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Abstract

Learning from multiple sources of information is an impor-
tant problem in machine-learning research. The key chal-
lenges are learning representations and formulating inference
methods that take into account the complementarity and re-
dundancy of various information sources. In this paper we
formulate a variational autoencoder based multi-source learn-
ing framework in which each encoder is conditioned on a dif-
ferent information source. This allows us to relate the sources
via the shared latent variables by computing divergence mea-
sures between individual source’s posterior approximations.
We explore a variety of options to learn these encoders and to
integrate the beliefs they compute into a consistent posterior
approximation. We visualise learned beliefs on a toy dataset
and evaluate our methods for learning shared representations
and structured output prediction, showing trade-offs of learn-
ing separate encoders for each information source. Further-
more, we demonstrate how conflict detection and redundancy
can increase robustness of inference in a multi-source setting.

1 Introduction
An essential feature of most living organisms is the ability to
process, relate, and integrate information coming from a vast
number of sensors and eventually from memories and pre-
dictions (Stein and Meredith 1993). While integrating infor-
mation from complementary sources enables a coherent and
unified description of the environment, redundant sources
are beneficial for reducing uncertainty and ambiguity. Fur-
thermore, when sources provide conflicting information, it
can be inferred that some sources must be unreliable.

Replicating this feature is an important goal of multi-
modal machine learning (Baltrušaitis, Ahuja, and Morency
2017). Learning joint representations of multiple modalities
has been attempted using various methods, including neural
networks (Ngiam et al. 2011), probabilistic graphical models
(Srivastava and Salakhutdinov 2014), and canonical correla-
tion analysis (Andrew et al. 2013). These methods focus on
learning joint representations and multimodal sensor fusion.
However, it is challenging to relate information extracted
from different modalities. In this work, we aim at learning
probabilistic representations that can be related to each other
by statistical divergence measures as well as translated from
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one modality to another. We make no assumptions about
the nature of the data (i.e. multimodal or multi-view) and
therefore adopt a more general problem formulation, namely
learning from multiple information sources.

Probabilistic graphical models are a common choice to
address the difficulties of learning from multiple sources
by modelling relationships between information sources—
i.e., observed random variables—via unobserved, random
variables. Inferring the hidden variables is usually only
tractable for simple linear models. For nonlinear models,
one has to resort to approximate Bayesian methods. The
variational autoencoder (VAE) (Kingma and Welling 2013;
Rezende, Mohamed, and Wierstra 2014) is one such method,
combining neural networks and variational inference for
latent-variable models (LVM).

We build on the VAE framework, jointly learning the
generative and inference models from multiple information
sources. In contrast to the VAE, we encapsulate individual
inference models into separate “modules”. As a result, we
obtain multiple posterior approximations, each informed by
a different source. These posteriors represent the belief over
the same latent variables of the LVM, conditioned on the
available information in the respective source.

Modelling beliefs individually—but coupled by the gen-
erative model—enables computing meaningful quantities
such as measures of surprise, redundancy, or conflict be-
tween beliefs. Exploiting these measures can in turn increase
the robustness of the inference models. Furthermore, we ex-
plore different methods to integrate arbitrary subsets of these
beliefs, to approximate the posterior for the respective sub-
set of observations. We essentially modularise neural vari-
ational inference in the sense that information sources and
their associated encoders can be flexibly interchanged and
combined after training.

2 Background—Neural variational inference
Consider a dataset X = {x(n)}Nn=1 of N i.i.d. samples of
some random variable x and the following generative model:

pθ(x
(n)) =

∫
pθ(x

(n) | z(n)) p(z(n)) dz(n),

where θ are the parameters of a neural network, defining the
conditional distribution between latent and observable ran-
dom variables z and x respectively. The variational autoen-
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coder (Kingma and Welling 2013; Rezende, Mohamed, and
Wierstra 2014) is an approximate inference method that en-
ables learning the parameters of this model by optimising
an evidence lower bound (ELBO) to the log marginal like-
lihood. A second neural network with parameters φ defines
the parameters of an approximation qφ(z |x) of the poste-
rior distribution. Since the computational cost of inference
for each data point is shared by using a recognition model,
some authors refer to this form of inference as amortised or
neural variational inference (Gershman and Goodman 2014;
Mnih and Gregor 2014).

