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Abstract

We study reinforcement learning for controlling multiple
agents in a collaborative manner. In some of those tasks, it
is insufficient for the individual agents to take relevant ac-
tions, but those actions should also have diversity. We propose
the approach of using the determinant of a positive semidefi-
nite matrix to approximate the action-value function in rein-
forcement learning, where we learn the matrix in a way that
it represents the relevance and diversity of the actions. Ex-
perimental results show that the proposed approach allows
the agents to learn a nearly optimal policy approximately ten
times faster than baseline approaches in benchmark tasks of
multi-agent reinforcement learning. The proposed approach
is also shown to achieve the performance that cannot be
achieved with conventional approaches in partially observ-
able environment with exponentially large action space.

Introduction
We study the problem of learning to control multiple agents
in a collaborative manner. For example, players of a team
want to learn from their experience how to collaboratively
play to win a game, or one might want to learn to control
multiple robots to accomplish a task that cannot be handled
by a single robot. For some of those multi-agent tasks, it is
important for the agents to take not only individually rele-
vant but also collectively diverse actions. For example, play-
ers of a defensive team should guard relevant and diverse
areas (i.e., zone defense) or relevant and diverse players of
the other team (i.e., man-to-man defense).

Even when we have central control, multi-agent reinforce-
ment learning is hard due to exponentially many possible
combinations of actions. The simple approach of handling
the combination of actions as if it is an action of a hypothet-
ical single agent (or a team) does not scale with increased
number of agents. It is also undesirable to let each agent
greedily take an action without consideration of others.

We propose to use the determinant of a matrix to approx-
imate the action-value function in reinforcement learning
where the combination of relevant and diverse actions tends
to have high value (see Figure 1). Each action is character-
ized by a feature vector, whose length represents the rele-
vance of that action at a state, and the angle between two
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Volume2 = exp(Value of combination of actions)

Figure 1: The logarithm of the squared volume of the paral-
lelepiped defined by the feature vectors of actions represents
the value of the combination of those actions.

feature vectors represents the similarity between two actions
at that state. The feature vector depends on the state. A set of
feature vectors then defines a parallelotope whose squared
volume is given by the determinant of the Gram matrix of
those feature vectors. More specifically, the value of a com-
bination of actions at a state is given by the logarithm of
the determinant (log-determinant) of a principal submatrix
of a positive semidefinite matrix (kernel), where the prin-
cipal submatrix is specified by the actions, and the kernel
depends on the state.

The proposed approach can deal with partial observability
by letting the kernel depend on the history of observations
(of non-Markovian states). The special case of a history-
dependent diagonal kernel reduces to the standard approach
of representing the action-value function with a time-series
model such as a recurrent neural network (Hausknecht
and Stone 2015), vector autoregressive models, and dy-
namic Boltzmann machines (Osogami and Otsuka 2015;
Osogami 2017). Our approach can thus be seen as adding
a differential “determinantal layer” to the output of a neural
network.

We derive specific learning rules of the SARSA (state-
action-reward-state-action) algorithm with log-determinant
as a functional approximator. We refer to the resulting al-
gorithm as Determinantal SARSA. We apply Determinan-
tal SARSA to blocker tasks (fully observable environment)
and stochastic policy tasks (partially observable environ-
ment). The experimental results suggest that Determinantal
SARSA can find nearly optimal policy for blocker tasks ap-
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proximately 10 times faster than baseline approaches (Sal-
lans and Hinton 2001; 2004; Heess, Silver, and Teh 2013;
Sallans 2002), where free energy of a restricted Boltzmann
machine (RBM) is used as a functional approximator. De-
terminantal SARSA also finds nearly optimal policy for
stochastic policy tasks, substantially outperforming those
baseline approaches, due to its capability of effectively deal-
ing with partial observability.

Our contributions can be summarized as follows. First, we
introduce the idea of using the determinant in reinforcement
learning to approximate the action-value function. Second,
we derive specific learning rules of Determinantal SARSA.
Finally, we demonstrate the effectiveness of Determinantal
SARSA in reinforcement learning where relevant and di-
verse actions tend to have high value possibly in partially
observable environment.

Related Work
Determinantal SARSA is motivated by determinantal point
processes (DPPs) (Kulesza and Taskar 2012; Macchi 1975)
and Free Energy SARSA (Sallans and Hinton 2001; 2004;
Sallans 2002). Here, we discuss such prior work related to
ours. Note that most of the prior work on multi-agent re-
inforcement learning (e.g., Gupta, Egorov, and Kochender-
fer; Foerster et al. (2017; 2017)) except those that will be
discussed in the following assumes factored action space,
letting each agent choose an action independently although
based on (partially) shared information. Such prior work is
complementary to our approach of jointly choosing the ac-
tions, taking into account diversity.

A DPP defines a probability distribution over the subsets
from a ground set. The probability of a subset is propor-
tional to the determinant of a principal submatrix of a posi-
tive semidefinite matrix, where the submatrix is indexed by
the items in the subset. A DPP thus assigns high probability
to those subsets that have relevant and diverse items. DPPs
have been used in machine learning applications, includ-
ing recommendation of products (Gillenwater et al. 2014;
Gartrell, Paquet, and Koenigstein 2017), summarization of
documents or videos (Gong et al. 2014), hyper-parameter
optimization (Kathuria, Deshpande, and Kohli 2016), and
mini-batch sampling (Zhang, Kjellström, and Mandt 2017).
DPPs have also been used for modeling neural spiking to
better represent the negative correlation between neurons
(Snoek, Zemel, and Adams 2013). DPPs, however, have
never been used in reinforcement learning. We will see that a
DPP naturally appears with Determinantal SARSA when we
choose actions according to the standard approach of Boltz-
mann exploration.

