
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Efficient Identification of Approximate
Best Configuration of Training in Large Datasets

Silu Huang,1∗ Chi Wang,2 Bolin Ding,3† Surajit Chaudhuri2
1University of Illinois, Urbana-Champaign, IL

2Microsoft Research, Redmond, WA
3Alibaba Group, Bellevue, WA

shuang86@illinois.edu, {wang.chi, surajitc}@microsoft.com, bolin.ding@alibaba-inc.com

Abstract

A configuration of training refers to the combinations of fea-
ture engineering, learner, and its associated hyperparameters.
Given a set of configurations and a large dataset randomly
split into training and testing set, we study how to efficiently
identify the best configuration with approximately the high-
est testing accuracy when trained from the training set. To
guarantee small accuracy loss, we develop a solution using
confidence interval (CI)-based progressive sampling and prun-
ing strategy. Compared to using full data to find the exact best
configuration, our solution achieves more than two orders of
magnitude speedup, while the returned top configuration has
identical or close test accuracy.

Introduction
Increasing the productivity of data scientists has been a target
for many machine learning service providers, such as Azure
ML, DataRobot, Google Cloud ML, and AWS ML. For a new
predictive task, a data scientist usually spends a vast amount
of time to train a good ML solution. A proper configuration,
i.e., the combination of preprocessing, feature engineering,
learner (i.e., training algorithm) and the associated hyper-
parameters, is critical to achieving good performance. It
usually takes tens or hundreds of trials to select a suitable
configuration.

There are AutoML tools like auto-sklearn (Feurer et al.
2015) to automate these trials, and output a configuration
with highest evaluated performance. However, both the man-
ual and AutoML approaches have become increasingly inef-
ficient as the available ML data volume grows to millions or
more. Even the trial for a single configuration can take hours
or days for such large-scale datasets. Motivated by this effi-
ciency issue, we propose a module called approximate best
configuration (ABC). Given a set of configurations, it outputs
the approximate best configuration, such that the accuracy
loss to the best configuration is below a threshold. Our goal
is to efficiently identify the approximate best configuration.

The intuition behind ABC is that the ML model trained
over a sampled dataset can be used to approximate the model
trained over the full dataset. However, the optimal sample
∗Work done while visiting Microsoft Research
†Work done while working in Microsoft Research

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

size to determine the best configuration up to an accuracy
loss threshold is unknown. We develop a novel confidence
interval (CI)-based progressive sampling and pruning solu-
tion, by addressing two questions: (a) CI estimator: given a
sampled training dataset, how to estimate the confidence in-
terval of a configuration’s real performance with full training
data? (b) scheduler: as the optimal sample size is unknown
a priori, how to allocate appropriate sample size for each
configuration?

Our contributions are summarized as the following.

• We develop an ABC framework using progressive sam-
pling and CI-based pruning. It ensures finding an approxi-
mate best configuration while reducing the running time.

• We present and prove bounds for the real test accuracy
when the ML model is trained using full data, based on the
model trained with sampled data.

• Within ABC, we design an approximately optimal schedul-
ing scheme based on the confidence interval, for allocating
sample size among different configurations.

• We conduct experiments with large datasets. We demon-
strate that our ABC solution is tens to hundreds of times
faster, while returning top configurations with no more
than 1% accuracy loss.

Problem Formulation
Notions and Notations. In this paper, we focus on classi-
fication tasks with a large set of labeled data D. In order
for reliable evaluation of a trained classifier, data scientists
usually split the available data randomly into training and
testing set Dtr and Dte. After that, they specify a number
of configurations of the ML workflow and try to identify the
best configuration. Let C be the candidate configuration set
and Ci be the ith configuration in C. We further let n be
the number of configurations, i.e., n = |C|. Using terminol-
ogy from learning theory, each configuration Ci defines a
hypothesis space Hi, where each hypothesis H ∈ Hi is a
possible classifier trained under this configuration. Given a
training dataset Dtr, the learner in Ci will output a hypoth-
esis Hi

tr ∈ Hi as the trained classifier. The quality of the
classifier is measured against the heldout testing data Dte. In
this paper, we focus on accuracy as the quality metric. We
denote the accuracy of hypothesis H ∈ Hi on dataset D as

3862

|D| |F| Origin
Twitter 1.4M 9866 Twitter, Stanford

FlightDelay 7.3M 630 U.S. Department of
Transportation

NYCTaxi 10M 21 NYC Taxi & Limou-
sine Commission

HEPMASS 10M 28 UCI
HIGGS 10.6M 28 UCI

Table 1: Dataset Description

A(H,D). In particular, given a configuration Ci, we define
its real test accuracy as Ai = A(Hi

tr,Dte).
Problem Definition. A standard practice to select the best
configuration from a configuration set C is to train with each
configuration using full training data, and then pick the one
with the highest test accuracy, i.e., Ci∗ = arg maxCi∈C{Ai}.
Note that an implicit assumption made here is that the re-
turned classifier with full training data has equal or higher
test accuracy than the classifier trained with sampled training
data. We call this exploitativeness assumption and follow it
in this paper. From a user’s perspective, if there are multiple
configurations with nearly identical highest real test accuracy,
then it would suffice to return any of them as the best config-
uration. So we introduce a new problem approximate best
configuration identification, as formalized in Problem 1.

