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Abstract

Activity recognition is central to many motion analysis ap-
plications ranging from health assessment to gaming. How-
ever, the need for obtaining sufficiently large amounts of la-
beled data has limited the development of personalized activ-
ity recognition models. Semi-supervised learning has tradi-
tionally been a promising approach in many application do-
mains to alleviate reliance on large amounts of labeled data
by learning the label information from a small set of seed
labels. Nonetheless, existing approaches perform poorly in
highly dynamic settings, such as wearable systems, because
some algorithms rely on predefined hyper-parameters or dis-
tribution models that needs to be tuned for each user or con-
text. To address these challenges, we introduce LabelForest !
a novel non-parametric semi-supervised learning framework
for activity recognition. LabelForest has two algorithms at its
core: (1) a spanning forest algorithm for sample selection and
label inference; and (2) a silhouette-based filtering method to
finalize label augmentation for machine learning model train-
ing. Our thorough analysis on three human activity datasets
demonstrate that LabelForest achieves a labeling accuracy of
90.1% in presence of a skewed label distribution in the seed
data. Compared to self-training and other sequential learning
algorithms, LabelForest achieves up to 56.9% and 175.3%
improvement in the accuracy on balanced and unbalanced
seed data, respectively.

1 Introduction

Due to the dynamic nature of human movements and the
extreme diversity in data across various users and system
settings, developing personalized activity recognition mod-
els on mobile sensor systems has remained challenging to
date (Yao et al. 2016). In particular, two major limitations
of existing machine learning algorithms for activity recog-
nition include (1) the need for adequate labeled training data
to achieve high accuracy levels (Longstaff, Reddy, and Es-
trin 2010); and (2) the lack of flexibility and robustness on
diverse data sources.

One promising research direction that attempts to address
the first limitation is to combine active learning with semi-
supervised learning techniques (Zhu, Lafferty, and Ghahra-
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mani 2003). The former takes advantage of the pervasive na-
ture of mobile applications to interact with the user for sen-
sor data labeling. The latter performs label inference from
small amounts of initially labeled data samples, henceforth
referred to as “seed”, to train a machine learning model for
automated activity recognition.

Although semi-supervised learning techniques reduce the
demand for manual annotations, the limitation imposed due
to data diversity remains unsolved. In fact, many semi-
supervised learning algorithms attempt to fit in a generative
model with a presumed data distribution, or use predefined
hyper-parameters as thresholds in data exploration, which
relies on a priori knowledge about the dataset (Berton and
de Andrade Lopes 2015). As a result, these algorithms per-
form poorly on diverse data sources. In addition, new chal-
lenges arise for personalized activity recognition in practice.
For example, because it is unlikely to observe all user activ-
ities at the same pace, the desired semi-supervised learning
algorithms need to be robust to unbalanced seed data with
skewed label distribution.

To address the aforementioned challenges, we present
the development and validation of LabelForest, a non-
parametric and robust semi-supervised learning framework
to train personalized activity recognition models. It im-
proves the performance of downstream machine learning
model through an augmentation approach, which expands
the training set by selecting and labeling a subset of avail-
able data samples based on an automatic tradeoff between
pairwise similarity and accumulative dissimilarity. The ex-
perimental results show that, given only one seed data sam-
ple per activity, the machine learning model trained with a
labeled dataset augmented by LabelForest can achieve an
accuracy more than 71.9% on three activity datasets; and it
remains an accuracy more than 73.1% when the seed data
have highly skewed label distribution.

2 Related Work

Along with the proliferation of sensor technologies and per-
vasive computing systems, many studies adopted or ex-
plored machine learning algorithms on time series sensor
data for activity recognition (Kwapisz, Weiss, and Moore
2011; Mannini et al. 2017). Although supervised learning al-
gorithms have demonstrated effectiveness for sensor-based
activity recognition, the demand for sufficient amounts of



labeled data has been identified as a major barrier to user-
centric applications (Zakim and Schwab 2015). An encour-
aging approach to address this challenge is utilizing semi-
supervised learning techniques (Chapelle, Scholkopf, and
Zien 2009; Ando and Zhang 2005).