The importance weighted autoencoder (Burda, Grosse,
and Salakhutdinov 2015) (IWAE) generalises the VAE by
using a multi-sample importance weighting estimate of the
log-likelihood. The IWAE ELBO is given as:

ln pθ(x
(n)) ≥ E

z
(n)
1:K∼qφ(z(n)|x(n))

[
ln

1

K

K∑
k=1

w
(n)
k

]
,

whereK is the number of importance samples, and w(n)
k are

the importance weights:

w
(n)
k =

pθ(x
(n) | z(n)k ) p(z

(n)
k )

qφ(z
(n)
k |x(n))

.

Besides achieving a tighter lower bound, the IWAE was mo-
tivated by noticing that a multi-sample estimate does not re-
quire all samples from the variational distribution to have
a high posterior probability. This enables the training of a
generative model using samples from a variational distribu-
tion with higher uncertainty. Importantly, this distribution
need not be the posterior of all observations in the gener-
ative model. It can be a good enough proposal distribution,
i.e. the belief from a partially-informed source.

3 Multi-source neural variational inference
We are interested in datasets consisting of tuples {x(n) =

(x
(n)
1 , . . . , x

(n)
M )}Nn=1, we use m ∈ {1, . . . ,M} to denote

the index of the source. Each observation x
(n)
m ∈ RDm may

be embedded in a different space but is assumed to be gen-
erated from the same latent state z(n). Therefore, each x

(n)
m

corresponds to a different, potentially limited source of in-
formation about the underlying state z(n). From now on we
will refer to xm in the generative model as observations and
the same xm in the inference model as information sources.

We model each observation xm in the generative model
with a distinct set of parameters θm, although some param-
eters could be shared. The likelihood function is given as:

pθ(x
(n) | z(n)) =

M∏
m=1

pθm
(
x(n)
m | z(n)

)
.

For inference, the VAE conditions on all observable
data x(n). However, one can condition (amortize) the
approximate posterior distribution on any set of infor-
mation sources. In this paper we limit ourselves to
x
(n)
S , S ⊂ {1, . . . ,M}. An approximate posterior distribu-

tion qφS (z
(n) |x(n)

S ) may then be interpreted as the belief of

the respective information sources about the latent variables,
underlying the generative process.

In contrast to the VAE, we want to calculate the be-
liefs from different information sources individually, com-
pare them, and eventually integrate them. In the following,
we address each of these desiderata.

3.1 Learning individual beliefs
In order to learn individual inference models as in Fig. 1a,
we propose an average of M ELBOs, one for each informa-
tion source and its respective inference model. The resulting
objective is an ELBO to the log marginal likelihood itself
and referred to as L(ind):

L(ind) =:

M∑
m=1

πmE
z
(n)
1:K∼qφm

(
z(n)|x(n)

m

)[ ln 1

K

K∑
k=1

w
(n)
m,k

]
,

(1)
with

w
(n)
m,k =

pθ
(
x(n) | z(n)k

)
p
(
z
(n)
k

)
qφm

(
z
(n)
k |x

(n)
m

) .

The indices n, m and k refer to the data sample, informa-
tion source, and importance sample index. The factors πm
are the weights of the ELBOs, satisfying 0 ≤ πm ≤ 1 and∑M
m=1 πm = 1. Although the πm could be inferred, we set

πm = 1/M, ∀m. This ensures that all parameters φm are
optimised individually to their best possible extent instead
of down-weighting less informative sources.