Problem 1 (Approximate Best Configuration Identification).
Given a configuration candidate set C and an accuracy loss
tolerance ε, identify a configuration Ci′ whose real test accu-
racy is within ε away from that of the best configuration Ci∗ ,
i.e., Ai∗ −Ai′ ≤ ε, and minimize the total running time.

CI-based Framework
Before introducing our framework, we first describe some
insights based on simple observations. We experiment on the
FlightDelay dataset published in Azure Machine Learning
gallery (Mund 2015) with five learners (as five configura-
tions). Readers can refer to Table 1 for detailed statistics of
this dataset, where |D| and |F| is the number of records and
features respectively. The learning curve for each configu-
ration is depicted in Figure 1, where x-axis is the training
sample size in log-scale and y-axis is the test accuracy on
Dte. In general, the test accuracy approaches the real test
accuracy with the increase of the training sample size. When
the sample size is large enough (>2M), the configuration
with the highest test accuracy is LightGBM – the true best
configuration.

Furthermore, the optimal sample size to minimize the run-
ning time could vary for different configurations. If we mag-
ically know that we should use 2M training samples for
LightGBM and 16K training samples for all the other config-
urations, we can save even more time and still identify the
correct best configuration. Unfortunately, the optimal sample
size for each configuration is unknown. A natural idea is to
increase the sample size gradually, until a plateau is reached
in the learning curve. However, a naive plateau estimator
based on the learning curve is error-prone. As shown from

Figure 1: Learning Curve

Figure 1, LightGBM’s learning curve is flat from 32K to
128K. If we stop increasing the sample size for it, it will be
mis-pruned. Therefore, a more robust strategy is needed.
Overview. The main idea is to estimate the confidence in-
terval (CI) of each configuration’s real test accuracy with
sampled data, instead of simply using a point estimation of
the real test accuracy. In each round, we train the classifier
for a selected configuration on some sampled training data.
We call such a round of training a probe. After a probe, we
update the confidence interval for the configuration. As the
sample size increases, the confidence interval shrinks, and
the badly-performing configurations can be pruned based on
the CIs. The pruning based on CI is more robust than based
on random observations from the learning curve.

Algorithm 1: ABC

1 Input: configuration set C, accuracy loss threshold ε;
2 Output: the approximate best configuration;
3 Initialization: Cprob ← C1, Ci′ ← C1, Ω← C;
4 while |Ω| > 1 do
5 PROBE(Cprob);
6 [Cprob.l, Cprob.u]←CIESTIMATOR (Cprob) ;
7 if Cprob.l > Ci′ .l then Ci′ ← Cprob;
8 for C ∈ Ω do // pruning
9 if C.u− Ci′ .l ≤ ε then Ω← Ω− C;

10 if Pruning happens then
11 for C ∈ Ω do
12 C.uold ← C.u; C.lold ← C.l;
13 Cprob ← SCHEDULER (Ω)
14 return Ci′ ;

Detailed Algorithm. ABC proceeds round by round as
shown in Algorithm 1, where each configuration Ci is anno-
tated with its current sample size (Ci.s), current lower bound
(Ci.l), current upper bound (Ci.u), and the snapshot of lower
bound (Ci.lold) and upper bound (Ci.uold) in the last prun-
ing round. In each round within the while loop (line 4), it
first probes the configuration Cprob (line 5). Then it calls a
CIESTIMATOR subroutine to quickly estimate the confidence
interval for Aprob (line 6). Next, it prunes badly-performing
configurations (line 7-9). Line 7 identifies the configuration
Ci′ with the largest lower bound. Line 8-9 prunes an config-
uration if its upper bound is within ε away from the largest

3863

lower bound. If there exists configuration being pruned (line
10), we call this iteration a snapshot and will update C.lold
and C.uold for each configuration C in this snapshot (line 11-
12). At last, it calls a SCHEDULER subroutine to determine
which configuration to probe next as well as its sample size
(line 10).

We describe CIESTIMATOR and SCHEDULER in the next
two sections.

CI Estimator
In this section, we will derive a CIESTIMATOR for each
configuration’s real test accuracy, based on the probe over
sampled data. For configuration Ci, the confidence interval
[li, ui] needs to contain the real test accuracy Ai with high
probability. The computation of li and ui needs to be efficient,
i.e., no slower than the probe. In the following, we assume i
is fixed and omit it in the notations.

At the first glance, the CI estimation may remind readers
of the generalization error bounds (e.g., VC-bound). The
generalization error bound is a universal bound of the differ-
ence between each hypothesis’s accuracy in training data and
its accuracy in infinite data following the same distribution.
Nevertheless, the confidence interval we need is the range
of the real test accuracy of the hypothesis Htr trained from
full training data, while we only have the hypothesis HStr
trained from a sample Str ⊂ Dtr. Therefore, we cannot
apply generalization error bound to obtain our confidence
interval.

