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Abstract

Cross-modal hashing has been receiving increasing interests
for its low storage cost and fast query speed in multi-modal
data retrievals. However, most existing hashing methods are
based on hand-crafted or raw level features of objects, which
may not be optimally compatible with the coding process. Be-
sides, these hashing methods are mainly designed to handle
simple pairwise similarity. The complex multilevel ranking
semantic structure of instances associated with multiple labels
has not been well explored yet. In this paper, we propose a
ranking-based deep cross-modal hashing approach (RDCMH).
RDCMH firstly uses the feature and label information of data
to derive a semi-supervised semantic ranking list. Next, to
expand the semantic representation power of hand-crafted
features, RDCMH integrates the semantic ranking informa-
tion into deep cross-modal hashing and jointly optimizes the
compatible parameters of deep feature representations and of
hashing functions. Experiments on real multi-modal datasets
show that RDCMH outperforms other competitive baselines
and achieves the state-of-the-art performance in cross-modal
retrieval applications.

Introduction
With the explosive growth of data, how to efficiently and ac-
curately retrieve the required information from massive data
becomes a hot research topic and has various applications.
For example, in information retrieval, approximate nearest
neighbor (ANN) search (Andoni and Indyk 2006) plays a
fundamental role. Hashing has received increasing attention
due to its low storage cost and fast retrieval speed for ANN
search (Kulis and Grauman 2010). The main idea of hashing
is to convert the high-dimensional data in the ambient space
into binary codes in the low-dimensional Hamming space,
while the proximity between data in the original space is
preserved in the Hamming space(Wang et al. 2016; 2018;
Shao et al. 2016). By using binary hash codes to represent the
original data, the storage cost can be dramatically reduced.
In addition, we can use hash codes to construct an index and
achieve a constant or sub-linear time complexity for ANN
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search. Hence, hashing has become more and more popular
for ANN search on large scale datasets.

In many applications, the data can have multi-modalities.
For example, a web page can include not only a textual de-
scription but also images and videos to illustrate its contents.
These different types (views) of data are called multi-modal
data. With the rapid growth of multi-modal data in various
applications, multi-modal hashing has recently been widely
studied. Existing multi-modal hashing methods can be di-
vided into two main categories: mutli-source hashing (MSH)
and cross-modal hashing (CMH)(Zhu et al. 2013). The goal
of MSH is to learn hash codes by utilizing all the infor-
mation from multiple modalities. Hence, MSH requires all
the modalities observed for all data points, including query
points and those in the database. In practice, it is often diffi-
cult or even infeasible to acquire all data points across all the
modalities, as such the application of MSH is limited. On the
contrary, the application scenarios of CMH are more flexible
and practical. In CMH, the modality of a query point can be
different from the modality of the points in the database. In
addition, the query point typically has only one modality and
the points in the database can have one or more modalities.
For example, we can use text queries to retrieve images from
the database, and we can also use image queries to retrieve
texts from the database. Due to its wide application, CMH
has attracted increasing attention (Kumar and Udupa 2011;
Zhang and Li 2014).

Many CMH methods have been proposed recently, existing
CMH methods can be roughly divided into two categories:
supervised and unsupervised. Unsupervised approaches seek
hash coding functions by taking into account underlying data
structures, distributions, or topological information. To name
a few, Canonical correlation analysis (Rasiwasia et al. 2010)
maps two modalities, such as visual and textual, into a com-
mon space by maximizing the correlation between the projec-
tions of the two modalities. Inter-media hashing (Song et al.
2013) maps view-specific features onto a common Hamming
space by learning linear hash functions with intra-modal
and inter-modal consistencies. Supervised approaches try
to leverage supervised information (i.e., semantic labels) to
improve the performance. Cross-modal similarity sensitive
hashing (CMSSH) (Bronstein et al. 2010) regards the hash
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codes learning as binary classification problems, and effi-
ciently learns the hash functions using a boosting method.
Co-regularized hashing (Yi and Yeung 2012) learns a group
of hash functions for each bit of binary codes in every modal.
Semantic correlation maximization (SCM) (Zhang and Li
2014) optimizes the hashing functions by maximizing the
correlation between two modalities with respect to the seman-
tic labels. Semantics Preserving Hashing (SePH)(Lin et al.
2017) generates one unified hash code for all observed views
of any instance by considering the semantic consistency be-
tween views.

