problem (2), feature selection is performed by apply-
ing a penalty term ||W||2,1 to row sparsity, which can sup-
press noise and remove redundant features. Another penalty
term ||S||% is used to avoid those insignificant solutions, in
which only the similarity between the points closest to the
data point z; is assigned to a value of 1, and the similarity
of the other points is 0. The addition of the sparse penalty
term ||S||% allows our method to construct a more flexible
affinity graph with adaptive neighbors. Applying orthogo-
nal constraints to the scattering matrix W7 X X*W is ac-
tually for intrinsic subspace learning which transfers the d-
dimensional feature space into the statistically uncorrelated
d’'-dimensional intrinsic subspace on the original dataset X.

Robust Single-Step Spectral Clustering with
Intrinsic Subspace

In order to obtain an affinity graph with an explicit clustering
structure, we introduce Laplacian matrix rank constraints in
affinity matrices learning. An important property about the
Laplacian matrix (Fan 1997; Mohar 1991) is presented as
follows:

Theorem 1. The multiplicity c of the eigenvalue 0 of the
Laplacian matrix Lg (nonnegative) is equal to the number
of connected components in the graph with the similarity
matrix S.

Based on Theorem 1, we add a Laplacian matrix rank con-
straint to the affinity matrix S in problem (2). The learned
affinity graph are permutated by using the added Laplacian
matrix rank constraint to obtain an affinity graph with ex-
actly ¢ connected components. Therefore, problem (2) be-
comes

n

in S I — W sy 4 AW s+ o8I,
i

5.t.,8 > 0,57 1=1,rank(Ls) =n —c,

W e R™ WwITxxTw = 1.
3

For optimal solution to problem (3), we can project the orig-
inal dataset to a low-dimensional intrinsic subspace, and
learn a row-sparse transformation matrix W and an intrin-
sic affinity graph S of a low-dimensional subspace with an
explicit clustering structure. Therefore, the method is inter-
pretable and robust. In addition, based on the learned intrin-
sic affinity graph, the final clustering label can be obtained
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directly without any post-processing steps. Therefore, we
name the method expressed in problem (3) as Robust Single-
Step Spectral Clustering with Intrinsic Subspace (RS>CIS).

In fact, the optimization of problem (3) is difficult. This
is because the degree matrices Dg and the Laplacian matrix
Ls = Dg — (ST + 5)/2 in the problem (3) are both depen-
dent on the affinity matrix S, but the affinity matrix .S is the
unknown amount that we need to solve. At the same time,
the Laplacian matrix rank constraint rank(Ls) = n — ¢
is also difficult to handle. In addition, the orthogonal con-
straints imposed by the scattering matrix and the optimiza-
tion of the /5 1-norm applied to the transformation matrix
are two challenges that cannot be ignored. In the next sec-
tion, we present an effective iterative optimization method
to address these challenges.

Optimization of RS*CIS

For the problem (3), let o; (Lg) denote the i-th smallest
eigenvalue of Lg. Because Laplacian matrix Lg is positively
semidefinite, so 0; (Lg) is non-negative. Given a sufficiently
large 7, problem (3) can be rewritten as follows:

n
min D [ W = W [Bsi; + AW 2.
(2%
C
+allSIE+2n)_oi(Ls),
=1

$4.,9>0,s71=1,W e R WTXXTW =1.

“4)

Because 7 is large enough, and o; (Lg) > 0 for each 4, the
optimal solution S to the problem (4) ensures the second

term Y 0;(Lg) equal to 0 and the constraint rank(Lg) =
i=1

n — c can be satisfied. Furthermore, according to Ky Fan’s

Theory (Fan 1949), the following equation is true:

i(Lg) =minTr(FTLgF),
;0(5) min 7( sF) )

st.,FeR™ FTF=T.

According to Eq.(5), the problem (4) can be further equiva-
lent to

glg}z IWTz; = Whaj|3siy + vI|Wll21 + allS||F
,J
+ 2nTr(FTLgF),
54.,8>0,sT1=1,F e R W ¢ R&>*¢
WIXXTW =1, FTF =1.
(6)

Then we optimize the problem (6) with an effective iterative
algorithm.

i. Update F by fixing S and W By fixing S and W, prob-
lem (6) can be rewritten as

min
FeRn XC,FTF:I

Tr(FTLgF). (7)



Algorithm 1: Optimization of transformation matrix W
in problem (10)

Input:
Dataset X € R3*n, Laplace matrix Lg, parameters -, a
large enough n and e = 1le — 8.