We use Figure 2 to summarize the notations and their
relationships which are important for understanding the theo-
retical results. Htr, HStr , and H∗ correspond to the returned
hypothesis after training a fixed configuration with full train-
ing dataset Dtr, the sampled training dataset Str, and the
full data D respectively. For instance, Figure 2(a) shows the
overall derivation relationships among D, Dtr, Dte, Str, Ste,
and HStr . First, the full training data Dtr and the full testing
data Dte are randomly split from the whole data D. Second,
the sampled training data Str and the sampled testing data
Ste are randomly drawn from the full training data Dtr and
full testing data Dte. Last, HStr is trained from the sampled
training data Str. Note that the CI estimator only has access
to HStr , Str and Ste. Though Htr and H∗ are not accessible,
they are useful in our analysis.
Upper bound. The intuition behind the confidence interval
estimation is that we need to relate the two hypotheses HStr
andHtr, and use the information we have onHStr to infer the
performance ofHtr. To upper bound the accuracy ofHtr, we
leverage a fitness condition: the training process produces a
hypothesis that fits the training data. When the configuration
is fixed, the accuracy in a dataset D of the hypothesis trained
on D should be no worse than the hypothesis trained on a
different dataset D′ 6= D. It is the only assumption we need
to prove the upper bound, no matter what training algorithm
is used. Under this condition, we found an inequality chain
to connect the training accuracy A(HStr , Str) to the real test
accuracy of Htr.

Theorem 1 (Upper Bound). Under the fitness condition, with

Figure 2: Notations Used in CI Estimation and Analysis

probability at least 1− δ
2n2 , A(Htr,Dte) ≤ u, where

u , A(HStr , Str) + (
1

2|Str|
ln

4n2

δ
)

1
2 + (

1

2|Dte|
ln

4n2

δ
)

1
2

Proof. Let us first recall the fitness condition. Given a fixed
configuration Ci, let H and H ′ be the hypothesis returned by
training on two different sample sets D and D′, respectively.
Note that H and H ′ are both from the same fixed hypothesis
spaceHi. Our assumption is that H has no lower accuracy
on D than H ′. Similarly, H ′ has no lower accuracy on D′
than H .

First, let us break down A(Htr,Dte)−A(HStr , Str) into
four clauses, as shown in Equation (1).

A(Htr,Dte)−A(HStr , Str)

=[A(Htr,Dte)−A(H∗,Dte)] + [A(H∗,Dte)−A(H∗,D)]+
A(H∗,D)−A(H∗, Str)] + [A(H∗, Str)−A(HStr , Str)]

(1)

Since Dtr and Dte are randomly split from D, we have
D = Dtr ∪Dte. Let x = |Dte|

|D| be the hold-out ratio. For any
H ∈ H, we have:

xA(H,Dte) + (1− x)A(H,Dtr) = A(H,D)

⇒ A(H,Dte) =
1

x
[A(H,D)− (1− x)A(H,Dtr)]

(2)

Next, apply Equation (2) to the first clause in Equation (1):

A(Htr,Dte)−A(H∗,Dte)

=
1

x
[A(Htr,D)−A(H∗,D)]− 1− x

x
[A(Htr,Dtr)

−A(H∗,Dtr)] ≤ 0

(3)

The inequality is derived from the fitness assumption (recall
from Figure 2Htr is trained fromDtr andH∗ is trained from
D).

Next, we bound the second clause in Equation (1) with
Hoeffding inequality: With probability at least (1− δ

4n2),

A(H∗,Dte)−A(H∗,D) ≤ (
1

2|Dte|
ln

4n2

δ
)

1
2 (4)

Similarly, with probability at least (1− δ
4n2),

A(H∗,D)−A(H∗, Str) ≤ (
1

2|Str|
ln

4n2

δ
)

1
2 (5)

Please note that Equation (4) and (5) will not hold if we
replace H∗ with HStr . This is because for hypothesis HStr ,

3864

Dte and Str cannot be regarded as random samples, since
HStr is tailored to the sample set Str. Therefore, introducing
H∗ is necessary in our analysis.

Last, since HStr is trained from Str, by the fitness assump-
tion we have:

A(H∗, Str)−A(HStr , Str) ≤ 0 (6)

By substituting the four clauses in Equation (1) with Equa-
tion (3)-(6), we obtain Theorem 1 using union bound.

Note that the computation of A(HStr , Str) is no slower
than the probing (i.e., training with sampled data). In fact,
the evaluation is usually much more efficient than training
for the same scale of dataset.
Lower Bound. The lower bound is easier due to the exploita-
tiveness presumption discussed in the problem formulation:
Full training data produce better hypothesis than sampled
training data for a fixed configuration. The real test accuracy
of Htr can then be lower bounded by A(HStr , Dte). How-
ever, the computation of A(HStr , Dte) can be slower than
probing, if |Dte| � |Str|. To make the CI estimation effi-
cient, we also sample the testing data. We denote the sampled
testing data as Ste. We can then lower bound A(HStr , Dte)
by A(HStr , Ste) minus a variation term.

Theorem 2 (Lower Bound). Under the exploitativeness as-
sumption, with probability at least 1− δ

2n2 ,

A(Htr,Dte) ≥ l , A(HStr , Ste)− (
1

2|Ste|
ln

2n2

δ
)

1
2

Proof. First, in the problem formulation we have assumed

A(Htr,Dte) ≥ A(HStr ,Dte) (7)

Next, based on Hoeffding inequality, with probability at least
1− δ

2n2 ,

A(HStr , Ste)−A(HStr ,Dte) ≤ (
1

2|Ste|
ln

2n2

δ
)

1
2 (8)

Combining Equation (7) and (8), we have A(Htr,Dte) ≥ l
with probability at least 1− δ

2n2 .