Most supervised hashing are pairwise supervised meth-
ods, which leverage labels of instances and pairwise labels of
instance-pairs to train the coding functions, such that the label
information can be preserved in the Hamming space (Chang
et al. 2012). Their objectives, however, may be suboptimal for
ANN search, because they do not fully explore the high-order
ranking information (Song et al. 2015). For example, a triplet
rank contains a query image, a positive image, and a negative
image, where the positive image is more similar to the query
image than the negative image (Lai et al. 2015). High-order
ranking information carries relative similarity ordering in the
triplets and provides richer supervision, it often can be more
easily obtained than pairwise ranking. Some hashing meth-
ods consider the high-order ranking information for hashing
learning. For example, deep semantic ranking based hash-
ing (Zhao et al. 2015) learns deep hash functions based on
CNN (Convolutional neural network)(Krizhevsky, Sutskever,
and Hinton 2012), which preserves the semantic structure of
multi-label images. Simultaneous feature learning and hash
coding (Lai et al. 2015) generates bitwise hash codes for
images via a carefully designed deep architecture and uses a
triplet ranking loss to preserve relative similarities.

However, these semantic ranking methods just consider
one modality, and cannot apply to cross-modal retrieval. Be-
sides, the ranking lists are just simply computed by the num-
ber of shared labels, which could not preserve the integral
ranking information of labels. Furthermore, the ranking lists
adopted by these methods ask for sufficient labeled train-
ing data, and cannot make use of abundant unlabeled data,
whose multi-modal feature information can boost the cross-
modal hashing performance. Semi-supervised hashing meth-
ods were introduced to leverage both labeled and unlabeled
samples (Wang, Kumar, and Chang 2012), but these methods
cannot directly be applied on multi-modal data. Almost all
these CMH methods are based on hand-crafted (or raw-level)
features. One drawback of these hand-crafted feature based
methods is that the feature extraction procedure is isolated
from the hash-code learning procedure, or the original raw-
level features can not reflect the semantic similarity between
objects very well. The hand-crafted features might not be opti-
mally compatible with the hash-code learning procedure(Cao
et al. 2017). As a result, these CMH methods can not achieve
satisfactory performance in real applications.

Recently, deep learning has also been utilized to perform
feature learning from scratches with promising performance.
Deep cross-modal hashing(DCMH)(Jiang and Li 2017) com-
bines the deep feature learning with cross-modal retrieval and
guides deep learning procedure with multi-labels of multi-

modal objects. Correlation auto-encoder hashing (Cao et al.
2016) adopts deep learning for uni-modal hashing. Their
studies show that the end-to-end deep learning architecture
is more compatible for hashing learning. However, they still
ask for sufficient label information of training data, and treat
the parameters of the hash quantization layer and those of
deep feature learning layers as the same, which may reduce
the discriminative power of the quantification process.

In this paper, we propose a ranking-based deep cross-
modal hashing (RDCMH), for cross-modal retrieval applica-
tions. RDCMH firstly uses the feature and label information
of data to derive a semi-supervised semantic ranking list.
Next, it integrates the semantic ranking information into deep
cross-modal hashing and jointly optimizes the ranking loss
and hashing codes functions to seek optimal parameters of
deep feature representations and those of hashing functions.
The main contributions of RDCMH are outlined as follows:
1. A novel cross-modal hash function learning framework

(RDCMH) is proposed to integrate deep feature learning
with semantic ranking to address the problem of preserv-
ing semantic similarity between multi-label objects for
cross-modal hashing; and a label and feature information
induced semi-supervised semantic ranking metric is also
introduced to leverage labeled and unlabeled data.

2. RDCMH jointly optimizes the deep feature extraction
process and the hash quantization process to make fea-
ture learning procedure being more compatible with the
hash-code learning procedure, and this joint optimization
indeed significantly improves the performance.

3. Experiments on benchmark multi-modal datasets show
that RDCMH outperforms other baselines (Bronstein et
al. 2010; Zhang and Li 2014; Lin et al. 2017; Jiang and
Li 2017; Cao et al. 2016) and achieves the state-of-the-art
performance in cross-modal retrieval tasks.

The Proposed Approach
Suppose X = {x1, x2, · · · , xn} ∈ Rn×dX and Y =
{y1, y2, · · · , yn} ∈ Rn×dY are two data modalities, n is the
number of instances (data points), dX (dY ) is the dimension-
ality of the instances in the respective modality. For example,
in the Wiki-image search application, xi is the image fea-
tures of the entity i, and yi is the tag features of this entity.
Z ∈ Rn×m stores the label information of n instances in X
and Y with respect tom distinct labels. zik ∈ {0, 1}, zik = 1
indicates that xi is labeled with the k-th label; zik = 0 other-
wise. Without loss of generality, suppose the first l samples
have known labels, whereas other u = n − l samples lack
label information. To enable cross-modal hashing, we need
to learn two hashing functions, F1: Rd1 → {0, 1}c and F2:
Rd2 → {0, 1}c, where c is the length of binary hash codes.
These two hashing functions are expected to map the feature
vectors in the respective modality onto a common Hamming
space and to preserve the proximity of the original data.