Self-training is a straightforward method in semi-
supervised learning to perform label augmentation using
standard machine learning algorithms. It first trains a weak
model with the seed data samples, and then iteratively labels
and selects some unlabeled data samples using a confidence
measure, to expand the existing training set and re-train the
model correspondingly (Cardoso and Moreira 2016). One
limitation of self-training is that if a mislabeled data sample
is added to the training set in an early stage, the error is prop-
agated through subsequent iterations (Tanha, van Someren,
and Afsarmanesh 2017).

Another commonly-used strategy is to apply clustering
algorithms on both labeled and unlabeled data samples, so
the labels are assigned according to the cluster membership
(Zhu 2005). Sequential k-means (Ackerman and Dasgupta
2014; Dias and Cortinhal 2008) is a popular example in this
category, by setting the seed data samples as the initial center
of the clusters, and gradually adding an unlabeled data sam-
ple to its closest cluster. A major limitation of this approach
is the sensitivity to outliers, such that the performance varies
significantly depending on the input data (Olukanmi and
Twala 2017).

Probabilistic models have been used for semi-supervised
learning, by fitting data samples with certain assumption
about the marginal distribution (Ghazvininejad et al. 2011;
Belkin, Niyogi, and Sindhwani 2006). However, the use of
unlabeled data samples can adversely impact the perfor-
mance of the algorithm, if the assumption about the data
distribution is not consistent with the truth (Zhu 2005). In
particular, we note that the diversity, complexity, and dy-
namic nature of human movements introduce vast uncer-
tainty in the data gathered by wearable sensors (Rokni and
Ghasemzadeh 2017), and such uncertainty makes it infeasi-
ble to assume a proper distribution of unknown activity data
collected from a specific setting.

Another approach performs label propagation on a graph
representation of all the data samples, which is usually
constructed using e-Neighborhood (e-NB) or k-Nearest-
Neighbor (k-NN) algorithm (Yao et al. 2016). Because
both ¢-NB and k-NN are sensitive to the choice of hyper-
parameters (¢ and k) (Berton and de Andrade Lopes 2015),
they require prior knowledge about the data to ensure the
validity of the constructed graph. Although a proper graph
construction is more important than choosing a label prop-
agation method, less attention has been paid to the former
than that of the latter (Zhu 2005).

We introduce a graph-based learning framework that aug-
ments labeled dataset through a non-parametric spanning
forest construction approach. It does not make prior assump-
tions on the data distribution, neither require any pre-defined
threshold/parameter for neighborhood exploration. As a re-
sult, it can improve the performance of machine learning
models in a data-driven manner.
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3 Problem Statement

This section first defines a sample selection problem in the
context of semi-supervised learning for activity recognition,
and then presents a graph modeling of this problem and
transforms the problem into a spanning forest construction
problem. Without loss of generality, we assume that only one
seed data sample is given initially for each activity class.

Problem Definition

Due to the dynamic nature of human activities observed with
wearable sensing devices, the dataset often contains signifi-
cant amount of uncertainty and noise, and hence, not all the
data samples are informative for activity monitoring. There-
fore, LabelForest attempts to select a subset of unlabeled
data samples that are substantially similar to the seed data
samples, to create a precise training set for model genera-
tion.

Problem 3.1 (Sample Selection). Let X € X be a dataset
of k-dimensional variables, and a symmetric function d :
X x X — R* defined on X indicates the pairwise dissim-
ilarity on X. Let Xg C X be a set of M data samples with
distinct labels, and x; € X is initialized as a cluster Cj,
i € [1, M]. The objective of this problem is to select data
samples from {X \ Xq} to expand the M disjoint clusters,
such that for any x, € C;, vy, € C; and C; # C}, there
exists x. € C; and d(xq,x.) < d(xq, Tp).