CIESTIMATOR in Algorithm 1. With Theorem 1 and 2, we
can now estimate the current lower bound and upper bound of
the probing configuration Cprob. As shown in Algorithm 2,
we first initialize the current lower bound Cprob.l and up-
per bound Cprob.u according to Theorem 1 and 2. Further-
more, we add a constraint that the current CI must be con-
tained in the CI of the last snapshot where pruning happens,
i.e., [Cprob.l, Cprob.u] ⊂ [Cprob.lold, Cprob.uold]. Thus, if
Cprob.l < Cprob.lold, we replace Cprob.l with Cprob.lold
(line 4). Similar for Cprob.u (line 5). In this way, we can
guarantee that the CI for each configuration shrinks from one
snapshot to another snapshot where pruning happens. Recall
that Cprob.lold and Cprob.uold get updated in each snapshot.

Algorithm 2: CIESTIMATOR

1 Input: Cprob,Aprob(HStr , Str),Aprob(HStr , Ste) ;
2 Output: [Cprob.l, Cprob.u];
3 [Cprob.l, Cprob.u]← Theorem 1 and 2 ;
4 if Cprob.l < Cprob.lold then Cprob.l← Cprob.lold;
5 if Cprob.u > Cprob.uold then Cprob.u← Cprob.uold;
6 return [Cprob.l, Cprob.u] ;

Correctness of Algorithm 1
Using Algorithm 2, we can estimate the confidence interval
for the real test accuracy, based on each probe over the sam-
pled training data Str and the sampled testing data Ste. Next,
Theorem 3 shows that Algorithm 1 can successfully return
an approximate best configuration with high probability.

Corollary 1 (Confidence Interval). With probability at least
1− δ

n2 , Ai ∈ [li, ui].

Theorem 3 (Correctness). With probability at least 1 − δ,
Algorithm 1 returns the approximate best configuration Ci′
with Ai∗ −Ai′ ≤ ε.

Proof. Without loss of generality, we assume C1 is the re-
turned configuration Ci′ by Algorithm 1. We denote the iter-
ations in Algorithm 1 with at least one configuration pruned,
i.e., snapshots, as set R. We will prove that when all the con-
fidence intervals at iterations R correctly bound the real test
accuracy (denoted as event E), the algorithm returns correct
approximate configuration. We show that when E happens,
for each pruned configuration 2 ≤ i ≤ n, Ai ≤ A1 + ε.

Consider iteration r ∈ R and let l(r)ir
be the the highest

lower bound in this iteration, and Cpr be a pruned config-
uration in iteration r. When E happens, Apr ≤ upr . And
upr ≤ l

(r)
ir

+ ε according to line 9 in Algorithm 1. So the

pruned configuration must satisfy Apr ≤ l
(r)
ir

+ ε. Further-

more, as Algorithm 1 proceeds to iteration r+1, l(r)ir
≤ l(r+1)

ir+1
.

This is because the lower bound of configuration Cir does
not decrease from snapshot r to snapshot r + 1 according to
Algorithm 2, i.e., l(r)ir

≤ l
(r+1)
ir

.In addition, l(r+1)
ir

≤ l
(r+1)
ir+1

in snapshot r + 1, according to line 7 in Algorithm 1. Thus,
Apr ≤ l1 + ε by induction on the iteration number r. Also,
since l1 + ε ≤ A1 + ε, we have Apr ≤ A1 + ε.

Next, let Er be the event that all the confidence intervals
at iteration r correctly bound the real test accuracy where
r ∈ R. We can decompose event Ē into non-overlapping sub-
events {Ē1, Ē2|E1, Ē3|E2, · · · }, where Ē (resp. Ēr) is the
opposite event of E (resp. Er). According to Corollary 1, the
derived confidence interval [li, ui] is correct with probability
at least 1− δ

n2 for any configuration Ci. Hence, the proba-
bility of Ēr+1|Er is at most δn according to Algorithm 2 and
the union bound. Furthermore, we have n− 1 pruned config-
urations across all iterations, so |R| < n. Consequently, the
probability of Ē is at most δ by summing up the probability
of non-overlapping sub-events Ēr+1|Er. That is, event E
happens with probability at least 1 − δ. Thus, we have
Ai∗ −Ai′ ≤ ε with probability at least 1− δ.

3865

Discussion. We have used the exploitativeness assumption
in deriving the lower bound: Ai(HStr , Dte) ≤ Ai(Htr, Dte)
for any Ci. We argue that even though this assumption is
not exactly satisfied in practice, it holds closely enough to
provide useful results. That is, in most cases this assumption
holds, and even when this assumption is violated, we can
perform a post-processing step after the algorithm finishes.
If there exists Ai′(HStr , Dte) > Ai′(Htr, Dte) for the se-
lected configuration Ci′ , the user could use HStr instead of
Htr as the final classifier. First, that satisfies users’ prefer-
ence in finding a more accurate classifier. Second, it holds
the ε-guarantee, because the lower bound li′ holds for HStr
of configuration Ci′ , and it is no lower than the pruning lower
bounds lir ,∀r ∈ R.

The correctness of our algorithm is independent of the
choice of the scheduler.