Output: Row-sparse transformation matrix W.
Initialize W () by the optimal solution to the following
problem:

min Tr(WTXLsXTW), st , WIXXTW =1.
1. Calculate Lg by Eq.(1).

2. Calculate A and B by Eq.(11).
3. Calculate D by Eq.(12) and calculate G by Eq.(13).

repeat
i. Update W: The transformation matrix W is updated
by Eq.(13).
ii. Update §: Calculate § = |J(W 1)) — J(W®)|,
where

JWO) = Tr(WOT X Lg XTW®) 4 1{|W]|a.
iii. Update ¢: ¢ < ¢ + 1.
until § < ¢

By the c eigenvectors of Lg corresponding to the ¢ small-
est eigenvalues, the optimal solution of F' is well composed
with this method.

ii. Update IV by fixing S and /' By fixing S and F, prob-
lem (6) can be rewritten as

n

H;ivnz WPz = W55 + AW 2.1,
4,7

st , W eR>™ WwIXXTW =1J.

Suppose each node ¢ is assigned to a function value as
Wz, € Re*1, the following equation is established:

S oWz — Whaj|3si; = 20r (W XLs X"W). (9)
0,J

According to Eq.(9), problem (8) can be rewritten as

min Tr(WT XLs XTW) + LW |1,
W / 2 (10)
st W e R WIXXTW =1.

Unfortunately, due to the introduction of the ¢5 ;-norm, it is
difficult to optimize the problem (10) for W. In this paper,
we use a simple and effective iterative approach to solve this
optimization problem.

Problem (10) is a constrained optimization problem, and
we use the Lagrangian multiplier method to solve this prob-
lem. The Lagrangian function of problem (10) is

LOW) = Tr(WTAW)+ 2 |[W |20 =Tr(AWT BW - 1)),

(11
where A = XLg X', B = XX7 and A is a diagonal matrix
that is used to enforce the constraint on problem (10). Let the

derivative of Eq.(11) w.r.t. be zero, that is

oL(W
aizv ) _ (A+ ATYW 4 29yDW — 2BWA =0, (12)
_ . 1 1 Irr -
where D = dzag(ﬁluw(l’:)u2 s ey 4\|W(d,:)||2)’ and W is the

current solution. Since A = A7, Eq.(12) can be rewritten as
follows by simple algebraic operations:

GW = WA, 13)

where G = B71(A + vD). Note that A is a diagonal ma-
trix, therefore, the optimal transformation matrix W is ac-
tually a matrix composed of eigenvectors corresponding to
the first ¢ smallest eigenvalues except the zero eigenvalues
in the Eigen-equation Gw; = A\w;(i = 1,2, ...,d’), where
wy 18 the ¢-th column vector of the transformation matrix W,
and ); is the i-th smallest eigenvalue except the zero eigen-
values in the Eigen-equation.

We summarize the detailed algorithm for solving prob-
lem (10) into the Algorithm 1. Liao et al (Liao et al. 2018),
demonstrate the convergence of optimization targets with
the /5 1-norm. It is similar to our problem and the conver-
gence of our optimization targets can be obtained easily ac-
cording to the this paper (Liao et al. 2018).

iii. Update S by fixing W and F' By fixing W and F,
problem (6) can be rewritten as

min S oWz = WTa)|3si;+20Tr(FT LsF) +al|S|| %
i,j=1
5.t.,8>0,571=1.
(14)

According to Eq.(9) and setting Z = XTW, the problem
(14) can be further rewritten as

n
min Y (||z—2;|3si+as+nll fi— fll35:)
S =1 (15)
s.t.,8; > 0,3?1 =1,

where z; is the ¢-th column vector of Z, f; is the i-th column
vector of F'. Since problem (15) is independent of different /,
so we can solve the following problem individually for each
X

n
min Z(”Zi - zil138i; + as?j +nll fi— fil3865)
it (16)
s.t.,s; >0, SZTI =1.
Denote

;= ||z — 213, df; = | fi — £33, (17)

and denote d; € R™*! as a vector with the j-th element as
dij = di; + nd{j, then the problem (16) can be written in a
vector form as

) 1
min  ||s; + %ding (18)

slTl:l,siZO



Algorithm 2: RS?>CIS optimization in problem (3)

Input:
dataset X € R%*™, cluster number k, parameters  and
«, a large enough 7.

