
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Disjoint Label Space Transfer Learning with Common Factorised Space

Xiaobin Chang,1 Yongxin Yang,2 Tao Xiang,1 Timothy M. Hospedales2

1Queen Mary University of London, 2The University of Edinburgh
x.chang@qmul.ac.uk, yongxin.yang@ed.ac.uk, t.xiang@qmul.ac.uk, t.hospedales@ed.ac.uk

Abstract

In this paper, a unified approach is presented to transfer learn-
ing that addresses several source and target domain label-
space and annotation assumptions with a single model. It is
particularly effective in handling a challenging case, where
source and target label-spaces are disjoint, and outperforms
alternatives in both unsupervised and semi-supervised set-
tings. The key ingredient is a common representation termed
Common Factorised Space. It is shared between source and
target domains, and trained with an unsupervised factorisa-
tion loss and a graph-based loss. With a wide range of exper-
iments, we demonstrate the flexibility, relevance and efficacy
of our method, both in the challenging cases with disjoint la-
bel spaces, and in the more conventional cases such as un-
supervised domain adaptation, where the source and target
domains share the same label-sets.

Introduction
Deep learning methods are now widely used in diverse ap-
plications. However, their efficacy is largely contingent on
a large amount of labelled data in the target task and do-
main of interest. This issue continues to motivate intense in-
terest in cross-task and cross-domain knowledge transfer. A
wide range of transfer learning settings are considered which
differ in whether the label spaces of source and target do-
mains are overlapped (i.e., aligned or disjoint), as well as
the amount of supervision/labelled training samples avail-
able in the target domain (see Figure 1). The standard prac-
tice of fine-tuning (Yosinski et al. 2014) treats a pre-trained
source model as a good initialisation for training a target
problem model. It is adopted when the label spaces of both
domains are either aligned or disjoint, but always requires
a significant amount of labelled data from the target, albeit
less than learning from scratch. Another popular problem is
the unsupervised domain adaptation (UDA), where knowl-
edge is transferred from a labelled source domain to an un-
labelled target domain (Tzeng et al. 2017; Ganin et al. 2016;
Cao, Long, and Wang 2018). UDA makes the simplifying
assumption that the label space of source and target do-
mains are the same, and focuses on narrowing the distri-
bution gap between source and target domains without any
labelled samples from the target.
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Figure 1: Schematic of various transfer learning problems
on two criteria: the relation between source and target label
space, and the amount of target problem supervision.

An important but less-studied transfer learning problem
setting is one where the source and target domains are with
disjoint label spaces, recently highlighted by (Luo et al.
2017). In these problems, which we term Disjoint Label
Space Transfer Learning (DLSTL), there are both a domain
shift between source and target, as well as a new set of target
classes to recognise with few (semi-supervised case) or no
labelled (unsupervised case) sample per category. Thus, two
main challenges exist simultaneously. On one hand, there is
few or no target label to drive the adaptation. On the other
hand, no clear path is provided to transfer source supervision
to target domain due to the disjoint label spaces. As an exam-
ple, consider object recognition in two cameras (domains)
where the object categories (label-space) are different in
each camera, and one source camera has dense labels, while
the target camera has data but few or no labels. The tradi-
tional fine-tuning (Yosinski et al. 2014) and multi-domain
training (Rebuffi, Bilen, and Vedaldi 2017) can address the
supervised (few label) DLSTL variant, but break down if
the labels are very few, and cannot exploit unlabelled data
in the target camera, i.e., semi-supervised learning. Mean-
while UDA approaches (Ganin et al. 2016) based on distri-
bution alignment are ineffective since the label-spaces are
disjoint and feature distributions thus should not be indis-
tinguishable. One approach that has the potential to handle
DLSTL under both unsupervised and semi-supervised set-
tings is based on modelling attributes, which can serve as a
bridge across domains for better transferring the discrimina-
tive power (Chen et al. 2015; Gebru, Hoffman, and Li 2017;
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Wang et al. 2018). Source and target data can be aligned
within the attribute space, in order to alleviate the impacts
of disjoint label space in DLSTL problems. Nevertheless,
attribute can be expensive to acquire which prevents it form
being widely applicable.

In this paper, a novel transfer learning model is pro-
posed, which focuses on handling the most challenging set-
ting, unsupervised DLSTL but is applicable to other settings
including semi-supervised DLSTL and UDA. The model,
termed common factorised space model (CFSM), is devel-
oped based on the simple idea that recognition should be
performable in a shared latent factor space for both do-
mains where each factor can be interpreted as latent attribute
(Fu et al. 2014; Rastegari, Farhadi, and Forsyth 2012). In
order to automatically discover such discriminative latent
factors and align them for transferring knowledge across
datasets/domains, our inductive bias is that input samples
from both domains should generate low-entropy codes in
this common space, i.e., near binary-codes (Salakhutdinov
and Hinton 2009; Zhu et al. 2016). This is a weaker assump-
tion than distribution matching, but does provide a criterion
that can be optimised to align the two domains in the absence
of common label space and/or labelled target domain train-
ing samples. Specifically, both domains should be explain-
able in terms of the same set of discriminative latent factors
with high certainty. As a result, discriminative information
from the source domain can be more effectively transferred
to the target through this common factorised space. To im-
plement this model in a neural network architecture, a com-
mon factorised space (CFS) layer is inserted between the
feature output layer (the penultimate layer) and the classi-
fication layer (the final layer). This layer is shared between
both domains and thus forms a common space. An unsuper-
vised factorisation loss is then derived and applied on such
common space which serves the purpose of optimising low-
entropy criterion for discriminative latent factors discovery.