Since we are dealing with partially-informed encoders
qφm(z

(n) |x(n)
m ) instead of qφ(z(n) |x(n)), the beliefs can be

more uncertain than the posterior of all observations x. This
in turn degrades the generative model, as it requires samples
from the posterior distribution. We found that the generative
model becomes biased towards generating averaged samples
rather than samples from a diverse, multimodal distribution.
This issue arises in VAE-based objectives, irrespective of the
complexity of the variational family, because each Monte-
Carlo sample of latent variables must predict all observa-
tions. To account for this, we propose to use importance
sampling estimates of the log-likelihood (see Sec. 2). The
importance weighting and sampling-importance-resampling
can be seen as feedback from the observations, allowing to
approximate the true posterior even with poorly informed
beliefs.

3.2 Comparing beliefs
Encapsulating individual inferences has an appealing advan-
tage compared to an uninterpretable, deterministic combina-
tion within a neural network: Having obtained multiple be-
liefs w.r.t. the same latent variables, each informed by a dis-
tinct source, we can calculate meaningful quantities to relate
the sources. Examples are measures of redundancy, surprise,
or conflict. Here we focus on the latter.

Detecting conflict between beliefs is crucial to avoid false
inferences and thus increase robustness of the model. Con-
flicting beliefs may stem from conflicting data or from un-
reliable (inference) models. The former is a form of data
anomaly, e.g. due to a failing sensor. An unreliable model
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Figure 1: Graphical models of inference models. White circles denote hidden random variables, grey-shaded circles—observed
random variables, diamonds—deterministic variables. N is the number of i.i.d. samples in the dataset. To better distinguish the
mixture or product of expert models from an IWAE with hard-wired integration in a neural-network layer, we explicitly draw
the deterministic variables λ1, . . . , λM , denoting the parameters of the variational distributions.

on the other hand may result from model misspecification
or optimisation problems, i.e. due to the approximation or
amortisation gap, respectively (Cremer, Li, and Duvenaud
2018). Distinguishing between the two causes of conflict is
challenging however and requires evaluating the observed
data under the likelihood functions.

Previous work has used the ratio of two KL divergences as
a criterion to detect a conflict between a subjective prior and
the data (Bousquet 2008). The nominator is the KL between
the posterior and the subjective prior, and denominator is the
KL between posterior and a non-informative reference prior.
The two KL divergences measure the information gain of
the posterior—induced by the evidence—w.r.t. the subjec-
tive prior and the non-informative prior, respectively. The
decision criterion for conflict is a ratio greater than 1.

We propose a similar ratio, replacing the subjective prior
with qφm and taking the prior as reference:

c(m ||m′) =
DKL

(
qφm′ (z |xm′) || qφm(z |xm)

)
DKL

(
qφm′ (z |xm′) || p(z)

) . (2)

This measure has the property that it yields high values if
the belief of source m is significantly more certain than that
of m′. This is desirable for sources with redundant informa-
tion. For complementary information sources other conflict
measures, e.g. the measure defined in (Dahl, Gåsemyr, and
Navig ), may be more appropriate.

3.3 Integrating beliefs
So far, we have shown how to learn separate beliefs from dif-
ferent sources and how to relate them. However, we have not
readily integrated the information from these sources. This
can be seen by noticing that the gap between L(ind) and the
log marginal likelihood is significantly larger compared to
an IWAE with an unflexible, hard-wired combination (see
supplementary material of our accompanying technical re-
port (Kurle, Günnemann, and Smagt 2018)). Here we pro-
pose two methods to integrate the beliefs qφm(z |xm) to an
integrated belief qφ(z |x).
Disjunctive integration—Mixture of Experts One ap-
proach to combine individual beliefs is by treating them

as alternatives, which is justified if some (but not all)
sources or their respective models are unreliable or in con-
flict (Khaleghi et al. 2013). We propose a mixture of experts
(MoE) distribution, where each component is the belief, in-
formed by a different source. The corresponding graphical
model for inference is shown in Fig. 1b. As in Sec. 3.1, the
variational parameters are each predicted from one source
individually without communication between them. The dif-
ference is that each qφm(z |xm) is considered as a mixture
component, such that the whole mixture distribution approx-
imates the true posterior.