RDCMH mainly involves with two steps. It firstly mea-
sures the semantic ranking between instances based on the
label and feature information. Next, it defines an objective
function to simultaneously account for semantic ranking,
deep feature learning and hashing coding functions learning;
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and further introduces an alternative optimization procedure
to jointly optimize these learning objectives. The overall
workflow of RDCMH is shown in Fig. .

Semi-supervised Semantic Ranking
To preserve the semantic structure, we can force the rank-
ing order of neighbors computed by the Hamming distance
being consistent with that derived from semantic labels in
terms of ranking evaluation measures. Suppose q is a query
point, the semantic similarity level of a database point x
with respect to q can be calculated based on ranking or-
der of label information. Then we can obtain a ground-
truth ranking list for q by sorting the database points in de-
creasing order of their similarity levels (Zhao et al. 2015;
Song et al. 2015). However, this similarity level is just simply
derived from the number of shared labels and these semantic
ranking-based methods ignore that the labels of training data
are not always readily available. Furthermore, these meth-
ods work on one modality and can not directly apply on
multi-modal data.

To alleviate the issue of insufficient labeled data, we in-
troduce a semi-supervised semantic measure that takes into
account both the label and feature information of training
data. The labels of an instance depend on the features of this
instance, and the semantic similarity is positively correlated
with the feature similarity of respective instances (Zhang and
Zhou 2010; Wang et al. 2009). The semi-supervised semantic
measure is defined as follows:

sxxij =

{
s1ije

(s2ij−s1ij), |zi|2 6= 0 and |zj |2 6= 0
s1ij , otherwise

(1)

where s1ij is the feature similarity of xi and xj , while s2ij is
the label similarity, both of them are computed by the cosine
similarity. Note, sxxij is always in the interval [0,1] and other
similarity metrics can also be used. Eq. (1) can account for
both the labeled and unlabeled training data. Specifically,
for two unlabeled data, the similarity between xi and xj
is directly computed from the feature information of the
respective data. For labeled data, we consider that the label
similarity s2ij is a supplement to s1ij . The larger the s2ij is,
the larger the sxxij is. In this way, we leverage the label and
feature information of training data to account for insufficient
labels.

Extending the ranking order to the cross-modal case, we
should keep the sematic structure both in the inter-modality
and intra-modality. Based on Sxx ∈ Rn×n, we can obtain a
ranking list {xqk}nk=1 for q by sorting the database points in
decreasing order of sxxqk . Similarly, we can define the semi-
supervised semantic similarity Syy ∈ Rn×n for the data
modality Y. To balance the inconsistence of ranking list
between two modalities, the semi-supervised semantic simi-
larity is averaged as: Sxy = Syx = (Sxx + Syy)/2. Finally,
we can obtain three different ranking lists: {rxi }ni=1, {ryi }ni=1,
{rxyi }ni=1 for each query point.

Unified Objective Function
Deep Feature Representation Most existing hashing
methods first extract hand-crafted visual features (like GIST

and SIFT) from images and then learn ‘shallow’ (usually lin-
ear) hash functions upon these features (Bronstein et al. 2010;
Zhang and Li 2014; Lin et al. 2017). However, these hand-
crafted features have limited representation power and may
lose key semantic information, which is important for sim-
ilarity search. Here we consider designing deep hash func-
tions using CNN (Krizhevsky, Sutskever, and Hinton 2012)
to jointly learn feature representations and their mappings
to hash codes. This non-linear hierarchical hash function
has more powerful learning capability than the shallow one
based on features crafted in advance, and thus is able to learn
more suitable feature representations for multilevel semantic
similarity search. Other representation learning models (i.e.,
AlexNet) can also be used to learn deep features of images
and text for RDCMH. The feature learning part contains two
deep neural networks, one for image modality and the other
for text modality.

The adopted deep neural network for image modality is a
CNN, which includes eight layers. The first six layers are the
same as those in CNN-F(Chatfield et al. 2014). The seventh
and eighth layer is a fully-connected layer with the outputs
being the learned image features. As to the text modality, we
first represent each text as a vector with bag-of-words (BOW)
representation. Next, the bag-of-words vectors are used as the
inputs for a neural network with two fully-connected layers,
denoted as “full1 - full2”. The “full1” layer has 4096 neurons,
and the second layer “full2” has c (hashing codes) neurons,
The activation function for the first layer is ReLU, and that
for the second layer is the identity function.