Scheduler
Now we have shown that our proposed ABC can identify
the approximate best configuration with high probability.
This section focuses on the optimization part in Problem 1,
i.e., how to minimize the total running time. Let Ti(s) be
the probing time with a sampled training dataset size s for
configuration Ci, and ti be the accumulated running time
for probing configuration Ci in Algorithm 1. Also, let li
and ui be the lower bound and upper bound respectively
for configuration Ci when the algorithm terminates. With
these notations, the design of SCHEDULER in ABC can be
expressed as a constrained optimization problem. Without
loss of generality, assume C1 is returned by Algorithm 1.
Problem 2 (Scheduling). Design a scheduler to minimize
T =

∑
i ti, subject to:

u2 ≤ l1 + ε, u3 ≤ l1 + ε, . . . , un ≤ l1 + ε

The objective function in Problem 2 is the time taken to
identify the approximate best configuration. Since probing
dominates the running time in each iteration, we use the total
time of all probes as the proxy of the identification time. The
constraints in Problem 2 ensure that all the configurations Ci
are pruned except C1, and are necessary for the termination
of Algorithm 1.

To solve Problem 2, we begin with studying the properties
of the ‘oracle’ optimal scheduling scheme when it has access
to ti as a function of li and ui respectively, i.e., ti = fi(li)
and ti = gi(ui), after the samples are drawn. We claim
that the optimal scheduling scheme with this oracle access
probes each configuration uniquely once, since otherwise we
can always reduce the total running time by only keeping
the last probe. Our objective function can be rewritten as
f1(l1) + g2(u2) + · · ·+ gn(un). Furthermore, by applying
the method of Lagrange multipliers, we obtain the conditions
the optimal solution must satisfy:

df1
dl1

= −(dg2du2
+ · · ·+ dgn

dun
)

l1 + ε = u2 = · · · = un

(9)

Now, since we do not have oracle access to fi and gi, there
is no closed-form formula to decide the optimal sample size

s∗i for configuration Ci. To solve this challenge, We propose
a scheduling scheme GRADIENTCI with two parts.

First, we use the gradient of the running time with respect
to the confidence interval to determine the configuration to
probe next. We depict this strategy in Algorithm 3. GRA-
DIENTCI first sorts the remaining configuration set Ω in
descending order of the upper bound (line 3), and make a
guess (Ω1) on the best configuration C1. Next, it compares
the gradient ∆T1

∆l1
with |∆T2

∆u2
+ · · ·+ ∆Tn

∆un
|: If ∆T1

∆l1
is smaller,

then configuration Ω1 with the largest upper bound is picked
for the next probe (line 4); otherwise, configuration Ω2 with
the second largest upper bound is picked (line 5). Here, ∆Ti
denotes the running time difference between the recent two
consecutive probes on Ci, and ∆Ti

∆li
serves as the proxy of

∆fi
∆li

(similar for ∆gi
∆ui

). The choice between Ω1 and others is
based on the first condition in Equation (9). Intuitively, if the
lower bound of Ω1 grows faster (per time spent) than all the
other configurations’ upper bounds’ decrease, then we opt to
probe Ω1. The choice of Ω2 among Ω2 to Ωn is based on the
second condition in Equation (9), towards attaining the same
upper bound for them.

Second, we design the sample size sequence within each
configuration. As shown in line 6 of Algorithm 3, we utilize
a common trick called geometric scheduling, which was
used in prior work to increase the sample size for a single
configuration (Provost, Jensen, and Oates 1999). We further
derive the closed-form for the optimal step size c, when Ti(s)
is a power function over the sample size, i.e., Ti(s) = sα

where α is a real number. The optimal step size follows
c = 2

1
α . Details can be found in our technical report (Huang

et al. 2018).

Algorithm 3: SCHEDULER–GRADIENTCI
1 Input: Remaining configurations Ω;
2 Output: Configuration for next probe Cprob;
3 sort by upper bound(Ω);
4 if ∆T1

∆l1
≤ |∆T2

∆u2
+ · · ·+ ∆Tn

∆un
| then Cprob ← Ω1 ;

5 else Cprob ← Ω2 ;
6 Cprob.s← c× Cprob.s;
7 return Cprob ;

Performance Analysis. In practice, ABC is used in two sce-
narios. Scenario (i): during exploration, users want to try a
few configurations (e.g., verifying usefulness of a few new
features) as an intermediate step. The identification result will
decide the follow-up trials, but it does not serve as the final
configuration, and does not require full training of Ci′ . Sce-
nario (ii): at the end of the exploration, users need to get the
trained classifier corresponding to the selected configuration
Ci′ . In scenario (ii), the total running time involves not only
the time to identify the approximate best configuration, but
also the time taken to train the classifier on full data with Ci′ .
When Ci′ is fixed, both scenario (i) and (ii) share the same
optimal scheduler. Furthermore, under certain conditions,
we are able to prove a 4-approx guarantee for GRADIENTCI.
Please find details in our technical report (Huang et al. 2018).

3866

Experiments
This section evaluates the efficiency and effectiveness of our
ABC module. First, we evaluate whether ABC successfully
identifies top configuration and meanwhile reduce the total
running time. Second, we compare the CI-based pruning with
an existing pruning algorithm based on point estimation. We
also compare different scheduling schemes in our technical
report (Huang et al. 2018).