Instead of learning individual beliefs qφm(z |xm) by op-
timising L(ind) and integrating them subsequently into a
combined qφ(z |x), we can design an objective function for
learning the MoE posterior directly. We refer to the corre-
sponding ELBO as L(MoE). It differs from L(ind) only by
the denominator of the importance weights, using the mix-
ture distribution with component weights πm:

w
(n)
m,k =

pθ
(
x(n) | z(n)k

)
p
(
z
(n)
k

)∑M
m′=1 πm′qφm′

(
z
(n)
k |x

(n)
m′

) ,
Conjunctive integration—Product of Experts Another
option for combining beliefs are conjunctive methods, treat-
ing each belief as a constraint. These are applicable in
the case of equally reliable and independent evidences
(Khaleghi et al. 2013). This can be seen by inspecting the
mathematical form of the posterior distribution of all ob-
servations. Applying Bayes’ rule twice reveals that the true
posterior of a graphical model with conditionally indepen-
dent observations can be decomposed as a product of experts
(Hinton 2002) (PoE):

p(z |x) =
∏M
m′=1 p(xm′)

p(x)
· p(z) ·

M∏
m=1

p(z |xm)

p(z)
. (3)

We propose to approximate Eq. (3) by replacing the true pos-
teriors of single observations p(z |xm) by the variational
distributions qφm(z |xm), obtaining the inference model
shown in Fig. 1c. In order to make the PoE distribution com-
putable, we further assume that the variational distributions
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and the prior are conjugate distributions in the exponential
family. Probability distributions in the exponential family
have the well-known property that their product is also in the
exponential family. Hence, we can calculate the normalisa-
tion constant in Eq. (3) from the natural parameters. In this
work, we focus on the popular case of normal distributions.
For the derivation of the natural parameters and normalisa-
tion constant, we refer to the supplementary material of our
technical report (Kurle, Günnemann, and Smagt 2018).

Analogous to Sec. 3.3, we can design an objective to learn
the PoE distribution directly, rather than integrating individ-
ual beliefs. We refer to the corresponding ELBO as L(PoE):

L(PoE) =: E
z
(n)
1:K∼qφ

(
z(n)|x(n)

)[ ln 1

K

K∑
k=1

w
(n)
k

]
, (4)

where w(n)
k are the standard importance weights as in the

IWAE and where qφ(z(n) |x(n)) is the PoE inference dis-
tribution. However, the natural parameters of the individual
normal distributions are not uniquely identifiable by the nat-
ural parameters of the integrated normal distribution. Thus,
optimising L(PoE) leads to inseparable individual beliefs. To
account for this, we propose a hybrid between individual and
integrated inference distribution:

L(hybrid) = λ1L(ind) + λ2L(PoE), (5)
where we choose λ1 = λ2 = 1

2 in practice for simplicity.
In Sec. 5 we evaluate the proposed integration methods

both as learning objectives, and for integrating the beliefs
obtained by optimising L(ind) or L(hybrid). Note again how-
ever, that L(PoE) or L(hybrid) assume conditionally indepen-
dent observations and equally reliable sources. In contrast,
L(ind) makes no assumptions about the structure of the gen-
erative model. This allows for any choice of appropriate in-
tegration method after learning.

4 Related Work
Canonical correlation analysis (CCA) (Hotelling 1936) is an
early attempt to examine the relationship between two sets
of variables. CCA and nonlinear variants (Shon et al. 2005;
Andrew et al. 2013; Feng, Li, and Wang 2015) propose pro-
jections of pairs of features such that the transformed rep-
resentations are maximally correlated. CCA variants have
been widely used for learning from multiple information
sources (Hardoon, Szedmak, and Shawe-taylor 2004; Rasi-
wasia et al. 2010). These methods have in common with
ours, that they learn a common representational space for
multimodal data. Furthermore, a connection between lin-
ear CCA and probabilistic graphical models has been shown
(Bach and Jordan 2005).

Dempster-Shafer theory (Dempster 1967; Shafer 1976) is
a widely used framework for integration of uncertain infor-
mation. Similar to our PoE integration method, Dempster’s
rule of combination takes the pointwise product of belief
functions and normalises subsequently. Due to apparently
counterintuitive results obtained when dealing with conflict-
ing information (Zadeh 1986), the research community pro-
posed various measures to detect conflicting belief func-
tions and proposed alternative integration methods. These

include disjunctive integration methods (Jiang et al. 2016;
Denœux 2008; Deng 2015; Murphy 2000), similar to our
MoE integration method.