Some of the steps of Determinantal SARSA are related
to learning algorithms for DPPs. Specifically, we assume
that the kernel has the structure similar to Low Rank DPP
(Gartrell, Paquet, and Koenigstein 2017) and its extension
to Dynamic DPP (Osogami et al. 2018). As a result, De-
terminantal SARSA involves the gradient of the log de-
terminant that also appears in the learning algorithms in
Gartrell, Paquet, and Koenigstein; Osogami et al. (2017;
2018). As we will see, however, the exact structure of our
kernel is different from those studied in Gartrell, Paquet,

and Koenigstein; Osogami et al. (2017; 2018). Specifically,
our kernel has a smaller number of time-varying parameters
and is more suitable for reinforcement learning where col-
lecting a large amount of training data is relatively difficult.
There also exists prior work on efficiently learning DPPs by
assuming other structures in the kernel, such as tensor de-
composition (Mariet and Sra 2016), that may be exploited in
Determinantal SARSA as well.

Free Energy SARSA uses the free energy of an RBM
as a functional approximator for multi-agent reinforcement
learning, where the property of the RBM that allows effi-
ciently sampling from a high dimensional space according
to a Boltzmann distribution is exploited. There is also re-
lated work that uses expected energy of an RBM (Elfwing,
Uchibe, and Doya 2016). While a DPP always represents
negative correlation, an RBM can represent both negative
and positive correlation. This flexibility of the RBM leads to
greater generality but comes at the expense of greater com-
putational complexity. Determinantal SARSA is suitable for
the domain where a combination of relevant and diverse ac-
tions tends to have high value, because we can find a good
value function from a limited space. Free Energy SARSA
has been extended to an Actor Critic method (Heess, Silver,
and Teh 2013). Determinantal SARSA may also allow such
extension.

Determinantal SARSA
SARSA is a method of reinforcement learning and is usually
applied to the settings with a single agent, but that single
agent may be considered as a team of agents with central
control, which is the setting we study. In the following, an
agent-team refers to the team of agents, and a team-action
refers to the combination of their actions. At each time t, the
agent-team observes the state st and takes a team-action at,
depending on st. The agent-team then obtains reward rt+1

and transitions into state st+1, where the agent-team chooses
the next team-action at+1, and this process is continued. The
goal of the agent-team is to sequentially choose team-actions
in a way that cumulative reward is maximized.

SARSA seeks to learn a Q (action-value) function
Q(s, a), which represents the expected cumulative reward
that can be obtained from a state s by taking action a at s
and then act according to a policy under consideration. By
learning the Q function, one can identify the action that is
optimal at a given state when we follow the policy under
consideration from the next state. This allows one to itera-
tively improve the policy under consideration.

More specifically, SARSA iteratively updates the Q func-
tion according to

Q(st, at)← Q(st, at) + η∆t (1)
at each time t+ 1, where η is the learning rate, and ∆t is the
temporal difference (TD) error with a discount factor ρ for
0 ≤ ρ ≤ 1:

∆t ≡ rt+1 + ρQ(st+1, at+1)−Q(st, at). (2)
SARSA usually assumes that the Markovian state st is ob-
servable. When st is not observable, a common practice is
to let st represent (a feature vector of) the history of obser-
vations by time t.
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Approximating Q Function Using Determinant
When the Q function is approximated with a function Qθ
with parameters θ, SARSA may update θ according to1

θ ← θ + η∆t∇θQθ(st, at). (3)
In Determinantal SARSA, we use determinant in Qθ.
Specifically, let xt ≡ ψ(at) ∈ {0, 1}N be a binary rep-
resentation of a team-action at. For example, xt may in-
dicate which subset of N possible actions is taken by the
agent-team. Let zt ≡ ξ(at−1, rt, ot) represent the (features
of) observation at time t, which may include the preceding
team-action at−1 and reward rt in addition to the partial ob-
servation ot of st. Let z≤t denote the observations by time
t. We approximate the Q function with

Qθ(z≤t,xt) ≡ α+ log det Lt(xt), (4)
where Lt is a positive semidefinite (hence symmetric) N ×
N matrix (kernel), which can vary over time t depending on
z≤t, and Lt(xt) is the principal submatrix of Lt indexed by
the elements that are 1 in xt (i.e., Lt(xt) is obtained from
L by removing rows and columns, where the i-th row and
column are removed iff the i-th element of xt is 0 for any
i). We define log det Lt(0) = 0, so that α determines the
baseline value2 at xt = 0.

For simplicity, we do not consider which actions should
be assigned to which agents. When the agents are homoge-
neous, one may arbitrarily assign actions to agents once a
subset is determined. For heterogeneous agents, one could
consider the product space of the action spaces and choose
one action from each action space.