Output: Intrinsic affinity matrix S € R"*" with exactly
¢ = k connected components and row-sparse
transformation matrix W.

Initialize .S by the optimal solution to the following
problem:

n
mgnz; |z — x;]38:5 + | S||%, 5.t.,8 > 0,871 = 1.
]:

repeat
i. Update F'. F' is formed by the c eigenvectors of

Ls=Dg — % corresponding to the ¢ smallest
eigenvalues.
ii. Update W. The transformation matrix W is updated
by Algorithm 1.
iii. Update .S. For each 7, update the ¢-th row of S' by
solving the problem (18), where j-th element of vector
d; is defined as d;; = dfj + nd{j.

until converge

This problem can be solved by a closed form solution
which is put forward by (Nie, Wang, and Huang 2014). By
updating s;, we can get the matrix S with exactly k strong
connected subgraphs. The matrix S corresponds to a graph
with an explicit structure that can be used to obtain the final
clustering directly.

We summarize the detailed algorithm for solving problem
(3) into the Algorithm 2.

Update of parameters oo and n In addition, the value of
the regularization parameter « is arbitrary from zero to in-
finite, and its tuning is difficult. We also note that when we
remove the Laplacian matrix rank constraint and the row-
sparse matrix constraint in problem (3), the global represen-
tation in problem (3) will degenerate to the following form:

n
min Y [lz; — z;|3si; + ol SIIE,
e (19)

5t.,8>0,s71=1.

Therefore we determine the value of the regularization pa-
rameter o by (Nie, Wang, and Huang 2014):

1N K 1 &
= N (Sdigar— 5 Y dy), 20
«a i:1(2 JK+1 2j:1 J) (20)

where K is the number of neighbor nodes. The initial value
of n for acceleration of the method can be set to . And 7
is constantly adjusted during the iteration of the algorithm 2
until the number of connected components of the Laplacian
matrix Lg is equal to the number of clusters k.
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Experiments

We use the clustering ACCuracy (ACC) to evaluate the per-
formance of our method RS3CIS through projection exper-
iments and clustering experiments on both synthetic dataset
and real benchmark datasets.

Experiment setting

During the experiments, for the methods that need to per-
form K-means (e.g., Principal Component Analysis (PCA)
(Jolliffe 2002), Locality Preserving Projections (LPP) (He
and Niyogi 2004), K-means (Hartigan and Wong 1979),
Ratio Cut (RCut) (Wang and Siskind 2003), Normalized
Cut (NCut) (Shi and Malik 2000)), we run them 100 times
with random initializations, and report their average perfor-
mance (Ave), standard deviation (std) and optimal clustering
result (Best (min_obj)). For the methods (e.g., LPP, RCut,
NCut, Nonnegative Matrix Factorization (NMF) (Xu, Liu,
and Gong 2003), Constrained Laplacian Rank (CLR) (Nie
et al. 2016)) that take the affinity graph as input, we use
the Self-tuning Gaussian method (Zelnik-Manor and Perona
2004) to construct the affinity graph. And the corresponding
number of neighbor nodes is set to ten. In our method, K in
parameter « is set to fifteen.

Experiments on synthetic dataset

In order to verify the performance of our method RS®>CIS
in reducing the dimension on datasets containing noise and
achieving clustering result by learning the intrinsic affinity
matrix, some experiments are performed on synthetic data
sets.