A closely related line of research is that of multimodal
autoencoders (Ngiam et al. 2011) and multimodal Deep
Boltzmann machines (DBM) (Srivastava and Salakhutdinov
2014). Multimodal autoencoders use a shared representation
for input and reconstructions of different modalities. Since
multimodal autoencoders learn only deterministic functions,
the interpretability of the representations is limited. Multi-
modal DBMs on the other hand learn multimodal generative
models with a joint representation between the modalities.
However, DBMs have only been shown to work on binary
latent variables and are notoriously hard to train.

More recently, variational autoencoders were applied
to multimodal learning (Suzuki, Nakayama, and Matsuo
2016). Their objective function maximises the ELBO using
an encoder with hard-wired sources and additional KL di-
vergence loss terms to train individual encoders. The differ-
ence to our methods is that we maximise an ELBO for which
we require only M individual encoders. We may then inte-
grate the beliefs of arbitrary subsets of information sources
after training. In contrast, the method in (Suzuki, Nakayama,
and Matsuo 2016) would require a separate encoder for each
possible combination of sources. Similarly, (Vedantam et al.
2017) first trains a generative model with multiple obser-
vations, using a fully-informed encoder. In a second train-
ing stage, they freeze the generative model parameters and
proceed by optimising the parameters of inference models
which are informed by a single source. Since the topology
of the latent space is fixed in the second stage, finding good
weights for the inferenc models may be complicated.

Concurrently to this work, (Wu and Goodman 2018) pro-
posed a method for weakly-supervised learning from mul-
timodal data, which is very similar to our hybrid method
discussed in Sec. 3.3. Their method is based on the VAE,
whereas we find it crucial to optimise the importance-
sampling based ELBO to prevent the generative models
from generating averaged conditional samples (see Sec. 3.1).

5 Experiments
We visualise learned beliefs on a 2D toy problem, evalu-
ate our methods for structured prediction and demonstrate
how our framework can increase robustness of inference.
Model and algorithm hyperparameters are summarised in
the supplementary material of our technical report (Kurle,
Günnemann, and Smagt 2018).

5.1 Learning beliefs from complementary
information sources

We begin our experiments with a toy dataset with com-
plementary sources. As a generative process, we consider
a mixture of bi-variate normal distributions with 8 mix-
ture components. The means of each mixture component
are located on the unit circle with equidistant angles, and
the standard deviations are 0.1. To simulate complemen-
tary sources, we allow each source to perceive only one di-
mension of the data. As with all our experiments, we as-
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sume a zero-centred normal prior with unit variance and
z ∈ R2. We optimise L(ind) with two inference models
qφ1

(z |x1), qφ2
(z |x2), and two separate likelihood func-

tions pθ1(x1 | z), pθ2(x2 | z). Fig. 2a (right) shows the be-
liefs of both information sources for 8 test data points. These
test points are the means of the 8 mixture components of the
observable data, rotated by 2◦. The small rotation is only for
visualisation purposes, since each source is allowed to per-
ceive only one axis and would therefore produce indistin-
guishable beliefs for data points with identical values on the
perceived axis. We visualise the two beliefs corresponding
to the same data point with identical colours. The height and
width of the ellipses correspond to the standard deviations of
the beliefs. Fig. 2a (left) shows random samples in the ob-
servation space, generated from 10 random latent samples
z ∼ qφm(z |xm) for each belief. The generated samples are
colour-coded in correspondence to the figure on the right.
The 8 circles in the background visualise the true data dis-
tribution with 1 and 2 standard deviations. The two types of
markers distinguish the information sources x1 and x2 used
for inference. As can be seen, the beliefs reflect the ambigu-
ity as a result of perceiving a single dimension xm. 1

Next we integrate the two beliefs using Eq. (3). The re-
sulting integrated belief and generated data from random
latent samples of the belief are shown in Figs. 2b (right)
and 2b (left) respectively. We can see that the integration
resolves the ambiguity. In the supplementary material of
our accompanying technical report (Kurle, Günnemann, and
Smagt 2018), we plot samples from the individual and in-
tegrated beliefs, before and after a sampling importance re-
sampling procedure.