For presentation, we represent the learnt deep feature rep-
resentations of x and y as ϕ(x) and φ(y). The non-linear
mapping parameters of these two representations will be
discussed later.

Triplet Ranking Loss and Quantitative Loss Directly
optimizing the ranking criteria for cross-modal hashing is
very hard. Because it is very difficult to compare the ranking
lists and stringently comply with the lists. To circumvent this
problem, we use a triplet ranking loss as the surrogate loss.
Given a query q and a ranking list {rxqi}

n
i=1 for q, we can

define a ranking loss on a set of triplets of hash codes as
follows:

L(h(q), h({rxqi}
n
i=1

))=

n∑
i=1

∑
j:sqi>sqj

[δdH(h(q), h(i), h(j))]+ (2)

where n is the length of the ranking list, sqi and sqj are the
similarity between query q and xi and xj , respectively. h(x)
represents the learnt hash codes of x, [x]+ = max(0, x),
δdH(a1, a2, a3) = dH(a1, a2) − dH(a1, a3), dH(·) is the
Hamming distance. This triplet ranking loss is a convex upper
bound on the pairwise disagreement, it counts the number of
incorrectly ranked triplets.

Eq. (2) equally treats all triplets, but two samples (xi and
xj) of a triplet may have different similarity levels to the
query q. So we introduce the weighted ranking triplet loss
based on the ranking list as follows:

L(h(q), h({rxqi}
n

i=1
)) =

∑n

i=1

∑
j:sqi>sqj

(1− sxxij )[δdH(h(q), h(i), h(j))]+
(3)
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Figure 1: Workflow of the proposed Rank based Deep Cross-Modal Hashing (RDCMH). RDCMH encompasses two steps:
(1) an Image CNN network for learning image representations and a Text two-layer Network for learning text representations.
(2) Jointly optimize the cross-modal triplet ranking loss and the quantitative loss to seek optimal parameters of deep feature
representations and those of hashing functions.

The larger the relevance between xi and q than that between
xj and q is, the larger the ranking loss results in, if xi is
ranked behind xj for q.

As to the cross-modal case, we should balance the incon-
sistence of ranking lists between two modalities. To this end,
we give the unified objective function that simultaneously ac-
count for triplet ranking loss and quantitative loss as follows:

min
Wx,Wy,B

L =
∑

q∈Q

∑n

i,j=1
[(1− sxxij )(δdHxx) + (1− syyij )

(δdHyy) + (1− syxij )(δdHyx) + (1− sxyij )(δdHxy)]

+
λ

2
(||Bx − F||2F + ||By −G||2F )

(4)

where
δdHxx = dH(h(xq), h(xi))− dH(h(xq), h(xj))

δdHyy = dH(h(yq), h(yi))− dH(h(yq), h(yj))

δdHxy = dH(h(xq), h(xi))− dH(h(yq), h(yj))

δdHyx = dH(h(yq), h(yi))− dH(h(xq), h(xj))

(5)

h(x) = h(ϕ(x);Wx) = sign(WT
xϕ(x))

h(y) = h(φ(y);Wy) = sign(WT
y φ(y))

(6)

F∗i = (ϕ(xi);Wx), G∗i = (φ(yi);Wy)

Bx ∈ {−1,+1}n×c, By ∈ {−1,+1}n×c (7)

Q is the set of query points, ϕ(x) and φ(y) are the deep fea-
tures of images and texts, Wx and Wy are the coefficient
matrices of two modalities, respectively. λ is the scalar pa-
rameter to balance the triplet ranking loss and quantitative
loss. Bx and By are the binary hash codes for image and text
modality, respectively. In the training process, since different
modality data of the same sample share the same label set,
and they actually represent the same sample from different
viewpoints, we fix the binary codes of same training points
from two modalities as the same, namely Bx = By = B.

Eq. (4) simultaneously accounts for the triplet ranking
loss and the quantitative loss. The first term enforces the
consistency of cross-modal ranking list by minimizing the
number of incorrectly ranked triplets, and the second term
(weighted by λ) measures the quantitative loss of hashing.
F and G can preserve the cross-modal similarity in Sxx,
Syy and Sxy, as a result, binary hash codes Bx and By can
also preserve these cross-modal similarities. This exactly
coincides with the goal of cross-modal hashing.

Optimization We can solve Eq. (4) via the Alternating
Direction Method of Multipliers (ADMM) (Boyd et al. 2011),
which alternatively optimizes one of Wx, Wy, and B, while
keeping the other two fixed.