Graph Modeling

We introduce a graph representation of the data samples to
efficiently assess the similarity using the tree and spanning
forest data structures.

Definition 3.1. Let G = (V, E) be a complete graph de-
rived from a dataset X, where a vertex v; € V represents a
data sample x; € X, and an edge e(v;,v;) has the weight
w(e;j) € RT computed by a distance function d(x;,x;). A
connected subgraph T on G is said to be a tree if it con-
tains no cycles. A set [T1,--- ,Tn] on G is called a span-
ning forest, if the vertex set of these trees satisfies V (T1)
U---UV(Ty) =Vand V(T;) N V(T;) = 0 for all i # j.
The construction of [Ty, --- , TN ] also suggests a clustering
C={C,---,Cn}onX, where C; = V(T;) fori € [1, N].

Based on the above definition, we can rewrite the Prob-
lem 3.1 with the objective of growing a spanning forest on
G, given a vertex set () C V with initial labels that are asso-
ciated with the seed data samples { X, Yo }.

Problem 3.2 (Spanning Forest Construction). Let G =
(V,E) be a complete graph, where Q C V is a set of M
vertices and each vertex q; € @ is considered as the root
of the tree T;, i € [1, M. This problem aims to construct a
spanning forest F = {T1,...,Tn} on G, where N < M
and F satisfies three conditions: (1) for any q; € V(T;),
q; € V(T}) and q; # qj, there is T; # T}; (2) for any v, €
V(T;), v» € V(T;) and T; # T}, there exists a v, € V(T;)
and w(eqe) < wlegy); and (3) if V(Ti) N Q = 0, then Ty, is
a single-vertex tree.

The smoothness assumption is widely adopted in graph-
based learning algorithms (Zhu 2005), which states that if



two vertices are close to each other on the graph, they are
likely to have the same output (i.e., activity label in our case)
(Subramanya and Talukdar 2014). Therefore, the spanning
forest in the Problem 3.2 presents a natural solution for la-
bel inference where the label of the root is shared with all
vertices in the same tree.

4 LabelForest Framework Design

LabelForest enhances the performance of machine learn-
ing models through two major steps: (1) construct a desir-
able spanning forest as described in the Problem 3.2 using
a greedy spanning forest algorithm introduced in Section 4;
and (2) further select highly confident data samples for in-
clusion in the final training set through a silhouette-based
filtering algorithm elaborated in Section 4.

Xq Yo Greedy
Feature Label Spanning
Extraction Injection Xy Forest

Output

Feature Model Sample
Extraction Training Filtering

Figure 1: LabelForest framework for personalized activity
recognition with limited labels.

Figure 1 shows the workflow using LabelForest for activ-
ity recognition on wearable sensor devices. Sensor signals
are collected and processed to generate data samples in the
form of feature vectors. A few annotations of user activities
are provided and attached to the corresponding data samples.
LabelForest is then applied on a graph representation of sen-
sor data for label augmentation. Finally, a machine learning
model is trained in a supervised manner to carry out activity
recognition for future data samples.

Spanning Forest Construction

We design a greedy spanning forest algorithm (GSF) that
grows trees rooted by the vertices with initial labels (i.e.,
seed data samples), and terminates the growth when two
trees are about to collide. This algorithm iteratively explores
unlabeled data samples represented as vertices, while avoid-
ing the noise introduced by less informative data samples in
proximity of the decision boundaries. As a result, this algo-
rithm addresses the Problem 3.2 in a heuristic way, by greed-
ily visiting an unlabeled vertex from a labeled one through
an edge that constitutes the smallest weight in each iteration.