Experimental Setup
Configurations. We focus on the task of classifying fea-
turized data in our evaluation. Specifically, we choose five
widely used and high-performance learners: LogisticRegres-
sion, LinearSVM, LightGBM, NeuralNetwork, and Random-
Forest. Each classifier is associated with various hyperpa-
rameters, e.g., the number of trees in RandomForest and the
penalty coefficient in LinearSVM. In total they have 29 dis-
crete or continuous hyperparameters. In our experiments, we
use random search to generate each hyperparameter value
from its corresponding domain.
Datasets. We evaluate with five large-scale machine learn-
ing benchmarks that are publicly available. As discussed
in introduction, the motivation of ABC is to handle large
datasets and quickly identify the approximate best configura-
tion. Thus, the datasets evaluated in our experiments are all at
the scale of millions of records (|D|) and with up to 10K fea-
tures (|F|). We do not use the AutoML benchmarks such as
HPOlib (Eggensperger et al. 2013) or OpenML (Vanschoren
et al. 2013), which mainly contain small or median-sized
datasets (up to 50K records). The statistics of each dataset
are depicted in Table 1. We used min-max normalization for
all datasets, and n-gram extraction as well as model-based
top-K feature selection for Twitter.
Algorithms. We compare our proposed ABC with the stan-
dard approach named Full-run. For each configuration, Full-
run first trains the classifier with full training data, and then
tests it on the full testing data. Afterwards, it returns the con-
figuration with the highest testing accuracy. This method
is supported in mature tools like scikit-learn and Azure
ML. Existing approaches to best configuration identification,
such as DAUB (Sabharwal, Samulowitz, and Tesauro 2016)
or successive-halving (Jamieson and Talwalkar 2016), are
heuristics without accuracy guarantee. Our solution and such
heuristics are not apple-to-apple comparison, as they cannot
ensure ε-approximation guarantee on accuracy. Nevertheless,
we conduct a best effort comparison with Successive-halving.
Setup. We conducted our evaluation on a VM with 8 cores
and 56 GB RAM. The initial training sample size and testing
sample size are 1000 and 2000 respectively. The geometry
step size is set to be c = 2. ε = 0.01, δ = 0.5. Since δ
is under the log term, the result is not sensitive to δ. We
also conduct experiments with varying ε, as shown in our
technical report (Huang et al. 2018).

We use the same set of sampled configurations for both
Full-run and ABC. We vary the number of input configu-
rations from 5 to 80. Since we focus on large datasets, it
already takes a day or half to finish Full-run with 80 con-
figurations for a single dataset. So unlike the case of small

datasets, 80-100 is a realistic number because that is how
many configurations a user can try with Full-run within a
reasonable time.

ABC vs. Full-run
We compare ABC against Full-run from two perspectives,
running time and accuracy. We first compute the speedup
achieved by ABC, where speedup is defined as the ratio
between Full-run’s total running time and ours. Next, we
compare the configuration Ci′ returned by our ABC with the
best configuration Ci∗ provided by Full-run in terms of real
test accuracy.
Efficiency Comparison. As discussed, ABC is used in two
scenarios in practice. During exploration, users only need
the identification result to decide the follow-up trials, but do
not require full training on the selected configuration. At the
end of the exploration, users need to train the classifier with
the selected configuration in the full data. Thus, we evaluate
the running time speedup in these two scenarios: (i) we first
compare the identification time between our ABC and Full-
run as depicted in Figure 3a(i); (ii) we then compare the total
running time including the time to train the final classifier, in
Figure 3a(ii). Our solution is on average 190× faster than
Full-run in scenario (i), and is on average 60× faster than Full-
run in scenario (ii). Furthermore, 23 out of 25 experiments
(i.e., 5 different datasets times 5 different configuration set
size) has at least |C|× speedup in scenario (i), and 22 out
of 25 experiments achieve at least |C|× speedup in scenario
(ii). This means that the running time of ABC is even faster
than fully evaluating one average configuration in most cases,
which further means even a perfectly distributed Full-run
can’t beat the non-distributed ABC.

The speedup on dataset Twitter is consistently lower than
other datasets. This is mainly because Twitter is one or-
der of magnitude smaller than the other datasets. With the
same sample size, the sampling ratio is higher than the other
datasets, which causes lower speedup.
Effectiveness Comparison. As illustrated in Figure 3b,
ABC successfully identifies the configuration whose real test
accuracy is within 0.01 from the best configuration’s real
test accuracy in all of our experiments. In particular, when
|C| = 40 or 80, ABC successfully identifies the exact best
configuration for FlightDelay, NYCTaxi, and HIGGS. The
largest deviation is around 0.0068 when |C| = 20 for HIGGS.
Takeaway. Compared to Full-run, our proposed ABC can
successfully identify a competitive or identical best configu-
ration but with much less time.

CI-based pruning vs. Successive-halving
Next, we compare our proposed CI-based pruning with
Successive-halving. Successive-halving was proposed as
a pruning strategy to evaluate iterative training configurations
with a resource budget of the total number of iterations of
all configurations. We modify it to use the total sample size
as the resource budget. In each round, it trains a classifier
with the sampled data for each remaining configuration, and
then eliminates the half of the low-performing configurations.
This pruning is based on point estimation, i.e., they directly
use A(HStr , Dte) to approximate A(Htr, Dte), in contrast

3867

(a) Speedup Comparison
(b) Accuracy Comparison

Figure 3: Comparison Between Full-run and ABC

to using confidence interval as ABC. It repeats until there is
only one remaining configuration.