Optimize Wx with Wy and B fixed: We observe that the
loss function in Eq. (4) is actually a summation of weighted
triplet losses and the quantitative loss. Like most existing
deep learning methods, we utilize stochastic gradient descent
(SGD) to learn Wx with the back-propagation (BP) algo-
rithm. In order to facilitate the gradient computation, we
rewrite the Hamming distance as the form of inner product:
dH(h(a), h(b)) = c−h(a)Th(b)

2 , where c is the number of
hash bits.

More specifically, in each iteration we sample a mini-batch
of points from the training set and then carry out our learning
algorithm based on the triplet data. For any triplet (q;xi;xj),
the derivative of Eq. (4) with respect to coefficient matrix
Wx in the data modality X is given by:

∂L

∂F∗q
=

1

2
[(1− sxxij )(h(F∗i)− h(F∗j)) + (1− sxyij )

(h(F∗i)) + (1− syxij )(−h(F∗j))] + λ(F∗q −B∗q)

(8)

∂L

∂F∗i
= −1

2
[(1− sxxij )(h(F∗q))

+ (1− sxyij )(h(F∗q))] + λ(F∗i −B∗i)
(9)
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∂L

∂F∗j
=

1

2
[(1− sxxij )(h(F∗q))

+ (1− sxyij )(h(F∗q))] + λ(F∗j −B∗j)

(10)

We can compute ∂L
∂Wx

with ∂L
∂F∗q

, ∂L
∂F∗i

and ∂L
∂F∗j

using the
chain rule. These derivative values are used to update the
coefficient matrix Wx, which is then fed into six layers CNN
to update the parameters of ϕ(x) in each layer via the BP
algorithm.

Similar to the optimization of Wx, we optimize Wy on
the data modality Y with Wx and B fixed. The derivative
values are similarly used to update the coefficient matrix
Wy, which is then fed into the adopted two-layer network
to update the parameters of φ(y) in each layer via the BP
algorithm.

Optimize B with Wx and Wy fixed: When Wx and
Wy are optimized and fixed, F and G are also determined,
then the minimization problem in Eq. (4) is equal to a maxi-
mization as follows:

max
B

tr(λBT (F+G))= tr(BTU)=
∑
i,j

BijUij (11)

where B ∈ {−1,+1}n×c,U = λ(F + G). It is easy to
observe that the binary code Bij should keep the same sign
as Uij . Therefore, we have:

B = sign(U) = sign(λ(F+G)) (12)

The whole procedure of RDCMH and entire iterative pro-
cess for solving Eq. (4) are summarized in Algorithm 1.

Algorithm 1 RDCMH: Ranking based Deep Cross-Modal
Hashing
Input: Two modality data matrix X and Y, and the corre-

sponding label matrix Z
Output: Hashing coefficient matrices Wx and Wy, the

binary code matrix B.
1: Initialize neural network parameters of ϕ(x) and φ(y),

mini-batch size nx = ny = 128, and the number of itera-
tions iter, t = 1.

2: Calculate the similarity matrix Sxx, Syy , Sxy and Syx.
3: while t < iter or not converged do
4: Randomly sample nx (ny) triplets from X (Y) to

construct a mini-batch.
5: For each sampled triplet (xq , xi , xj) (or (yq , yi , yj))

in the mini-batch, compute F and G in Eq. (7) by
forward propagation;

6: Update coefficient matrix Wx,Wy using Eqs. (8-10);
7: Update the network parameters of ϕ(x) (φ(y)) based

on Wx (Wy) and back propagation;
8: Update B according to Eq. (12);
9: t = t+ 1.

10: end while

Experiment
Datasets
We use three benchmark datasets: Nus-wide, Pascal VOC,
and Mirflicker to evaluate the performance of RDCMH. Each
dataset include two modalities (image and text), but RD-
CMH can also be applied to other data modalities. For ≥ 3
modalities, we just need to compute the ranking lists for each
modality and optimize it by minimizing the inconsistency of
each ranking list between any pairwise modality.

Nus-wide1 contains 260,648 web images, and some images
are associated with textual tags. It is a multi-label dataset
where each point is annotated with one or several labels from
81 concept labels. The text for each point is represented as
a 1000-dimensional bag-of-words vector. The hand-crafted
feature for each image is a 500-dimensional bag-of-visual
words (BOVW) vector.

Wiki2 is generated from a group of 2866 Wikipedia doc-
uments. Each document is an image-text pair labeled with
10 semantic classes. The images are represented by 128-
dimensional SIFT feature vectors. The text articles are repre-
sented as probability distributions over 10 topics, which are
derived from a Latent Dirichlet Allocation (LDA) model.