In Algorithm 1, the input is a complete graph G with a
vertex set () C V representing the seed data samples, and
the output is M labeled trees corresponding to M distinct
labels for Q. The Euclidean distance is used to measure the
weight/distance of each edge w(e). We exploit an automatic
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Algorithm 1 Greedy Spanning Forest

Imput: G = (V,E)and Q = {q1,...,qu} CV
Accept = Q; Reject =(); Margin =0y
q; € @ is set as the root of tree T}
while { Accept U Reject # V'} do
e(u,v) = current shortest edge
if u,v ¢ Accept then
e(u, v) = next shortest edge
end if
ifueV(T;),veV(T;) and T; # T then
update Margin[i| and Margin[j] to w(e)
else
letw € V(T;) and v ¢ Accept
if w(e) < Margin[i] or Margin[i] = 0 then
add v to Accept and V (T;)
else
T}, = the tree closest to v
if Tk = T,‘ then
add v to Reject
end if
end if
end if
end while
Output: {77, ..

., T} in the spanning forest F'.

boundary detection strategy using the concept of conflicting
edge, to estimate the margin of each labeled tree and avoid
adding vertices that are less similar to the root due to the
accumulative distance.

Definition 4.1 (Conflicting Edge). Let T; and T}; be two dis-
Jjoint trees on the graph G, and their roots have two different
labels initially. An edge e = (u, w) is said to be a conflicting
edge between T; and T if u € V(T;) and w € V(Tj).

Definition 4.2 (Margin). If an edge e is a conflicting edge
between two trees T; and T}, its weight w(e) € RT is said

to be the margin of T; and T};.
1
q1 q @ D,
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Figure 2: An example of spanning forest construction. Unla-
beled vertices are numbered by the visiting order during the
spanning process. The shortest edge under examination on
each graph is shown as a bold black line. A conflicting edge
detected in the process is shown as a bold red line.

Forest Spanning Criteria Algorithm 1 visits the entire
vertex set on GG by iteratively examining the current shortest
edge, which has at least one endpoint belonging to a labeled
tree. Let v € V/(T;) be one endpoint of edge e = (u,v)



that is currently under examination, and 7; is a labeled tree
rooted by a vertex ¢; €  with an initial label. There are five
possible scenarios for the edge e as follows.

1. If w € V(T;), then e forms a cycle and thereby be re-
moved.

. Ifu € V(T;) and T; # T, then e is a conflicting edge,
and hence, the margin of 7; and Tj is updated according
to w(e) (e.g., e(4,7) in Figure 2(a)).

. If the margin of T} is 0 or larger than w(e), then add u to
V(Ty).

. If w(e) is not smaller than the margin of T, and the dis-
tance between u and the center of 7; is smaller than that
of other labeled trees, then u is left as a single-vertex tree
(e.g., vertex 12 in Figure 2(c)).

. If w(e) is not smaller than the margin of 7}, but the dis-
tance between v and the center of another labeled tree T,
is smaller than that of 77}, then skip making decision for
u (e.g., vertex 10 in Figure. 2(b)).

The intuition behind the 4th and 5th criteria is to take into
account both the pairwise similarity between an unassigned
vertex and its closest assigned vertex, and the accumulative
dissimilarity between that unassigned vertex and the center
of labeled trees, which is updated once a new vertex is added
into the tree. One thing to note is, a vertex been skipped
by the 5th criteria will be re-examined in a later iteration
through a different edge. If that edge connects to a labeled
tree with the closest center, then this vertex will be added to
that labeled tree in the end (e.g., vertex 10 in Figure 2(d)),
or left as a single-vertex tree based on the 4th criteria. Be-
cause there are finite number of edges on the graph, this al-
gorithm is guaranteed to stop when all the vertices have been
assigned to a labeled tree, or rejected from the addition.

Termination of Growth One important property of
greedy spanning tree algorithm is to identify those vertices
sufficiently similar to the seed data samples in a data-driven
manner. This is realized from two aspects: (1) greedily grow-
ing a labeled tree through the shortest edge in each iteration,
to ensure the intra-similarity within the vertex set of each
tree; and (2) terminating the growth of two trees if a con-
flicting edge between them is detected, to restrict the accu-
mulative distance along the path from the center to any leaf
in the tree. The first aspect has been embodied in the initial
condition of the algorithm, and we hereby prove the second
aspect is guaranteed according to the algorithm design.