We propose to represent Lt with the following form:

Lt = V Dt V
>, (5)

where V is an arbitrary N ×K matrix for 0 < K ≤ N , Dt

is a diagonal matrix of order K with positive elements that
can depend on z≤t. To ensure positivity, let

Dt = Diag(exp(dt(φ))) (6)
for a K-dimensional vector dt(φ), where exponentiation
is elementwise, and Diag(·) denotes the diagonal matrix
formed with a given vector. Here, dt(φ) should be consid-
ered as a time-series model, with parameter φ, that outputs a
K-dimensional vector. Also, dt(φ) should be differentiable
with respect to φ to allow end-to-end learning. Examples of
such dt(φ) include a recurrent neural network and a vector
autoregressive model.

To intuitively understand this Lt, consider the case where
V is the identity matrix of order K = N :

log det Lt(x) = log det Dt(x) (7)

= log
∏

i:(x)i=1

exp(dt(φ)i) (8)

= dt(φ)> x. (9)
1When Qθ is non-linear, convergence is not generally guar-

anteed for SARSA (Baird 1995; Boyan and Moore 1995). One
may use more sophisticated techniques (Maei and Sutton 2010;
Maei et al. 2009) for better convergence, but we choose the sim-
ple framework of SARSA in this paper.

2An extension to a time-varying αt is straightforward, analo-
gously to other parameters.

If the i-th element of x indicates whether the i-th action is
taken by an agent, the value of a team-action is the sum of
the values of individual actions without consideration of di-
versity, where dt(φ) represents the value (relevance) of in-
dividual actions at time t. With a non-identity V, Determi-
nantal SARSA can take into account the diversity in actions.

Determinantal SARSA learns all of the parameters θ ≡
(α,V, φ) in an end-to-end manner according to (3), where
we need the gradient ∇θQθ. The following theorem pro-
vides the ∇θQθ for the Qθ(z≤t,x) in (4) that is used in
Determinantal SARSA:
Theorem 1. Consider the Qθ(z≤t,x) in (4) with Lt as de-
fined with (5)-(6). Let V(x) denote the matrix consisting of
a subset of the rows of V in a way that the rows of V(x) are
indexed by the elements that are one in x. Let V(x)+ be the
pseudo inverse of V(x). Let x̄ ≡ 1− x elementwise. Then

∇αQθ(z≤t,x) = 1 (10)
∇V(x̄)Qθ(z≤t,x) = 0 (11)

∇V(x)Qθ(z≤t,x) = 2 (V(x)+)> (12)

∇φQθ(z≤t,x) = diag
(
V(x)+ V(x)

)
∇φdt(φ) (13)

where diag(·) is the vector formed with the diagonal ele-
ments of a given matrix.

Proof. Because ∇αQθ(z≤t,x) = 1 follows immediately
from (4), we will prove (11)-(13). Let U ≡ V(x)

√
Dt,

where
√

Dt = Diag(exp(dt(φ)/2)). Then Lt(x) = U U>.
The derivative of log det Lt(x) can be derived from the fol-
lowing equality for a generic matrix Y:

∂ log det(Y Y>)

∂θ
=
∑
i,j

∂(Y>)i,j
∂θ

∂ log det(Y Y>)

∂(Y>)i,j

=
∑
i,j

∂Yj,i

∂θ
2 (Y+)i,j (14)

= 2 tr

(
∂Y

∂θ
Y+

)
, (15)

where Y+ denotes the pseudo-inverse of Y. Using (15), we
can derive the derivative with respect to the (i, j)-th element
of V:

∂

∂Vi,j
log det Lt(x) = 2 tr

(
∂V(x)

∂Vi,j

√
Dt U

+

)
. (16)

Because
√

Dt is diagonal and invertible, we have

U+ =
√

Dt

−1
V(x)+. (17)

When xi = 1, by (16)-(17), we have
∂

∂Vi,j
log det Lt(x) = 2 tr

(
∂V(x)

∂Vi,j
V(x)+

)
(18)

= 2 tr
(
Ei′,j V(x)+

)
, (19)

where Ei′,j is the matrix whose elements are zero except
that the (i′, j)-th element is one, where i′ is the row of V(x)
corresponding to the i-th row of V. Then we have

∂

∂Vi,j
log det Lt(x) = 2

(
(V(x)+)>

)
i′,j

, (20)

4661



Algorithm 1 Determinantal SARSA
1: Input: Discount factor ρ; learning rate η; initial θ
2: Take initial team-action a0; x0 ← ψ(a0)
3: for t = 0, 1, . . . do
4: Get rt+1 and observe ot+1; zt+1 ← ξ(at, rt+1, ot+1)
5: Take team-action at+1; xt+1 ← ψ(at+1)
6: Dt ← Diag(exp(dt(φ)))
7: Update dt(φ) to dt+1(φ) with zt+1

8: Dt+1 ← Diag(exp(dt+1(φ)))
9: Qt ← α+ log det V(xt) Dt V(xt)

10: Qt+1 ← α+ log det V(xt+1) Dt+1 V(xt+1)
11: ∆t ← rt+1 + ρQt+1 −Qt
12: α← α+ η∆t

13: V(x̄t)← V(x̄t) + 2 η∆t (V(xt)
+)>

14: φ← φ+ η∆t diag (V(xt)
+ V(xt)) ∇φdt(φ)

15: end for

which establishes (12). Notice that (11) follows from the fact
that Lt(x) does not involve V(x̄).