Mirflickr3 originally contains 25,000 instances collected
from Flicker. Each instance consists of an image and its
associated textual tags, and is manually annotated with one
or more labels, from a total of 24 semantic labels. The text
for each point is represented as a 1386-dimensional bag-
of-words vector. For the hand-crafted feature based method,
each image is represented by a 512-dimensional GIST feature
vector.

Evaluation metric and Comparing Methods
We use the widely used Mean Average Precision (MAP) to
measure the retrieval performance of all cross-view hashing
methods. A larger MAP value corresponds to a better retrieval
performance.

Seven state-of-the-art and related cross-modal hashing
methods are used as baselines for comparison, including
Cross-modal Similarity Sensitive Hashing (CMSSH) (Bron-
stein et al. 2010), Semantic Correlation Maximization (SCM-
seq and SCM-orth) (Zhang and Li 2014), Semantics Preserv-
ing Hashing (SePH) (Lin et al. 2017), Deep Cross-modal
Hashing (DCMH) (Jiang and Li 2017), Correlation Hash-
ing Network (CHN) (Cao et al. 2016) and Collective Deep
Quantization(CDQ)(Cao et al. 2017). Source codes of these
baselines are kindly provided by the authors and the input
parameters of these baselines are specified according to the
suggestion of the papers. As to RDCMH, we set the mini-
batch size for gradient descent to 128, and set dropout rate
as 0.5 on the fully connected layers to avoid overfitting. The
regularization parameter λ in Eq. (4) is set to 1, and the num-
ber of iterations for optimizing Eq. (4) is fixed to 500. We
empirically found RDCMH generally converges in no more
than 500 iterations on all these datasets. The length of the

1http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
2https://www.wikidata.org/wiki/Wikidata
3http://press.liacs.nl/mirflickr/mirdownload.html
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semi-supervised sematic ranking list used for training is set
to 5. Namely, we divide the ranking list (i.e., {rxyj }nj=1 into 5
bins and randomly pick three points from three different bins
to form a triplet for training. By doing so, we can not only
capture different levels of semantic similarity, but also avoid
optimizing too much triplets, whose maximum number is
cubic to the number of samples. Our preliminary study shows
that DRCMH holds relatively stable performance when the
number of bins ≥ 4.

Results and Analysis
Search Accuracies
The MAP results for RDCMH and other baselines with hand-
crafted features on MIRFLICKR, NUS-WIDE and Wiki
datasets are reported in Table . Here, ‘Image vs. Text’ denotes
the setting where the query is an image and the database is
text, and ‘Text vs. Image’ denotes the setting where the query
is a text and the database is image.

From Table , we have the following observations.
(1) RDCMH outperforms almost all the other baselines,

which demonstrate the superiority of our method in cross-
modal retrieval. This superiority is because RDCMH inte-
grates the semantic ranking information into deep cross-
modal hashing to preserve better semantic structure infor-
mation, and jointly optimizes the triplet ranking loss and
quantitative loss to obtain more compatible parameters of
deep feature representations and of hashing functions. SePH
achieves better results for text to image retrieval on Wiki.
That is possible because its adaptability of probability-based
strategy on small datasets.

(2) An unexpected observation is that the performance of
CMSSH and SCM-Orth decreases as the length of hash codes
increase. This may be caused by the imbalance between bits
in the hash codes learnt by singular value decomposition
or eigenvalue decomposition, these two decompositions are
adopted these two approaches.

(3) Deep hashing methods (DCMH, CHN, CDQ and DR-
CMH) have an improved performance than the others. This
proves that deep feature learned from raw data is more com-
patible for hashing learning than hand-crafted features in
cross-modal retrieval. DRCMH still outperforms DCMH,
CDQ and CHN. This observation corroborates the superiority
of ranking-based loss and the necessity of jointly learning
deep feature presentations and hashing functions.

To further verify the effectiveness of RDCMH in semi-
supervised situation, we randomly mask all the labels of 70%
training samples. All the comparing methods then use the
remaining labels to learn hash functions. Table reports the
results under different hash bits on three datasets. All these
methods manifest sharply reduced MAP values. RDCMH
have higher MAP values than all the other baselines, and
also outperforms SePH on the Wiki dataset. RDCMH is less
affected by the insufficient labels than other methods. For ex-
ample, the average MAP value of the second best performer
CHN is reduced by 81.9%, and that of RDCMH is 70.2%.
This is because label integrity has a significant impact on the
effectiveness of supervised hashing methods. In practice, the
pairwise semantic similarity between labeled data is reduced

to 9% (3/10 × 3/10) in this setting. As a result, RDCMH
also has a sharply reduced performance. All these comparing
methods ask for sufficient label information to guide the hash-
ing code learning. Unfortunately, these comparing methods
disregard unlabeled data, which contribute to more faithfully
explore the structure of data and to reliable cross-modal hash-
ing codes. This observation proves the effectiveness of the
introduced semi-supervised semantic measure in leveraging
unlabeled data to boost the hashing code learning.