Somewhat uniquely, cross-domain knowledge transfer of
the proposed CFSM occurs at a relatively high layer (i.e.,
CFS layer). Particularly when the target domain problem is
a retrieval one, it is important that this knowledge is prop-
agated down from CFS to feature extraction for effective
knowledge transfer. To assist this process we define a novel
graph Laplacian-based loss - which builds a graph in the
higher-level CFS, and regularises the lower-level network
feature output to have matching similarity structure. i.e., that
inter-sample similarity structure in the shared latent factor
space should be reflected in earlier feature extraction. This
top-down regularisation is opposite to the use of Laplacian
regularisation in existing works (Belkin, Niyogi, and Sind-
hwani 2006; Yang et al. 2017) which are bottom-up, i.e.,
graph from lower-level regularises the higher-level features.
This unique design is due to the fact that, although both
spaces (CFS and feature) are latent, the former is closer to
supervisions (e.g., from the labelled source data) and more
aligned thanks to the factorisation loss, and thus more dis-
criminative and ‘trustworthy’.

Contributions of the paper are as follows: 1. A unified ap-
proach to transfer learning is proposed. It can be applied
to different transfer learning settings but is particularly at-

tractive in handling the most challenging setting of unsu-
pervised DLSTL. This setting is under-studied with the lat-
est efforts focus on the easier semi-supervised DLSTL set-
ting (Luo et al. 2017) with partially labelled target data. Sev-
eral topical applications in computer vision such as person
re-identification (Re-ID) and sketch-based image retrieval
(SBIR) can be interpreted as unsupervised DLSTL which
reveals its vital research and application values. 2. We pro-
pose a deep neural network based model, called common
factorised space model (CFSM), that provides the first sim-
ple yet effective method for unsupervised DLSTL; it can
be easily extended to semi-supervised DLSTL as well as
conventional UDA problems. 3. A novel graph Laplacian-
based loss is proposed to better exploit the more aligned
and discriminative supervision from higher-level to improve
deep feature learning. Finally, comprehensive experiments
on various transfer learning settings, from UDA to DLSTL,
are conducted. CFSM achieves state-of-the-art results on
both unsupervised and semi-supervised DLSTL problems
and performs competitively in standard UDA. The effective-
ness and flexibility of the proposed model on transfer learn-
ing problems are thus demonstrated.

Related Work
Transfer Learning
Transfer learning (TL) aims to transfer knowledge from one
domain/task to improve performance on the another (Pan,
Yang, and others 2010). The most widely used TL tech-
nique for deep networks is fine-tuning (Yosinski et al. 2014;
Chen et al. 2018; Ren et al. 2015). Instead of training a target
network from scratch, its weights are initialised by a pre-
trained model from another task such as ImageNet (Deng
et al. 2009) classification. While fine-tuning reduces label
requirement compared to learning the target problem from
scratch, it is prone to over-fitting if target labels are very few
(Yosinski et al. 2014). Therefore, it is ineffective for very
sparsely supervised DLSTL, and not applicable to unsuper-
vised DLSTL. Moreover, vanilla TL does not exploit avail-
able unlabelled samples for the target problem (i.e. semi-
supervised TL). The most related method to ours is (Luo
et al. 2017) which does exploit both unlabelled and few
labelled data, i.e., semi-supervised DLSTL. However like
other TL methods, it does not generalise to the unsupervised
DLSTL setting where no target annotations are available.

Another popular setting, unsupervised domain adaptation
(UDA) focuses on transferring the source supervision to the
unlabelled target domain in order to obtain a model that
performs well on the latter data. The typical assumption of
UDA is that both domains share the same label space. Exist-
ing methods alleviate the domain gap by either minimising
the distribution discrepancy (Cao, Long, and Wang 2018;
Sun and Saenko 2016) or making the dataset representations
indistinguishable by adversarial learning (Tzeng et al. 2017;
Ganin et al. 2016). Once the domain gap is eliminated, a
classifier trained on source-domain labels can be applied to
the target data directly. However, distribution matching is in-
appropriate in the disjoint label space setting. Open set do-
main adaptation (OSDA) (Busto and Gall 2017) generalises

3289



UDA by allowing target domain to have some novel cate-
gories in addtion to the shared ones. It focuses on identifying
shared categories and aligning those. DLSTL is a more gen-
eral problem setting than OSDA, since there is no assump-
tion of any shared categories. Related to our approach that
exploits a common factorisation space to discover shared la-
tent factors/attributes, semantic attributes have been used to
improve domain adaptation performance (Su et al. 2016),
for example by enabling new types of self-training (Chen
et al. 2015; Wang et al. 2018) and consistency losses (Ge-
bru, Hoffman, and Li 2017). However these methods require
the attribute definition and annotation, at least in the source
domain. In contrast, no expensive attribute annotation is re-
quired in our model.