Next, consider the derivative with respect to the i-th ele-
ment of dt(φ):

∂

∂dt(φ)i
log det Lt(x)

= 2 tr

(
V(x)

∂
√

Dt

∂dt,i

√
Dt

−1
(V(x))+

)
(21)

= 2 tr

(
V(x)

1

2
exp(dt,i/2) Ei,i

√
Dt

−1
V(x)+

)
(22)

= tr
(
V(x) Ei,i V(x)+

)
(23)

We thus have

∇dt(φ) log det Lt(x) = diag
(
V(x)+ V(x)

)
, (24)

which then implies (13).

Algorithm 1 summarizes Determinantal SARSA. In each
iteration, after getting reward rt+1 and making an observa-
tion ot+1 in Step 4, we take a team-action at+1 in Step 5.
Steps 6-8 compute the diagonal matrix of (6) by using the
time-series model dt(φ), whose state is updated in Step 7
on the basis of the input zt. These diagonal matrices are
then used in Steps 9-11 to compute the TD error ∆t. The
parameters θ ≡ (α,V, φ) are then updated in Steps 12-14.
In Step 14, the gradient ∇φdt(φ) depends on the particular
time-series model under consideration.

In practice, one may let V = I + A and learn A with L2
regularization such that the Frobenius norm of A tends to be
small, which is expected to help avoid overfitting to limited
training data. Notice that this does not lose generality, be-
cause A is arbitrary. Because V→ I as A→ O, strong reg-
ularization reduces to the standard method of learning only
the relevance dt(φ) of individual actions, ignoring diversity.
We will use such L2 regularization in our experiments.

Choosing Actions with Determinantal SARSA
In Step 2 and Step 5 of Algorithm 1, we need to choose
team-actions in consideration of the tradeoff between ex-

ploration and exploitation. Popular approaches include ε-
greedy and Boltzmann exploration. The ε-greedy method
chooses the action having the highest value with probabil-
ity 1−ε, which is generally intractable for high dimensional
action space. In the following, we will see that the structure
of log-determinant allows Boltzmann exploration that runs
efficiently in practice.

In Boltzmann exploration, a team-action a having feature
x = φ(a) is chosen at time t with probability

π(x | z≤t) =
exp(β Qθ(z≤t,x))∑
x̃ exp(β Qθ(z≤t, x̃))

(25)

=
det Lt(x)β∑
x̃ det Lt(x̃)β

, (26)

where β is the inverse temperature, and the summation with
respect to x̃ is over the binary feature vectors that correspond
to all of the possible team-actions.

When β = 1 and the summation with respect to x̃ is
over all of the possible 2N binary vectors, (26) is reduced
to a DPP, which allows efficient (in time polynomial in N )
sampling (Kulesza and Taskar 2012). The low rank struc-
ture (K < N in (5)) can be exploited for further efficiency
(Qiao et al. 2016). Also, when the size of the subset is re-
stricted to a given constant k (e.g., each action in the subset
corresponds to the action of one of the k agents consisting
of a team), (26) is reduced to a k-DPP (Kulesza and Taskar
2011).

The case with β 6= 1 has been studied as annealed
determinantal distributions (Wachinger and Golland 2015;
Belabbas and Wolfe 2009). This general case is less tractable
than the DPP, but one can still draw samples via Markov
Chain Monte Carlo (MCMC) methods. Namely, starting
from a random binary vector x, we iteratively choose a can-
didate vector x′ and replace x← x′ with acceptance proba-
bility: min{1, (det Lt(x

′)/det Lt(x))
β}.

When each x corresponds to a candidate team-action
a = φ−1(x), such an MCMC method can be accelerated
in a way similar to the the approach studied in Kang; Gillen-
water (2013; 2014) for the DPP. In this case, we can choose
the candidate vector x′ in a way that it differs from x by
only one bit, which may be sampled uniformly at random
from {1, . . . , N}. Then L(x) and L(x)′ differs only by one
rank, and the ratio of their determinants can be computed ef-
ficiently using the Schur determinant identity and rank-one
update techniques, as shown in Kang; Osogami et al. (2013;
2018). The only difference from the case of the DPP is that
the ratio of the determinant is powered to β in the acceptance
probability.

In practice, one may be more exploratory than a DPP
by mixing the DPP (β = 1) and the uniform distribution
(β → 0) with suitable probabilities. To be more exploitative,
one may sample from the DPP with a suitably chosen num-
ber of times and select the one having the highest value. Be-
cause we can sample efficiently from a DPP, these heuristics
allow efficient sampling, while trading off between explo-
ration and exploitation. In our experiments, we use MCMC
to sample with Boltzmann exploration, which we find tends
to work better for our applications.

4662



𝑨𝟏 𝑨𝟐 𝑨𝟑

𝑩𝟏 𝑩𝟐

Figure 2: An example of the initial positions of the agents
(A1, A2, A3) and blockers (B1, B2) in the blocker task.

Experiments
We evaluate the performance of Determinantal SARSA on
the blocker task (Sallans and Hinton 2001; 2004; Heess, Sil-
ver, and Teh 2013; Sallans 2002) and the stochastic policy
task (Heess, Silver, and Teh 2013; Sallans 2002), which have
been designed to evaluate the performance of multi-agent re-
inforcement learning methods. The blocker task is on a fully
observable environment, while the stochastic policy task in-
volves partial observability. We compare the proposed ap-
proach against the existing approaches to multi-agent re-
inforcement learning with non-factored action structures
(i.e., taking into account the value of a team-action rather
than the value of the individual action of an agent) (Sal-
lans and Hinton 2001; 2004; Heess, Silver, and Teh 2013;
Sallans 2002). We closely follow the instances considered
in Heess, Silver, and Teh (2013) and compare our results
against those reported in Heess, Silver, and Teh (2013). All
of the experiments are carried out with Python implementa-
tion on a workstation having 48 GB memory and 4.0 GHz
CPU.