5.2 Learning and inference of shared
representations for structured prediction

Models trained with L(ind) or L(hybrid) can be used to pre-
dict structured data of any modality, conditioned on any
available information source. Equivalently, we may impute
missing data if modelled explicitly as an information source:

p(xm |xm′) = E
z∼qφ

m′

(
z|xm′

)[pθm(xm | z)]. (6)

MNIST variants We created 3 variants of MNIST (Lecun
et al. 1998), where we simulate multiple information sources
as follows:

• MNIST-TB: x1 perceives the top half and x2 perceives
the bottom half of the image.

• MNIST-QU: 4 information sources that each perceive
quarters of the image.

• MNIST-NO: 4 information sources with independent bit-
flip noise with p = 0.05. We use these 4 sources to amor-
tise inference. In the generative model, we use the stan-
dard, noise-free digits as observable variables.

1The true posterior (of a single source) has two modes for most
data points. The uni-modal (Gaussian) proposal distribution learns
to cover both modes.

(a) Individual beliefs and their predictions. Left: 8 coloured cir-
cles are centred at the 8 test inputs from a mixture of Gaussians
toy dataset. The radii indicate 1 and 2 standard deviations of the
normal distributions. The two types of markers represent gener-
ated data from random samples of one of the information sources
(data axis 0 or 1). Right: Corresponding individual beliefs. Ellipses
show 1 standard deviation of the individual approximate posterior
distributions.

(b) Integrated belief and its predictions.

Figure 2: Approximate posterior distributions and samples
from the predicted likelihood function with and without in-
tegration of beliefs

First, we assess how well individual beliefs can be inte-
grated after learning, and whether beliefs can be used in-
dividually when learning them as integrated inference distri-
butions. On all MNIST variants, we train 5 different mod-
els by optimising the objectives L(ind), L(MoE), L(PoE), and
L(hybrid) withK = 16, as well as L(hybrid) withK = 1. All
other hyperparameters are identical. We then evaluate each
model under the 3 objectives L(ind), L(MoE) and L(PoE).
For comparison, we also train a standard IWAE with hard-
wired sources on MNIST and on MNIST-NO with a single
noisy source. The ELBOs on the test set are estimated using
K = 16 importance samples. The obtained estimates are
summarised in Tab. 1. The results confirm that learning the
PoE inference model directly leads to inseparable individual
beliefs. As expected, learning individual inference models
and integrating them subsequently as a PoE comes with a
tradeoff for L(PoE), which is mostly due to the low entropy
of the integrated distribution. On the other hand, optimising
the model with L(hybrid) achieves good results for both in-
dividual and integrated beliefs. On MNIST-NO, we can get
an improvement of 2.74 nats by integrating the beliefs of
redundant sources, compared to the standard IWAE with a
single source.

Next, we evaluate our method for conditional (structured)
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Table 1: Negative evidence lower bounds on variants of ran-
domly binarised MNIST. Lower is better.

MNIST-TB

L(ind) L(MoE) L(PoE) L(hybrid) L(hybrid)
(K=1) IWAE

L(ind) 102.20 102.40 265.59 104.03 108.97 -
L(MoE) 101.51 101.82 264.48 103.37 108.30 -
L(PoE) 94.38 94.39 87.59 90.07 90.81 88.79

MNIST-QU

L(ind) L(MoE) L(PoE) L(hybrid) L(hybrid)
(K=1) IWAE

L(ind) 120.46 120.37 447.67 129.63 140.61 -
L(MoE) 119.10 119.98 446.02 128.16 139.19 -
L(PoE) 108.07 107.85 87.67 89.20 90.17 88.79

MNIST-NO

L(ind) L(MoE) L(PoE) L(hybrid) L(hybrid)
(K=1) IWAE

L(ind) 94.81 94.86 101.20 96.27 95.31 -
L(MoE) 93.98 94.03 100.36 95.58 94.55 -
L(PoE) 94.52 94.65 92.27 92.21 94.49 94.95

prediction using Eq. (6). Fig. 3a shows the means of the like-
lihood functions, with latent variables drawn from individ-
ual and integrated beliefs. To demonstrate conditional image
generation from labels, we add a third encoder that perceives
class labels. Fig. 3b shows the means of the likelihood func-
tions, inferred from labels.