Construction of three-ring dataset We design a three-
ring dataset which consists of sine functions, and their num-
ber of data points is 120, 220, 260. This dataset is 600 x 5.
It includes two-dimension useful information and three-
dimension noise data. We set two noise values: noisel con-
trols the dispersion within the cluster of two-dimensional
useful information, and noise2 controls the size of the noise
value in the other three dimensions. In this way, the two-
dimension, three-cluster dataset in a circular arrangement is
sequentially produced as shown in Fig.1(a). We use differ-
ent colors and dot shapes to represent different data clusters.
Our goal is to extract useful data dimensions in the five di-
mensions noise-containing dataset by dimension reduction
and restore the useful information in the dataset as much as
possible.

Methods for comparison Our method RS®*CIS is com-
pared with the two most commonly used dimension re-
duction methods: PCA and LPP. In addition, our method
RS3CIS is also compared with another method PCAN. It
should be noted, in order to facilitate the comparison of di-
mension reduction capabilities on the synthetic data, we set
the reduced dimension to 2 for all compared method. For
PCA and LPP, we only reduce the dimension of the syn-
thetic dataset and mark the clusters according to their real
labels.
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Figure 1: Comparison of learnt subspaces on three-ring synthetic datasets with different noise2.

Table 1: Projection clustering results on a three-ring dataset
with noise2 = 0.18

Methods Best Ave
PCA 03883 0.3733 £0.0093
LPP 0.3650  0.3582 =+ 0.0076
PCAN 0.5267
RS3CIS 1.0

Table 2: Statistics of benchmark datasets

Datasets  # of Samples Features Classes
USPS 1854 256 10
Palm 2000 256 100
Ecoli 336 7 8
Coil 1440 1024 20
Yeast 1484 8 10
Wine 178 13 3

Result analysis As shown in Figs.1(d) and 1(e), when
notse?2 is small, both PCAN and RS3CIS can learn a good
subspace and complete the clustering task correctly. Then,
as we continue to increase the value of noise2, as shown
in Figs.1(f), 1(g) and 1(h), both PCA and LPP fail com-
pletely and the PCAN method is gradually becoming power-
less. Fortunately, as shown in Fig.1(e), our method RS*CIS
still maintains good dimension reduction and robust clus-
tering capabilities when other methods are no longer valid.
It is worth pointing out that the learn subspaces with our
method (shown in Fig.1(e)) are consistent with the first 2-
dimensional useful data (shown in Fig.1(a)), which also
prove the interpretability of our method. This is mainly be-
cause the introduction of the row-sparse transformation ma-
trix W allows our method to simultaneously perform fea-
ture selection and subspace learning, which theoretically en-
sures the robustness and interpretability of our method. The
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resulting During the experiment, we also notice that when
notse2 is small, LPP is better than PCA in learning subspace
(shown in Figs.1(b) and 1(c)). This is mainly because LPP
pays more attention to the local structure of data, while PCA
pays more attention to the global structure of data. There-
fore, when noise2 is small, LPP has an advantage over PCA
in learning subspace.

In addition, we also perform projection experiments and
report the clustering ACC when noise2 = 0.18. For RS3CIS
and PCAN, all parameters are the same setting, and the two
methods are run only once. The results of the above ex-
periments are reported in Table 1. The above experimen-
tal results show that the proposed method RS*CIS can still
complete the corresponding subspace learning and cluster-
ing tasks correctly in a noisy environment, while other com-
pared methods are severely ineffective.

Experiments on real benchmark dataset

In this section, we further verify the validity of our proposed
method RS®CIS through a clustering experiment and a pro-
jection experiment.

Datasets Among them, four image datasets: USPS!,
Palm?, Ecoli (Athitsos and Sclaroff 2005) and Coil (Nene
et al. 1996). Two biological datasets: Yeast (Asuncion
and Newman 2007) comes from the UCI Machine Learn-
ing Repository, Wine is downloaded from (Zhong and
Fukushima 2007). The details of these datasets are summa-
rized in Table 2.

Clustering experiments We compare our method
RS>CIS with four classical clustering methods (K -means,
NCut, RCut and NMF), a global representation methods
CLR and a local projection representation method PCAN.