Blocker Task
In the blocker task, we seek to control an agent-team (con-
sisting of three agents) in a collaborative manner so that
one of the agents reaches the end zone, while two block-
ers hinder the agents. Figure 2 shows an example of the
initial positions of the agents (A1, A2, A3) and the blockers
(B1, B2). The field is a grid of four rows and seven columns.
Each agent starts at uniformly random positions in the top
row. Each blocker, who occupies three squares, starts at uni-
formly random positions in the bottom row. The goal of the
agent-team is to let one of the agents reach the end zone
(bottom row) by avoiding the blockers.

At each step, each agent can move one step in one of the
four directions or stay unmoved. After all of the agents take
actions, each blocker moves one step to the right or to the
left if doing so can block an agent; otherwise, the blocker
stays unmoved. If one of the agents reaches the end zone,
the agent-team receives +1 reward for that step. Otherwise,
the agent-team incurs−1 reward per step. See Heess, Silver,
and Teh (2013) for more details about the exact settings.

For this fully observable task, we learn to control the
agents via Determinantal SARSA with Dt ≡ I. Here, we
represent the team-action at by a 4 × 7 = 28 dimensional
binary vector x, where each dimension corresponds to one
of the 4 × 7 squares constituting the grid. Specifically, the

Heess Silver Teh

N K prototypical actions

task 1 5 2 (0 0 1 0 1)
(0 1 0 1 1)

task 2 6 3 (1 1 0 0 0 0)
(0 0 1 1 0 0)
(0 0 0 0 1 1)

task 3 8 3 (0 0 1 0 1 0 1 1)
(0 1 0 1 1 1 0 0)
(1 1 1 0 1 0 0 0)
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Figure 4.1: Stochastic policy task: The table shows the task-parameters for the three ver-
sions of the task. Results are shown for ENATDAC (green circles), EQNAC
(blue squares), SARSA (red crosses), and NN (magenta). Black lines show av-
erage reward for optimal policy; light gray lines show rewards with independent
actions.

Figure 4.2: Blocker task: The top plot illustrates several
steps in a blocker game (adapted from Sallans
and Hinton 2004). To win, the agents need to
cooperate. Here, agents 1,2 force the block-
ers to split so that agent 3 can enter the end
zone in the middle. The bottom plot shows, for
each algorithm, mean and standard deviation
of the average reward per step of the learned
policies for 20 restarts with different random
initialziations (see Fig. B.3 in the supplemen-
tal material for individual traces).
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transitions into state k + 1 (or into state 1 from K). Otherwise the state is unchanged and
no reward is provided. Since the agent does not observe the environment state the optimal
policy is to choose the K “good” action configurations with equal probability, achieving an
average reward of 10

K . A deterministic policy will get zero reward since it will get stuck in one
of the states. Further, it is necessary to model dependencies between action variables: for
independently drawn action variables the probability of generating a “good” configuration
is very low. We consider three versions of the task with N = 5, 6, 8, and K = 2, 3, 3 (cf.
Fig. 4.1). The first version was considered in Sallans [2002]. We used an RBM with 1 hidden
unit for task 1 and 2 hidden units for tasks 2 and 3. Training was performed for 20000 ac-
tions. Results are shown in Fig. 4.1. The NN models each action dimension independently
and therefore performs very poorly (see supplemental material for further discussion). In
contrast, the RBM learns to represent these correlations via stochastic latent variables and
performs very effectively. When training the RBM, ESARSA is only able to find the optimal
policy for task 1, whereas EQNAC and ENATDAC find optimal policies in all cases.3

The blocker task (Sallans 2002; Sallans and Hinton 2004) is a multi-agent task in which
agents have to reach the end zone at the top of a playing field while blockers try to stop

3. Although only the first 20000 actions are shown we allowed 50000 actions for ESARSA training. For
task 2 additional training leads to a small improvement relative to the performance after 20000 actions
but not for task 3 (see also Fig. B.1 in supplemental material).

50

1

Figure 3: Performance of Determinantal SARSA (black
curve) and baseline methods (colored curves) on the blocker
task (the black curve is drawn on Figure 4.2 of Heess, Sil-
ver, and Teh (2013)). Each curve shows the mean and the
standard deviation, over 20 runs, of the average reward per
action.

i-th dimension indicates whether an agent occupies the i-th
square after taking the team-action at ((xt)i = 1) or not. We
use a full rank kernel (i.e., 28×28 matrix V), which tends to
perform best for this particular task. Also, α in (4) is omit-
ted, because xt = 0 never appears in this task. In Boltzmann
exploration, we sample a team-action according to the exact
distribution of 26 without the use of MCMC, because ex-
act sampling is tractable for this task, where the number of
feasible team-actions is at most 53 = 125 and can be much
smaller in some states.

Figure 33 shows the average reward per step, for ev-
ery 40,000 steps (and for every 4,000 steps during the ini-
tial 40,000 steps of Determinantal SARSA), against the
total number of steps for Determinantal SARSA (black)
and baseline methods (colored) studied in Heess, Silver,
and Teh (2013). The baselines are free-energy SARSA
(SARSA), neural network (NN), energy-based Q-value nat-
ural actor critic (EQNAC), and energy-based natural TD
actor-critic (ENATDAC). We find that the average reward for
Determinantal SARSA already exceeds−0.7 during 20,000-
24,000 steps, which is approximately 10 times faster than the
baseline methods.