Since the two solutions are designed to satisfy different
constraints (accuracy loss and resource), they are not directly
comparable. We do our best to make a fair comparison. In
this section, we run Successive-halving with identical sample
size sequence as ABC, to compare the CI-based pruning and
the halving strategy based on point estimation. We perform
the same set of experiments as in the main experiment section
for Successive-halving. We introduce a metric, called relative
accuracy loss, to measure the difference between the returned
configuration Ci′ and the best configuration Ci∗ in terms of
the test accuracy: ∆rel = |Ai∗−Ai′ |

Ai∗
. The smaller ∆rel is,

the better.

(a) Speedup vs. ∆rel (b) Boxplot of ∆rel

Figure 4: ABC vs. Successive-halving

We depict the comparison between Successive-halving and
our ABC in Figure 4. The x-axis in Figure 4a refers to the
relative accuracy loss compared to the best configuration
by Full-run, y-axis is the speedup compared to the running
time of Full-run, and each point corresponds to a specific
experiment with a certain dataset and C. We can see that
Successive-halving has a similar speedup as ABC over Full-
run. However, the relative accuracy loss can be an order of
magnitude larger than that of ABC, e.g., 8% vs. 0.8%. This
is because the pruning performed in Successive-halving is
based on the ranking of the current test accuracy. On the
contrary, ABC uses confidence interval of the real test accu-
racy to perform safer pruning. Figure 4b presents a boxplot
summarizing the relative accuracy loss for our solution and
Successive-halving respectively. On average, the relative
accuracy loss for our CI-based solution is 0.24% (all below

1%), and 2% for Successive-halving (up to 8%), which is
nearly ten times larger.

Related Work
AutoML. AutoML has gained increasing attention in the
past few years. The scope of AutoML includes automated
feature engineering, model selection, and hyperparameter
tuning process. Some prevailing AutoML tools are Auto-
sklearn for Python (Feurer et al. 2015) and Auto-Weka for
Java (Thornton et al. 2013). Most research focus is devoted
to the search strategy, i.e., which configurations to evaluate.
The strategies can be broadly categorized as grid search (Pe-
dregosa et al. 2011), random search (Bergstra and Bengio
2012), spectral search (Hazan, Klivans, and Yuan 2018),
Bayesian optimization (Hutter, Hoos, and Leyton-Brown
2011; Bergstra et al. 2011; Snoek, Larochelle, and Adams
2012), meta-learning (Feurer et al. 2015), and genetic pro-
gramming (Olson et al. 2016). Few studies address the effi-
ciency issue in ranking these configurations on large datasets.
TuPAQ (Sparks et al. 2015) and HyperDrive (Rasley et al.
2017) are two systems which focus on hyperparameter tuning
when all the configurations correspond to iterative training
processes. They distribute the configurations into multiple
machines, and use heuristic early stopping rules for training
iterations. (Jamieson and Talwalkar 2016) further models
this problem as a non-stochastic multi-armed bandit process,
where each arm corresponds to a configuration, each pull
corresponds to a few training iterations, and the reward is
the intermediate accuracy on the test data. Recognizing the
difference with the stochastic bandit process, they propose
a Successive-halving pruning strategy in the fixed budget
setting. They focus on this setting because they have found
it difficult to derive the confidence bounds of real test accu-
racy based on limited training iterations. Hyperband (Li et
al. 2017) uses Successive-halving as a building block and
tries to vary the number of random configurations under the
same budget. While Hyperband suggests that the notion
of resource can be generalized from training iterations to
sample size of training data, we should notice that it is now
possible to derive confidence bounds of real test accuracy
based on sampled training data. Therefore, our ABC can be
used to replace Successive-halving in this scenario to achieve
lower accuracy loss. In the Bayesian optimization frame-

3868

work, RoBO (Klein et al. 2017) treats the sample size as a
hyperparameter, and uses random sample size to evaluate
each configuration and a kernel function to extrapolate the
real test accuracy.
Generalization Error Bounds. Generalization error bound
has been studied extensively (Zhou 2002; Koltchinskii et
al. 2000; Bousquet and Elisseeff 2002), among which VC-
bound (Vapnik 1999) is a well-known technique for bounding
the generalization error. The main idea behind VC-bounds
is to use VC-dimension to characterize the complexity of the
hypothesis class. Besides VC-dimension, other existing tech-
niques for deriving generalization error bounds include cover-
ing number (Zhou 2002), Rademacher complexity (Koltchin-
skii et al. 2000), and stability bound (Bousquet and Elisseeff
2002). While the definition of generalization error bounds is
different from the confidence bound needed for ABC, they
have been used in other work to guide progressive sampling
for a single configuration (Elomaa and Kääriäinen 2002).

Discussion and Conclusion
We studied the problem of efficiently finding approximate
best configuration among a given set of training configura-
tions for a large dataset. Our CI-based progressive sampling
and pruning solution ABC can successfully identify a top
configuration with small or no accuracy loss, in much less
time than the exact approach. The CI-based pruning is more
robust than pruning based on point estimates.