Uhttp://www-i6.informatik.rwth-aachen.de/keysers/usps.html
“http://www.escience.cn/people/fpnie/index.html



Table 3: Experimental results on benchmark datasets

Methods USPS Palm Ecoli Coil Yeast Wine
K-means Ve 0.6292+0.0357 0.6899+0.0245 0.5367+0.0594 0.5957+0.0558 0.3508+0.0207 0.6725+0.0547
Best 0.6499 0.7390 0.5982 0.6625 0.3659 0.7022
RCut Ave 0.6578+0.0818 0.543240.0241 0.514940.0469 0.6265+0.0710 0.3619+0.0185 0.7156+0.0313
Best 0.6812 0.6115 0.5774 0.7258 0.4036 0.7170
NCut Ave 0.6588+0.0844 0.429340.0287 0.5092+0.0431 0.5775+0.0787 0.3543+0.0206 0.6815+0.0811
Best 0.6818 0.5095 0.5744 0.7007 0.3956 0.7037
NMF 0.6618 0.6265 0.5446 0.7674 0.3558 0.7126
CLR 0.7044 0.8040 0.5208 0.7688 0.4340 0.7247
PCAN 0.6494 0.8935 0.7738 0.7944 0.3888 0.7135
RS3CIS 0.7843 0.9045 0.8244 0.8058 0.4420 0.7247
a small value, the clustering performance of our method is
similar to that of PCAN. This is because when +y is infinitely
small, our method RS3CIS degenerates to PCAN.
_.55 Projection experiments In fact, we don’t have any prior
R [ "o, knowledge of the true subspace dimensions of the original
o OPCAN ", . dataset. Therefore, in order to further test the projection ef-
" epca Y fect of our method RS®>CIS, we design the following projec-
Y s s e g0 ars oz Es 20 tion experiments: we reduce the dataset to a different value
(a) USPS of reduced dimension d’ and then compare the clustering

- o
0.5 /’_, 8 wrs’cTs
©PCAN

LPP
@®PCA

1 2 3 4 5 6 7

(b) Ecoli

Figure 2: Projection clustering ACC comparison with differ-
ent methods.

For a fair comparison, we set the parameters of our
method RS3CIS to the same values of PCAN. In addition,
the reduced dimension d’ is searched equally within the di-
mensions of the original dataset and the optimal clustering
results are reported. The « in our method RS3CIS is taken
from {1e-6,1e-3,1,1e3,1e6}. For the CLR method, we adjust
all parameters to the optimal.

We report the experimental results on the six benchmark
datasets in Table 3. From the experimental results, we can
see that our method RS3CIS is optimal (at least equal) on
each dataset compared with other methods. This is mainly
because our method RS®>CIS can learn an intrinsic subspace
from the original dataset through the row-sparse transforma-
tion matrix W. The addition of a row-sparse penalty term
~||W ||2,1 makes our method more robust (proven in projec-
tion experiments). Therefore, the noise points and outliers
contained in the dataset can be suppressed effectively on the
real benchmark dataset, and better clustering results can be
achieved. In addition, we also found that when the v takes
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accuracy with different methods in the same reduced dimen-
sion.

For PCAN, we adjust all the parameters to the optimum.
For PCA and LPP, we first reduce the dimension of the data
set, then run K -means 100 times to achieve the best cluster-
ing ACC directly. Accordingly, we adjust the «y of the param-
eters in our method to the optimal. Due to space constraints,
we only show the projected clustering ACC results on the
datasets USPS and Ecoli in Fig.2.

From the experimental results shown in Fig.2, we can see
that our method RSCIS always gets the best clustering ACC
(at least equal) compared with other methods. This because
that our method RS®CIS can effectively learn a pure intrin-
sic subspace that is more conducive to clustering than other
dimension reduction methods.

Conclusion

In this paper, a new Robust Single-Step Spectral Clustering
with Intrinsic Subspace method is put forward. It can learn
an intrinsic subspace and conduct a pure affinity matrix from
the original dataset through a row-sparse transformation ma-
trix. And the proposed problem in our method is effectively
solved by a new iterative update algorithm. In addition, the
introduction of the Laplacian matrix rank constraint allows
our method to obtain an affinity graph with an explicit clus-
ter structure, so the final clustering results can be obtained in
a single step without any post-processing steps. In the future,
we will extend our method to multi-view clustering prob-
lems and aim to achieve robust clustering results in multi-
view clustering tasks with noise.
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