A potential weakness of Determinantal SARSA is rela-
tively large standard deviation in the average reward. The
average reward has stayed below−0.9 for one of the 20 runs.
This suggests that Determinantal SARSA may be trapped in
poor local optima, depending on initial conditions, where the
initial values of V have been chosen by adding noise to each
element of the identity matrix, where the noise is uniformly
at random between −0.01 and 0.01.

While learning L, Determinantal SARSA learns the qual-

3Here, we let the learning rate decrease over time with a “simple
back-off strategy” (Dabney and Barto 2012), where the learning
rate at step t is ηt = η0 min{1, 104/(t + 1)} with η0 = 10−3.
The discount factor is set ρ = 0.9. In Boltzmann exploration, we let
the inverse temperature βt increase over time t: βt = (β104)

t/104

with β104 = 10.0. These hyper-parameters are set as the values
that give best performance for the initial 10,000 steps of one run,
where the candidate values are η0 ∈ {10−2, 10−3, 10−4}, ρ ∈
{0.9, 0.95, 1.0}, and β104 ∈ {1.0, 10.0, 100.0}.
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Figure 4: The quality of the positions (top) and the absolute
value of their similarity (bottom) learned by Determinantal
SARSA.

ity of each position and the similarity between those posi-
tions. In fact, the learned L can be decomposed into qual-
ity score q = diag(L) and similarity measures S, whose
elements are Si,j = Li,j/

√
Li,i Lj,j (see (85)-(86) from

Kulesza and Taskar (2012)).

Figure 4 shows the quality score and the similarity mea-
sure learned by Determinantal SARSA. The figure of the
quality score corresponds to the top three rows of the grid
field in Figure 2. Three positions in the third row ((3, 1), (3,
4), (3, 7)) are found to have high value, as an agent might
reach the end zone in the next step from those positions.
Learning quality score is not sufficient, because then all of
the agents can head toward the same position to be blocked
by a defender. The similarity measure shows that the po-
sitions that are close to each other (e.g., (2, 1) and (3, 1))
are found to have high similarity. This makes agents tend
to move toward the positions that not only have high qual-
ity but also are far away from each other, letting the three
agents occupy (3, 1), (3, 4), and (3, 7), making it impossi-
ble for the defenders to block all of the agents. Note that
the agent-team has learned such quality and similarity only
from the experiences of taking actions, observing states, and
earning reward. In particular, no geographical information
about the positions is given.

Stochastic Policy Task
Next, we study three stochastic policy tasks, where an agent-
team iteratively chooses team-actions from the space of N
dimensional binary vectors, where N = 5 in Task 1, N = 6
in Task 2, and N = 8 in Task 3. States are unobservable but
can be represented as binary vectors ofN dimensions. When
the team-action matches the state, the agent-team receives
+10 reward, and the state transitions to another. Otherwise,
the agent-team receives no reward, and the state stays un-
changed. The state transitions in a deterministic and cyclic
manner among two states in Task 1 and three states in Task
2-3.

In stochastic policy tasks, it is important to take into ac-
count correlation between actions (bits): some pairs of bits
should be selected together, and others should not. We use
determinant to take into account ”diversity”, but it is non-
trivial what ”diversity” really means here. Determinantal
SARSA learns a feature vector for each bit in a way that
the bits that should not be selected together have similar fea-
ture vectors, and those that should be selected together have
rather orthogonal feature vectors. We will see that this ”di-
versity” helps in stochastic policy tasks.

We learn to control the agent-team via Determinantal
SARSA. Here, the team-action at has the natural N -bit
feature vector xt, and we let the observation at time t to
be the previous team-action zt = xt−1. We then use full
rank matrices (K = M = N ), so that V and Dt are
N × N . Throughout, we use a lag-1 autoregressive model
dt(φ) = b + W zt as our time-series model and set the dis-
count factor as ρ = 0, because those settings are the simplest
and generally perform well for stochastic policy tasks. In
Boltzmann exploration, we run MCMC for 100 steps, start-
ing from a uniformly random team-action (each bit is 1 with
probability 0.5).

Figure 54 shows the average reward per step against the
total number of steps. The black curves show the perfor-
mance of Determinantal SARSA, and the colored curves
show the performance of the four baseline methods studied
in Heess, Silver, and Teh (2013). The color of each curve
indicates the specific method, as is shown in the legend of
Figure 3.

Overall, Determinantal SARSA performs substantially
better than the baseline methods consistently for all of the
three tasks, where the size of the action space is varied from
25 = 32 (Task 1) to 28 = 256 in (Task 3). In particular, De-
terminantal SARSA finds nearly optimal history-dependent
policies within the steps that the best baseline method needs
to find nearly optimal Markovian policies. The agent-team

4Here, the hyper parameters are set as the values that give best
performance for the initial n = 1, 000 iterations of one run for
Task 1-2, but we let n = 10, 000 for Task 3, which requires longer
iterations to observe meaningful difference. Specifically, the learn-
ing rate is set as η0 = 0.005 for Task 1-2 and η0 = 0.003 for Task
3, which are then decreased after n iterations with the simple back-
off strategy similar to the blocker task. We use L2 regularization
as discussed immediately after Theorem 1, and the strength of the
regularization is set as 0.2 for Task 1, 0.02 for Task 2, and 0.1 for
Task 3. In Boltzmann exploration, we set the inverse temperature
as β = 20.0 for Task 1 and 3 and β = 32.0 for Task 2.
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Figure 4.1: Stochastic policy task: The table shows the task-parameters for the three ver-
sions of the task. Results are shown for ENATDAC (green circles), EQNAC
(blue squares), SARSA (red crosses), and NN (magenta). Black lines show av-
erage reward for optimal policy; light gray lines show rewards with independent
actions.