There are multiple use cases that can benefit from our
proposed ABC. The input of ABC can be either specified
by the users based on their domain knowledge, or generated
from an AutoML search algorithm. Our ABC module can
help data scientists identify a top configuration faster. As
they iteratively refine it, they can use ABC to verify whether
altering part of the configuration (such as changing features)
boosts the performance, by invoking ABC with the old and
new configurations. In addition, our confidence bounds can
be potentially used to accelerate Bayesian optimization and
spectral search in large datasets, which is interesting future
work.

References
Bergstra, J., and Bengio, Y. 2012. Random search for hyper-
parameter optimization. Journal of Machine Learning Research
13(Feb):281–305.
Bergstra, J. S.; Bardenet, R.; Bengio, Y.; and Kégl, B. 2011. Al-
gorithms for hyper-parameter optimization. In Advances in neural
information processing systems.
Bousquet, O., and Elisseeff, A. 2002. Stability and generalization.
Journal of machine learning research 2(Mar):499–526.
Eggensperger, K.; Feurer, M.; Hutter, F.; Bergstra, J.; Snoek, J.;
Hoos, H.; and Leyton-Brown, K. 2013. Towards an empirical foun-
dation for assessing bayesian optimization of hyperparameters. In
NIPS workshop on Bayesian Optimization in Theory and Practice.
Elomaa, T., and Kääriäinen, M. 2002. Progressive rademacher
sampling. In AAAI’02, 140–145.
Feurer, M.; Klein, A.; Eggensperger, K.; Springenberg, J.; Blum,
M.; and Hutter, F. 2015. Efficient and robust automated machine
learning. In Advances in Neural Information Processing Systems.

Hazan, E.; Klivans, A.; and Yuan, Y. 2018. Hyperparameter
optimization: A spectral approach. In ICLR’18.
Huang, S.; Wang, C.; Ding, B.; and Chaudhuri, S. 2018. Efficient
identification of approximate best configuration of training in large
datasets. arXiv preprint arXiv:1811.03250.
Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2011. Sequential
model-based optimization for general algorithm configuration. In
International Conference on Learning and Intelligent Optimization.
Jamieson, K., and Talwalkar, A. 2016. Non-stochastic best arm iden-
tification and hyperparameter optimization. In Artificial Intelligence
and Statistics.
Klein, A.; Falkner, S.; Mansur, N.; and Hutter, F. 2017. Robo: A
flexible and robust bayesian optimization framework in python. In
NIPS 2017 Bayesian Optimization Workshop.
Koltchinskii, V.; Abdallah, C. T.; Ariola, M.; Dorato, P.; and
Panchenko, D. 2000. Improved sample complexity estimates for
statistical learning control of uncertain systems. IEEE Transactions
on Automatic Control 45(12):2383–2388.
Li, L.; Jamieson, K.; DeSalvo, G.; Rostamizadeh, A.; and Tal-
walkar, A. 2017. Hyperband: A novel bandit-based approach to
hyperparameter optimization. In ICLR’17.
Mund, S. 2015. Microsoft azure machine learning. Packt Publishing
Ltd.
Olson, R. S.; Bartley, N.; Urbanowicz, R. J.; and Moore, J. H. 2016.
Evaluation of a tree-based pipeline optimization tool for automat-
ing data science. In Proceedings of the Genetic and Evolutionary
Computation Conference 2016, GECCO’16.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.;
Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot, M.;
and Duchesnay, E. 2011. Scikit-learn: Machine learning in python.
JMLR 12:2825–2830.
Provost, F.; Jensen, D.; and Oates, T. 1999. Efficient progressive
sampling. In ACM SIGKDD international conference on Knowledge
discovery and data mining.
Rasley, J.; He, Y.; Yan, F.; Ruwase, O.; and Fonseca, R. 2017.
Hyperdrive: Exploring hyperparameters with pop scheduling. In
Proceedings of the 18th ACM/IFIP/USENIX Middleware Confer-
ence, 1–13.
Sabharwal, A.; Samulowitz, H.; and Tesauro, G. 2016. Selecting
near-optimal learners via incremental data allocation. In AAAI’16.
Snoek, J.; Larochelle, H.; and Adams, R. P. 2012. Practical bayesian
optimization of machine learning algorithms. In Advances in neural
information processing systems.
Sparks, E. R.; Talwalkar, A.; Haas, D.; Franklin, M. J.; Jordan,
M. I.; and Kraska, T. 2015. Automating model search for large
scale machine learning. In Proceedings of the Sixth ACM Symposium
on Cloud Computing.
Thornton, C.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2013.
Auto-weka: Combined selection and hyperparameter optimization
of classification algorithms. In ACM SIGKDD international confer-
ence on Knowledge discovery and data mining.
Vanschoren, J.; van Rijn, J. N.; Bischl, B.; and Torgo, L. 2013.
Openml: Networked science in machine learning. SIGKDD Explo-
rations 15(2):49–60.
Vapnik, V. N. 1999. An overview of statistical learning theory.
IEEE transactions on neural networks 10(5):988–999.
Zhou, D.-X. 2002. The covering number in learning theory. Journal
of Complexity 18(3):739–767.

3869