We conducted additional experiments on multi-label
datasets with 30% missing labels by randomly masking the la-
bels of training data. The recorded results show that RDCMH
again outperforms the comparing methods. Specifically, the
average MAP value of the second best performer (CDQ) is
4% less than that of RDCMH. Due to space limitation, the
results are not reported here. Overall, we can conclude that
RDCMH is effective in weakly-supervised scenarios.

Sensitivity to Parameters
We further explore the sensitivity of the scalar parameter λ
in Eq. (4), and report the results on Mirflickr and Wiki in
Fig. , where the code length fixed as 16 bits. We can see that
RDCMH is slightly sensitive to λ with λ ∈ [10−3, 103], and
achieves the best performance when λ = 1. Over-weighting
or under-weighting the quantitative loss have a negative im-
pact to the performance, but not so significant. In summary,
an effective λ can be easily selected for RDCMH.
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Figure 2: MAP vs. λ on Mirfilcker and Wiki datasets.
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Figure 3: The results of different variants on Mirflicker.

Further Analysis
To investigate the contribution components of RDCMH, we
introduce four variants of RDCMH, namely RDCMH-NW,
RDCMH-ND, RDCMH-NS and RDCMH-NJ. RDCMH-NW
disregards the weight (1− s(i, j)) and equally treats all the
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Table 1: Results (MAP) on Mirflickr , Nus-wide and Wiki dataset.
Mirflickr Nus-wide Wiki

Methods 16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits

Image
vs.

Text

CMSSH 0.5616 0.5555 0.5513 0.5484 0.3414 0.3336 0.3282 0.3261 0.1694 0.1523 0.1447 0.1434

SCM-seq 0.5721 0.5607 0.5535 0.5482 0.3623 0.3646 0.3703 0.3721 0.1577 0.1434 0.1376 0.1358

SCM-orth 0.6041 0.6112 0.6176 0.6232 0.4651 0.4714 0.4822 0.4851 0.2341 0.2411 0.2443 0.2564

SePH 0.6573 0.6603 0.6616 0.6637 0.4787 0.4869 0.4888 0.4932 0.2836 0.2859 0.2879 0.2863

DCMH 0.7411 0.7465 0.7485 0.7493 0.5903 0.6031 0.6093 0.6124 0.2673 0.2684 0.2687 0.2748

CHN 0.7438 0.7485 0.7511 0.7595 0.6012 0.6028 0.6059 0.6121 0.2534 0.2677 0.2681 0.2684

CDQ 0.7604 0.7631 0.7745 0.7738 0.6203 0.6253 0.6274 0.6284 0.2873 0.2834 0.2831 0.2901

RDCMH 0.7723 0.7735 0.7789 0.7810 0.6231 0.6236 0.6273 0.6302 0.2943 0.2968 0.3001 0.3042

Text
vs.

Image

CMSSH 0.5616 0.5551 0.5506 0.5475 0.3392 0.3321 0.3272 0.3256 0.1578 0.1384 0.1331 0.1256

SCM-seq 0.5694 0.5611 0.5544 0.5497 0.3412 0.3459 0.3472 0.3539 0.1521 0.1561 0.1371 0.1261

SCM-orth 0.6055 0.6154 0.6238 0.6299 0.437 0.4428 0.4504 0.1235 0.2257 0.2459 0.2482 0.2518

SePH 0.6481 0.6521 0.6545 0.6534 0.4489 0.4539 0.4587 0.4621 0.5345 0.5351 0.5471 0.5506

DCMH 0.7827 0.7901 0.7932 0.7956 0.6389 0.6511 0.6571 0.6589 0.2712 0.2751 0.2812 0.2789

CHN 0.7402 0.7435 0.7463 0.7481 0.6415 0.6426 0.6435 0.6478 0.2416 0.2456 0.2483 0.2512

CDQ 0.7856 0.7841 0.7892 0.7931 0.6531 0.6579 0.6613 0.6658 0.2901 0.2847 0.3001 0.3021

RDCMH 0.7931 0.7924 0.8001 0.8024 0.6641 0.6685 0.6694 0.6703 0.2931 0.2956 0.3012 0.3035

Table 2: Results (MAP) on Mirflickr , Nus-wide and Wiki dataset with 70% unlabeled data.
Mirflickr Nus-wide Wiki

Methods 16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits

Image
vs.