Lemma 4.1. If a conflicting edge e, is detected between
trees T; and T in the greedy spanning forest algorithm, both
T; and T stop growing.

Proof. Lete. = (u,v) be a conflicting edge, where u and v
belong to two disjoint trees T; and T; correspondingly, then
the margin of T; and T is set to w(e.). In a later iteration,
edge e is the shortest edge among all the edges with at least
one endpoint belonging to a labeled tree. If e is adjacent to a
vertex in V' (T;) or V(T;), then there must be w(e) > w(e.);
otherwise, e should be identified as the shortest edge prior to
e. in previous iteration, which contradicts the statement that
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e is examined after e, has been detected. Therefore, accord-
ing to the criterion of w(e) < w(e.) for adding new vertex
to a labeled tree, no more vertex can be added to V' (T;) or
V (Tj;) once a conflicting edge has been detected. O

Sample Filtering

We propose a silhouette-based filtering algorithm operat-
ing on the clusters/forest {C1,...,Cxs} constructed by the
greedy spanning forest algorithm. The purpose of this step is
to perform an automated sample selection for reliable label
augmentation.

Silhouette is a popular method widely used for clustering
interpretation and validation. It measures the intra-similarity
within each cluster versus the inter-dissimilarity between
two disjoint clusters (Rousseeuw 1987; Ansari et al. 2011).
Given a data sample x; in a cluster Cj, its silhouette value is
estimated as follows.

inter(x;) — intra(x;)

s(x;) = e[-1,1 (@
where inter(x;) denotes the average dissimilarity between
x; and other data samples in C;, and intra(x;) denotes the
minimum of the average dissimilarity between x; and data
samples in each cluster other than C;.

Similar to the distance measurement used in the forest
spanning, the Euclidean distance is also used to measure
the dissimilarity between data samples. According to Eq.1,
a higher positive silhouette value indicates a more confident
clustering assignment of the data sample, and hence, it is
preferred in the sample selection. Algorithm 2 presents the
logical flow of our sample filtering process, which aims to
remove less confident clustering assignments from the pre-
vious step.

max{inter(x;), intra(z;)}

Algorithm 2 Silhouette-based Filtering

Input: C = {C4,...,Cp}and Q = {q, ...
Centerli] = p(Cy), ¢; € C;, 1 € [1, M]
Baseli] = maxz{s(q;),0} for C;
for z; € {C;\ Q} do
compute s(z;) using data in Center U Q
if s(x;) < Basel[i] then
remove x; from C;
update Center|i]
end if
end for
Output: Clusters C' = {C4, ..

7(]M}

. Cu}

To avoid the use of fixed threshould, Algorithm 2 first
computes the silhouette s(g;) of the seed data sample ¢; in
the cluster C;, so that the baseline for sample filtering is the
maximum of {s(g;),0}. In the case of only one seed data
sample available in one label, the center of the cluster 1(C;)
is interpolated as an additional data sample to estimate the
baseline of silhouette values. Algorithm 2 then examines
each data sample assigned by the greedy spanning forest al-
gorithm, and removes the one with a silhouette smaller than
the baseline of its assigned cluster. As a result, the filtered



clusters C’ have more reliable assignement with low intra-
dissimilarity and high inter-dissimilarity. The output of this
step is a labeled training set ready for model generation to
perform activity recognition.

5 Experiment and Results

We conducted comprehensive analyses to evaluate the per-
formance of LabelForest using three datasets, including (1)
HART (Anguita et al. 2013; Reyes-Ortiz et al. 2016) con-
tains motion sensor data of 6 daily activities collected from
30 subjects, and the average size of individual data collected
from one subject is 347; (2) SmartSock contains accelerom-
eter and stretch sensor data of 12 activities collected from 12
subjects, and the average size of individual data is 397; (3)
Phone (Stisen et al. 2015) contains accelerometer data of 6
activities collected from 9 subjects using a variety of smart-
phones, and the average size of individual data gathered by
one specific smartphone is 1526.