Figure 4.2: Blocker task: The top plot illustrates several
steps in a blocker game (adapted from Sallans
and Hinton 2004). To win, the agents need to
cooperate. Here, agents 1,2 force the block-
ers to split so that agent 3 can enter the end
zone in the middle. The bottom plot shows, for
each algorithm, mean and standard deviation
of the average reward per step of the learned
policies for 20 restarts with different random
initialziations (see Fig. B.3 in the supplemen-
tal material for individual traces).
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transitions into state k + 1 (or into state 1 from K). Otherwise the state is unchanged and
no reward is provided. Since the agent does not observe the environment state the optimal
policy is to choose the K “good” action configurations with equal probability, achieving an
average reward of 10

K . A deterministic policy will get zero reward since it will get stuck in one
of the states. Further, it is necessary to model dependencies between action variables: for
independently drawn action variables the probability of generating a “good” configuration
is very low. We consider three versions of the task with N = 5, 6, 8, and K = 2, 3, 3 (cf.
Fig. 4.1). The first version was considered in Sallans [2002]. We used an RBM with 1 hidden
unit for task 1 and 2 hidden units for tasks 2 and 3. Training was performed for 20000 ac-
tions. Results are shown in Fig. 4.1. The NN models each action dimension independently
and therefore performs very poorly (see supplemental material for further discussion). In
contrast, the RBM learns to represent these correlations via stochastic latent variables and
performs very effectively. When training the RBM, ESARSA is only able to find the optimal
policy for task 1, whereas EQNAC and ENATDAC find optimal policies in all cases.3

The blocker task (Sallans 2002; Sallans and Hinton 2004) is a multi-agent task in which
agents have to reach the end zone at the top of a playing field while blockers try to stop

3. Although only the first 20000 actions are shown we allowed 50000 actions for ESARSA training. For
task 2 additional training leads to a small improvement relative to the performance after 20000 actions
but not for task 3 (see also Fig. B.1 in supplemental material).
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Figure 4.1: Stochastic policy task: The table shows the task-parameters for the three ver-
sions of the task. Results are shown for ENATDAC (green circles), EQNAC
(blue squares), SARSA (red crosses), and NN (magenta). Black lines show av-
erage reward for optimal policy; light gray lines show rewards with independent
actions.

Figure 4.2: Blocker task: The top plot illustrates several
steps in a blocker game (adapted from Sallans
and Hinton 2004). To win, the agents need to
cooperate. Here, agents 1,2 force the block-
ers to split so that agent 3 can enter the end
zone in the middle. The bottom plot shows, for
each algorithm, mean and standard deviation
of the average reward per step of the learned
policies for 20 restarts with different random
initialziations (see Fig. B.3 in the supplemen-
tal material for individual traces).
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transitions into state k + 1 (or into state 1 from K). Otherwise the state is unchanged and
no reward is provided. Since the agent does not observe the environment state the optimal
policy is to choose the K “good” action configurations with equal probability, achieving an
average reward of 10

K . A deterministic policy will get zero reward since it will get stuck in one
of the states. Further, it is necessary to model dependencies between action variables: for
independently drawn action variables the probability of generating a “good” configuration
is very low. We consider three versions of the task with N = 5, 6, 8, and K = 2, 3, 3 (cf.
Fig. 4.1). The first version was considered in Sallans [2002]. We used an RBM with 1 hidden
unit for task 1 and 2 hidden units for tasks 2 and 3. Training was performed for 20000 ac-
tions. Results are shown in Fig. 4.1. The NN models each action dimension independently
and therefore performs very poorly (see supplemental material for further discussion). In
contrast, the RBM learns to represent these correlations via stochastic latent variables and
performs very effectively. When training the RBM, ESARSA is only able to find the optimal
policy for task 1, whereas EQNAC and ENATDAC find optimal policies in all cases.3

The blocker task (Sallans 2002; Sallans and Hinton 2004) is a multi-agent task in which
agents have to reach the end zone at the top of a playing field while blockers try to stop

3. Although only the first 20000 actions are shown we allowed 50000 actions for ESARSA training. For
task 2 additional training leads to a small improvement relative to the performance after 20000 actions
but not for task 3 (see also Fig. B.1 in supplemental material).
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Figure 4.1: Stochastic policy task: The table shows the task-parameters for the three ver-
sions of the task. Results are shown for ENATDAC (green circles), EQNAC
(blue squares), SARSA (red crosses), and NN (magenta). Black lines show av-
erage reward for optimal policy; light gray lines show rewards with independent
actions.