We also compare our method to the missing data im-
putation procedure described in (Rezende, Mohamed, and
Wierstra 2014) for MNIST-TB und MNIST-QU. We run
the Markov chain for all samples in the test set for 150
steps each and calculate the log likelihood of the imputed
data at every step. The results—averaged over the dataset—
are compared to our multimodal data generation method in
Fig. 4. For large portions of missing data as in MNIST-TB,
the Markov chain often fails to converge to the marginal dis-
tribution. But even for MNIST-QU with only a quarter of the
image missing, our method outperforms the Markov chain
procedure by a large margin. Please consult the supplemen-
tary material for a visualisation of the stepwise generations
during the inference procedure.

Caltech-UCSD Birds 200 Caltech-UCSD Birds 200
(Welinder et al. 2010) is a dataset with 6033 images of birds
with 128 × 128 resolutions, split into 3000 train and 3033
test images. As a second source, we use segmentation masks
provided by (Yang, Safar, and Yang 2014). On this dataset
we assess whether learning with multiple modalities can be
advantageous in scenarios where we are interested only in
one particular modality. Therefore, we evaluate the ELBO
for a single source and a single target observation, i.e. encod-
ing images and decoding segmentation masks. We compare
models that learned with multiple modalities using L(ind)

and L(hybrid) with models that learnt from a single modality.
Additionally, we evaluate the segmentation accuracy using
Eq. (6). The accuracy is estimated with 100 samples, drawn
from the belief informed by image data. The results are sum-
marised in Tab. 2. We distinguish between objectives that in-
volve both modalities in the generative model and objectives
where we learn only the generative model for the modality

(a) Row 1: Original images.
Row 2–4: Belief informed by
top half of the image. Row 5–7:
Informed by bottom half. Row
8–10: Integrated belief.

(b) Predictions from 10 random
samples of the latent variables,
inferred from one-hot class la-
bels.

Figure 3: Predicted images, where latent variables are in-
ferred from the variational distributions of different sources.
Sources with partial information generate diverse samples,
the integration resolves ambiguities. E.g. in Fig. 3a, the
lower half of digit 3 randomly generates digits 5 and 3 and
the upper half generates digits 3 and 9. In contrast, the inte-
gration resolves ambiguities.

(a) MNIST-TB, where bottom
half is missing.

(b) MNIST-QU, where bottom
right quarter is missing.

Figure 4: Missing data imputation with Monte Carlo proce-
dure described in (Rezende, Mohamed, and Wierstra 2014)
and our method. For the Markov chain procedure, the ini-
tial missing data is drawn randomly from Ber (0.5) and im-
puted from the previous random generation in subsequent
steps. MSNVI was trained with L(ind). For MNIST-QU, we
used the PoE belief of the three observed quarters. The plots
show the log-likelihood at every step of the Markov chain,
marginalised over the dataset. Higher is better.

Table 2: Negative ELBOs and segmentation accuracy on
Caltech-UCSD Birds 200. The IWAE was trained with a
single source and target observation. Models trained with
L(ind) and L(hybrid) use all sources and targets, and L(ind)*
and L(hybrid)* use all sources for inference, but learn the
generative model of a single modality.