Validation Methodology

Two tasks were designed to evaluate the performance of La-
belForest, namely selective labeling and activity recogni-
tion. The first task was to select and label some unlabeled
data samples given a few seed data samples. We adopted
five metrics to evaluate the performance for this task, and
the precision and recall were averaged over all the class la-
bels.

o labeling rate: the percentage of data samples been la-
beled, which reflects the capability of data exploration.

e precision: the ratio of true positive to the sum of true pos-
itive and false positive.

o recall: the ratio of true positive to the sum of true positive
and false negative on the data samples been labeled.

o f1 score: the weighted sum of precision and recall follow-
ing the equation below.

2 X precision X recall

1

precision + recall

e labeling accuracy: the rate of true positive on the data
samples been labeled.

The second task was to train a machine learning model us-
ing the labeled dataset obtained previously, to estimate the
corresponding labels of a separate test set. We empirically
chose SVM algorithm to train the classification model for
activity recognition, because it achieved better performance
across the three datasets comparing to several popular ma-
chine learning algorithms. The correct labeling rate on the
test set was used to measure the classification accuracy.

Comparison Approaches

Many semi-supervised learning approaches use k-NN or e-
NB algorithms to construct a similarity-based graph for la-
bel inference (Chapelle and Zien 2005). In our experiment,
we compared LabelForest against these two algorithms and
other learning approaches utilizing the self-training strategy,
as listed below.

e k-NN: a number of k € Z nearest neighbors of each seed
data sample were selected and assigned the same label
accordingly.

e ¢-NB: any unlabeled data sample within a given distance
e € R to a seed data sample was selected and assigned the
same label accordingly.

e Sequential k-means: the seed data samples formed an
initial clustering according to their labels, and each un-
labeled data sample was labeled by comparing its dis-
tance to the center of each cluster, which was updated
after adding a newly labeled data sample.

e Naive ML: A machine learning (ML) model was first
trained with the seed data samples, and then updated by
re-training with the data samples labeled using the pre-
vious model. Three classic machine learning algorithms
were tested in the naive approach to provide the baseline
performance, including the decision tree (DT), logistic re-
gression (LR) and linear support vector machine (SVM).

e Upper ML: the upper bound accuracy of selective la-
beling is 100% by default. The upper bound accuracy of
activity recognition was estimated by training a machine
learning model using the true labels of the training set.

Results of Selective Labeling
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Figure 3: Results of selective labeling given one labeled data
sample for each activity class.

Labeling Results Comparison Figure 3 shows the per-
formance of the algorithms for selective labeling given only
one seed data sample for each activity class, where “Seq-k”
refers to sequential k-means algorithm and “LF” denotes the
proposed framework, LabelForest.

Three machine learning algorithms and sequential k-
means algorithm assign the labels to all the unlabeled data
samples, thereby having the labeling rate of 1. On the con-
trary, LabelForest gives the priority to the quality of label-
ing results over the quantity, through an automatic tradeoff
without any pre-defined parameter. Although the labeling
rate of LabelForest is lower than that of other compared ap-
proaches, the precision and recall of LabelForest averaging
over all the activity classes is the highest, with an f1 score of
0.86, 0.84 and 0.83 on the three datasets, respectively.

Changes in the Input Data Size We evaluate the perfor-
mance of each algorithm with changes in the input data size
by gradually increasing the number of seed data samples per
label from 1 to 6. The results are shown in Figure 4.



—LR
SmartSock

~+-SWM ——Seqk ——LF

Phone

=]
3

80

@
3

60

40

IS
S

labeling accuracy (%)
labeling accuracy (%)
labeling accuracy (%)
2
3

N
S

20 0
1 2 3 4 5 6 1 2 3 4 5 6
ground truth per label ground truth per label

2 3 4 5 6
ground truth per label

Figure 4: Labeling accuracy with an increasing number of
seed data samples per label.