Figure 4.2: Blocker task: The top plot illustrates several
steps in a blocker game (adapted from Sallans
and Hinton 2004). To win, the agents need to
cooperate. Here, agents 1,2 force the block-
ers to split so that agent 3 can enter the end
zone in the middle. The bottom plot shows, for
each algorithm, mean and standard deviation
of the average reward per step of the learned
policies for 20 restarts with different random
initialziations (see Fig. B.3 in the supplemen-
tal material for individual traces).

123

A B

C D

80000 240000 400000
−1

−0.9

−0.8

−0.7

# actions

av
g.

 re
wa

rd
 p

er
 a

cti
on

 

 

SARSA

NN

EQNAC

ENATDAC

transitions into state k + 1 (or into state 1 from K). Otherwise the state is unchanged and
no reward is provided. Since the agent does not observe the environment state the optimal
policy is to choose the K “good” action configurations with equal probability, achieving an
average reward of 10

K . A deterministic policy will get zero reward since it will get stuck in one
of the states. Further, it is necessary to model dependencies between action variables: for
independently drawn action variables the probability of generating a “good” configuration
is very low. We consider three versions of the task with N = 5, 6, 8, and K = 2, 3, 3 (cf.
Fig. 4.1). The first version was considered in Sallans [2002]. We used an RBM with 1 hidden
unit for task 1 and 2 hidden units for tasks 2 and 3. Training was performed for 20000 ac-
tions. Results are shown in Fig. 4.1. The NN models each action dimension independently
and therefore performs very poorly (see supplemental material for further discussion). In
contrast, the RBM learns to represent these correlations via stochastic latent variables and
performs very effectively. When training the RBM, ESARSA is only able to find the optimal
policy for task 1, whereas EQNAC and ENATDAC find optimal policies in all cases.3

The blocker task (Sallans 2002; Sallans and Hinton 2004) is a multi-agent task in which
agents have to reach the end zone at the top of a playing field while blockers try to stop

3. Although only the first 20000 actions are shown we allowed 50000 actions for ESARSA training. For
task 2 additional training leads to a small improvement relative to the performance after 20000 actions
but not for task 3 (see also Fig. B.1 in supplemental material).
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Figure 5: Performance of Determinantal SARSA (black curves) and baseline methods (colored curves) on the stochastic policy
tasks (black curves are drawn on Figure 4.1 of Heess, Silver, and Teh (2013)). Each curve shows the mean and the standard
deviation, over 20 runs, of the average reward per step (team-action) for every 2,000 steps (team-actions). Gray lines show the
average reward per step for the random policy (The gray straight line for Task 1 was drawn at wrong values in Heess, Silver,
and Teh (2013), which remains here.). Black straight lines show the average reward per step for the optimal Markovian policy
or the optimal history-dependent policy.

obtains +10 reward every step with the optimal history-
dependent policy, while the agent-team can obtain the re-
ward with probability 1/|S| with the optimal Markovian
policy, where |S| is the number of hidden states.

Conclusion
We have proposed the approach of using the determinant of a
matrix in reinforcement learning. Determinant plays the role
of taking into account diversity in team-actions. When the
matrix is diagonal, our approach reduces to the standard ap-
proach of factored action space, where multi-agents choose
actions independently. Determinantal SARSA can deal with
partial observability by using determinant with a time-series
model, which can then be trained in an end-to-end man-
ner. In our experiments, Determinantal SARSA substantially
outperforms existing methods that have been proposed for
dealing with high dimensional action space, which typically
appears in multi-agent reinforcement learning.

The proposed Determinantal SARSA can effectively deal
with exponentially large team-action space. When there
are 2N possible team-actions, Determinantal SARSA has
at most O(N3) computational complexity and can have
smaller complexity by assuming a low rank structure. Notice
that learning a Q function with Determinantal SARSA does
not need to deal with a partition function, which is the source
of computational bottleneck in the case of learning DPPs. As
a result, the most computationally expensive step of learning
a Q function with Determinantal SARSA is in computing the
pseudo inverse of a κ×K matrix V(x), where κ is the num-
ber of 1 in x (e.g., number of agents), and K is the rank of
the kernel, and these can be much smaller than N .

A DPP (or an annealed determinantal distribution) natu-
rally appears with Determinantal SARSA when we choose
team-actions according to the standard approach of Boltz-
mann exploration. We can thus exploit existing techniques
for sampling from DPPs to choose team-actions from a com-
binatorially large space. However, the kernel Lt that we

learn with Determinantal SARSA may be used to sample
actions according to other distributions that induce diversity.
This leads to non-standard exploration strategies but possi-
bly with reduced sampling cost. For example, the learned
Lt may be used with Matérn’s hard-core processes (Matérn
1986; Haenggi 2012), where the actions are sampled in-
dependently according to their relevance and thinned (re-
moved) on the basis of their similarity.

A focus of our study has been on learning a time-varying
kernel Lt with reinforcement learning. Learning Lt means
learning what actions are relevant and what actions are sim-
ilar to each other, where these relevance and similarity can
vary over time. We have demonstrated that one can learn
those relevance and similarity only from observing states,
taking team-actions, and getting rewards. In our framework,
actions are considered to be similar to each other when a
team-action consisting of those actions has lower value than
what is expected from the individual relevance of those ac-
tions.

Finally, SARSA is only one method of reinforcement
learning, and the approach of using determinant to approxi-
mate action-value functions or policies is largely applicable
to other methods of reinforcement learning. Future work in-
cludes using determinant with more sophisticated methods
of reinforcement learning for practical tasks of multi-agent
reinforce learning such as sports games.
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