Text

CMSSH 0.1384 0.1363 0.1332 0.1293 0.0731 0.0723 0.0721 0.0716 0.0146 0.0141 0.0126 0.0118

SCM-seq 0.1419 0.1391 0.1358 0.1331 0.0741 0.0734 0.0721 0.0711 0.0162 0.0146 0.0148 0.0126

SCM-orth 0.1321 0.1345 0.1386 0.1413 0.1056 0.1062 0.1074 0.1089 0.0174 0.0158 0.0136 0.0109

SePH 0.1511 0.1532 0.1541 0.1538 0.1256 0.1249 0.1289 0.1291 0.0674 0.0671 0.0684 0.0681

DCMH 0.1423 0.1435 0.1452 0.1468 0.1055 0.1056 0.1059 0.1064 0.0541 0.0514 0.0553 0.0584

CHN 0.1344 0.1357 0.1402 0.1431 0.1125 0.1134 0.1151 0.1156 0.0584 0.0602 0.0608 0.0611

CDQ 0.1431 0.1423 0.1462 0.1433 0.1242 0.1241 0.1195 0.1162 0.0623 0.0637 0.0645 0.0681

RDCMH 0.1842 0.1861 0.1875 0.1889 0.1634 0.1656 0.1674 0.1705 0.1026 0.1058 0.1073 0.1106

Text
vs.

Image

CMSSH 0.1297 0.1343 0.1368 0.1392 0.0744 0.0751 0.0754 0.0758 0.0119 0.0119 0.0118 0.0117

SCM-seq 0.1331 0.1366 0.1395 0.1429 0.0756 0.0759 0.0765 0.0763 0.0127 0.0122 0.0121 0.0118

SCM-orth 0.1321 0.1376 0.1393 0.1414 0.0961 0.1008 0.1034 0.1047 0.0105 0.0108 0.0113 0.0113

SePH 0.1434 0.1455 0.1462 0.1471 0.1194 0.1204 0.1228 0.1264 0.0651 0.0631 0.0635 0.0629

DCMH 0.1284 0.1256 0.1284 0.1351 0.1033 0.1065 0.1069 0.1075 0.0564 0.0572 0.0585 0.0591

CHN 0.1384 0.1342 0.1384 0.1432 0.1134 0.1142 0.1148 0.1156 0.0534 0.0542 0.0554 0.0561

CDQ 0.1324 0.1362 0.1358 0.1402 0.1131 0.1156 0.1163 0.1189 0.0546 0.0584 0.0563 0.0573

RDCMH 0.1769 0.1786 0.1821 0.1833 0.1549 0.1569 0.1553 0.1764 0.1038 0.1045 0.1072 0.1089

triplets; RDCMH-ND denotes the variant without deep fea-
ture learning, it directly uses the hand-crafted features to
learn hashing functions during training. RDCMH-NS simply
obtains the ranking list by the number of shared labels, as
done by (Song et al. 2015; Zhao et al. 2015). RDCMH-NJ iso-
lates deep feature learning and hashing functions learning, it
first learns deep features and then generates hash codes based
on the learnt features. Fig. shows the results of these variants
on the Mirfilcker dataset. The results on other datasets pro-
vide similar observations and conclusions, and are omitted
here for space limit.

We can see RDCMH outperforms RDCMH-NW. This
means the triplet ranking loss with adaptive weights can
improve the cross-modal retrieval quality, since it assigns
larger weights to more relevant points and smaller weights to
the less relevant ones. RDCMH also outperforms RDCMH-
NS, which indicates that dividing the ranking lists into dif-
ferent levels based on the semi-supervised semantic sim-
ilarity S is better than simply dividing by the number of
shared labels, which was adopted by (Zhao et al. 2015;

Lai et al. 2015). Moreover, we can find that RDCMH achieves
a higher accuracy than RDCMH-ND and RDCMH-NJ, which
shows not only the superiority of deep features than hand-
crafted features in cross-modal retrieval, but also the advan-
tage of simultaneous hash-code learning and deep feature
learning.

Conclusion

In this paper, we proposed a novel cross-modal hash func-
tion learning formwork (RDCMH) to seamlessly integrate
deep feature learning with semantic ranking based hashing.
RDCMH can preserve multi-level semantic similarity be-
tween multi-label objects for cross-modal hashing, and it
also introduces a label and feature information induced semi-
supervised semantic measure to leverage labeled and un-
labeled data. Extensive experiments demonstrate that RD-
CMH outperforms other state-of-the-art hashing methods in
cross-modal retrieval. The code of RDCMH is available at
mlda.swu.edu.cn/codes.php?name=RDCMH.
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