As the number of seed data samples increases, the label-
ing accuracy of most algorithms improve accordingly, which
is attributed to a better labeling model learned from a more
informative dataset. However, k-NN and e-NB algorithms
show the fluctuations in their performance, mainly because
of the randomly selected parameter values. Overall speak-
ing, LabelForest not only achieves the highest labeling accu-
racy (more than 88.8% in all the test cases), but also shows
a steady improvement along with the increasing number of
seed data samples, with an accuracy increase of 7.2%, 8.3%
and 9.8% on the three datasets respectively.

Results of Activity Recognition

The second task of our experiment is activity recognition
using the augmented training set obtained in previous task.
The baseline performance is computed by training the model
with seed data samples alone, and then testing it on a sepa-
rate test set. Figure 5 shows the results of activity recognition
with an evenly growing number of seed data samples.
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Figure 5: Accuracy of activity recognition with increasing
number of seed data samples.

The upper bound is computed as mentioned in Section 5,
and the overall accuracy appears to be significantly lower on
the Phone dataset than that of the other two datasets, where
the average accuracy is 86.3% for the Phone dataset, 97.1%
for the HART dataset and 96.9% for the SmartSock dataset.
It indicates the diversity of human activity data caused by
the differences in individual movement patterns and sensing
systems.

Overall speaking, the performance of LabelForest is the
closest to the upper bound performance comparing to other
tested algorithms. The classification accuracy of LabelForest
increases from 74.6% to 91.1% on the HART dataset, from
82.3% to 94.4% on the SmartSock dataset, and from 71.9%
to 83.8% on the Phone dataset, along with the increase in
the number of seed data samples.
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Impact of Unbalanced Seed Dataset

In the previous experiment, the number of seed data sam-
ples increased evenly for all the activity classes. However in
practice, it is more likely to observe uneven numbers of seed
data samples for different activities. To validate the robust-
ness of LabelForest given a seed dataset with skewed label
distribution, we obtain an unbalanced seed dataset by adding
more seed data samples in only one randomly picked label,
while maintaining the number of seed data samples to one
for the other labels in the validation.

Labeling with Skewed Input We first compare the per-
formance of each algorithm for selective labeling given bal-
anced and unbalanced seed dataset, as shown in Figure 6,
where “balanced L2” means each activity class has 2 data
samples in the seed dataset, and “unbalanced L8 means, in
the seed dataset, one random activity class has 8 data sam-
ples and the others have only 1 data sample for each. We
choose these two cases for comparison because the total size
of the seed dataset is similar.
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Figure 6: Performance of selective labeling with balanced
and unbalanced seed datasets.

In general, almost all the algorithms show a decline in
the labeling accuracy given unbalanced seed dataset, but the
performance of LabelForest has a less significant change
comparing to other algorithms, with an accuracy decrease of
3.6% averaging over the three datasets. This result demon-
strates the robustness of LabelForest in presence of a skewed
label distribution in the seed dataset. In addition, LabelFor-
est also achieves the best labeling performance in the case of
unbalanced seed dataset, with an accuracy of 92.2%, 88.5%
and 89.8% on the three datasets respectively.

Activity Recognition with Skewed Input We further
evaluate the performance of the machine learning model
trained with the augmented training set, when the seed
dataset has an increasing degree of the skewness, which is
simulated by gradually increasing the number of seed data
samples for only one activity class but remaining only one
data sample for the other activity classes. The results are
shown in Figure 7.

The results in this figure have less changes comparing
to the results in Figure 5, mainly because only one activ-
ity class has an increasing number of data samples in the
seed dataset for the former. It shows that the additional
information regarding to only one class cannot contribute
significantly to the labeling performance, and hence, the
augmented training set cannot be representative enough to
improve the performance of down-stream machine learn-
ing model. Overall speaking, LabelForest still has the most
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Figure 7: Accuracy of activity recognition with the increas-
ing skewness in the seed dataset.

improvement in the performance of the machine learning
model through training set augmentation, and the classifi-
cation accuracy is 77.3% on the first dataset, 83.0% on the
second dataset and 73.1% on the third dataset.