L(ind) L(ind)* L(hybrid) L(hybrid)* IWAE

img-to-seg 5326 3264 5924 3337 3228
img-to-img -26179 -26663 -29285 -29668 -30415
accuracy 0.808 0.870 0.810 0.872 0.855
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Figure 5: Predictions (x- and y-coordinates) of the pendulum position (figures 1, 2, 3, 5, 6) and conflict measure (figure 4).
For the predictions, latent variables are inferred from images of 3 sensors with different views (top row) as well as their
integrated beliefs (bottom mid and right). The figures show predictions (of the static model) for different angles of the pendulum,
performing 3 rotations. After 2 rotations, failure of sensor 0 is simulated by outputting noise only. Lines show the mean and
shaded areas show 1 and 2 standard deviations, estimated using 500 random samples of latent variables. Bottom left: The
conflict measure of Eq. (2) for different angles of the pendulum.

of interest (segmentation), denoted with an asterisk. Mod-
els that have to learn the generative models for images and
segmentations show worse ELBOs and accuracy, when eval-
uated on one modality. In contrast, the accuracy is slightly
increased when we learn the generative model of segmenta-
tions only, but use both sources for inference.
We also refer the reader to the supplementary material of
our technical report (Kurle, Günnemann, and Smagt 2018),
where we visualise conditionally generated images, show-
ing that learning with the importance sampling estimate of
the ELBO is crucial to generate diverse samples from par-
tially informed sources.

5.3 Robustness via conflict detection and
redundancy

In this experiment we demonstrate how a shared latent rep-
resentation can increase robustness, by exploiting sensor re-
dundancy and the ability to detect conflicting data. We cre-
ated a synthetic dataset of perspective images of a pendulum
with different views of the same scene. The pendulum ro-
tates along the z-axis and is centred at the origin. We simu-
late three cameras with 32× 32-pixel resolution as informa-
tion sources for inference and apply independent noise with
std 0.1 to all sources. Each sensor is directed towards the ori-
gin (centre of rotation) from different view-points: Sensor 0
is aligned with the z-axis, and sensor 1 and 2 are rotated by
45 deg along the x- and y-axis, respectively. The distance
of all sensors to the origin is twice the radius of the pen-
dulum rotation. For the generative model we use the x- and
y-coordinate of the pendulum rather than reconstructing the
images. The model was trained with L(ind).

In Fig. 5, we plot the mean and standard deviation of pre-
dicted x- and y-coordinates, where latent variables are in-
ferred from a single source as well as from the PoE posteri-
ors of different subsets. As expected, integrating the beliefs

from redundant sensors reduces the predictive uncertainty.
Additionally, we visualise the three images used as informa-
tion sources above these plots.

Next, we simulate an anomaly in the form of a defect sen-
sor 0, outputting random noise after 2 rotations of the pen-
dulum. This has a detrimental effect on the integrated be-
liefs, where sensor 0 is part of the integration. We also plot
the conflict measure of Eq. (2). As can be seen, the conflict
measures for sensor 0 increases significantly when sensor 0
fails. In this case, one should integrate only the two remain-
ing sensors with low conflict conjunctively.

6 Summary and future research directions
We extended neural variational inference to scenarios where
multiple information sources are available. We proposed
an objective function to learn individual inference models
jointly with a shared generative model. We defined an ex-
emplar measure (of conflict) to compare the beliefs from
distinct inference models and their respective information
sources. Furthermore, we proposed a disjunctive and a con-
junctive integration method to combine arbitrary subsets of
beliefs.

We compared the proposed objective functions exper-
imentally, highlighting the advantages and drawbacks of
each. Naive integration as a PoE (L(PoE)) leads to insepa-
rable individual beliefs, while optimising the sources only
individually (L(ind)) worsens the integration of the sources.
On the other hand, a hybrid of the two objectives (L(hybrid))
achieves a good trade-off between both desiderata. More-
over, we showed how our method can be applied to struc-
tured output prediction and the benefits of exploiting the
comparability of beliefs to increase robustness.

This work offers several future research directions. As an
initial step, we considered only static data and a simple la-
tent variable model. However, we have made no assumptions
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about the type of information source. Interesting research
directions are extensions to sequence models, hierarchical
models and different forms of information sources such as
external memory. Another important research direction is
the combination of disjunctive and conjunctive integration
methods, taking into account the conflict between sources.
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