Impact of Sample Filtering

As presented in Section 4, LabelForest consists of two major
steps, the first one performs a greedy spanning forest (GSF)
algorithm to explore the data samples similar to the seed data
samples, and the second step uses a silhouette-based filtering
algorithm to finalize the newly labeled data samples based
on the first step. To validate the effectiveness of these two
steps, we compare the performance of LabelForest on the
HART dataset with and without applying the second step of

sample filtering.
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(b) Comparison with highly unbalanced seed dataset.

Figure 8: Performance comparison of LabelForest with and
without applying sample filtering.

Figure 8 shows the comparison results given balanced
(Figure 8a) and unbalanced (Figure 8b) seed datasets, where
“GSF” refers to the case of using greedy spanning forest al-
gorithm alone, and “LF” refers to the case of performing the
LabelForest framework completely. The motivation of sam-
ple filtering is to further improve the quality of the newly
labeled data samples by trading the labeling rate for the pre-
cision, which is reflected in the two bar plots in Figure 8.
Given balanced seed dataset with one seed data sample for
each activity class, the labeling rate of LF is 16.6% as that
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of GSF, but the precision of LF is 15.4% higher than that of
GSF. In the case of unbalanced seed dataset with 8 seed data
samples for only one activity class, the labeling rate of LF
is 18.8% as that of GSF, while the precision of LF is 17.5%
higher than that of GSF. As a result, although the labeled
dataset obtained after sample filtering is smaller in size than
that of GSF, the higher precision of the former results in a
more accurate machine learning model for activity recogni-
tion, as shown in the rightmost plots in Figure 8.

6 Conclusions and Future Work

The dynamic nature of human movements requires the un-
derlying computational algorithm to be robust to handle the
diversity of individual data distributions. In practice, collect-
ing sufficiently large amounts of labeled training data is time
consuming and expensive. Therefore, it is desirable to au-
tonomously construct a large training dataset using an ini-
tially small labeled dataset.

In this study, we designed and developed an autonomous
label augmentation framework for semi-supervised learning,
called LabelForest, to obtain effective activity recognition
models in wearable sensing systems. Our approach learns
from a small set of seed data with initial activity labels, and
develops novel graph-based sample selection and label in-
ference algorithm coupled with a silhouette-based filtering
strategy. The experimental results demonstrated the robust-
ness of LabelForest with a labeling accuracy of 90.1% on
average.

Many semi-supervised learning algorithms use a label
propagation method on the constructed graph to assign la-
bels to unlabeled data samples. Because our graph construc-
tion aims to obtain a spanning forest by giving a higher
priority to the labeling precision over the labeling rate, the
resulting graph is naturally a disconnected graph. There-
fore, existing label inference/propagation algorithms cannot
be applied directly on the graph obtained by LabelForest.
If there is large overlap between data samples of two dif-
ferent classes, a conflicting edge will be easily detected in
an early stage during forest spanning, which terminates the
growth of the two trees/clusters consequently. As a result, a
small amount of data samples will be labeled in this case.
An interesting future work that we plan to pursue is to refine
our graph construction algorithm, such that the existing la-
bel propagation algorithms can be directly applied for label
inference.

A limitation of the LabelForest framework presented in
this article is that it assumes the labeled and unlabeled data
samples are available in batch. Therefore, the graph con-
struction, forest formation, labeling, and sample selection
are all performed in a static or off-line fashion. We note that
it is desirable if the semi-supervised learning can be per-
formed in real-time as new sensor data become available. As
part of our future work, we plan to design incremental learn-
ing strategies in the context of semi-supervised learning for
real-time motion analysis in wearable sensing systems.
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