Deep Binary Representation Learning
The use of binary codes for hashing with deep networks
goes back to (Salakhutdinov and Hinton 2009). In computer
vision, hashing layers were inserted between feature- and
classification-layers to provide a hashing code (Lin et al.
2015; Zhu et al. 2016). To produce a binary representation
for fast retrieval, a threshold is applied on the sigmoid acti-
vated hashing layer (Lin et al. 2015). Our method is similar
in working with a near-binary penultimate layer. However
there are several key differences: First, our CFS serves a very
different purpose to a hash code. We focus on TL to a new
domain with new label-space, and the role of our CFS is to
provide a representation with which different domains can
be more aligned for knowledge transfer, rather than for effi-
cient retrieval. In contrast, existing hashing methods follow
the conventional supervised learning paradigm within a sin-
gle domain. Second, the proposed CFS is only near-binary
due to a low-entropy loss, rather than sacrificing representa-
tion power for an exactly binary code.

Semi-supervised Learning
Graph-based regularisation is popular for semi-supervised
learning (SSL) which uses both labelled and unlabelled
data to achieve better performance than learning with la-
belled data only (Zhu 2006; Belkin, Niyogi, and Sindhwani
2006). In SSL, graph based regularisation is applied to regu-
larise model predictions to respect the feature-space man-
ifold (Yue et al. 2017; Nadler, Srebro, and Zhou 2009;
Belkin, Niyogi, and Sindhwani 2006). Moreover, exploiting
the graph from lower-level to regularise higher-level fea-
tures is widely adopted in other scenarios, e.g., unsuper-
vised learning (Jia et al. 2015; Yang et al. 2017). Due to
the source→target knowledge transfer, the more ‘trustwor-
thy’ layer in our method is the penultimate CFS layer, as
it is closer to the supervision, rather than the feature space
layer. Therefore our regularisation is applied to encourage
the feature-extractor to learn representations that respect the
CFS manifold shared by both domains, i.e., the regularisa-
tion direction is opposite to that in existing models.

Entropy loss for unlabelled data is another widely used
SSL regulariser (Zhu 2006; Long et al. 2016). It is applied
at the classification layer in problems where the unlabelled
and labelled data share the same label-space – and reflects
the inductive bias that a classification boundary should not

cut through the dense unlabelled data regions. Its typical use
is on softmax classifier outputs where it encourages a classi-
fier to pick a single label. In contrast we use entropy-loss to
solve DLSTL problems by applying it element-wise on our
intermediate CFS layer in order to weakly align domains by
encouraging them to share a near-binary representation.

Methodology
Definition and notation For Disjoint Label Space Trans-
fer Learning (DLSTL), there is a source (labelled) domain
S and a target (unlabelled or partially labelled) domain
T 1. The key characteristic of DLSTL is the disjoint label
space assumption, i.e., the source YS and target YT label
spaces are potentially disjoint: YS ∩ YT = ∅. Instances
from source/target domains are denoted XS and XT respec-
tively. The combined inputs {XS , XT } are denoted asX . To
present our model, we stick mainly to the most challenging
unsupervised DLSTL setting where target labels are totally
absent. The easier cases, e.g., semi-supervised DLSTL and
UDA, can then be handled with minor modifications.

Model Architecture
The proposed model architecture consists of three modules,
a feature extractor F = ΦθM (X) that can be any deep neural
network and is shared between all domains. This is followed
by a fully connected layer and sigmoid activation σ, which
define the Common Factorised Space (CFS) layer. This pro-
vides a representation of dimension dC , FC = ΨθC (·) =
σ(WΦθM (·) + b). Recall that the goal of CFS is to learn
a latent factor (low-entropy) representation for both source
and target domains. The sigmoid activation means that the
layer’s scale is FC ∈ (0, 1)dC , so activations near 0 or 1
can be interpreted as the corresponding latent factor being
present or absent. To encourage a near-binary representa-
tion, unsupervised factorisation loss is applied. For the la-
belled source domain only, the pre-activated FC are then
classified by softmax classifier χθS with cross-entropy loss.
The overall architecture is illustrated in Figure 2.

Regularised Model Optimisation
The parameters of the proposed CFSM are θ :=
{θM , θC , θS} including parameters of the feature extractor
θM , CFS layer θC and source classifier θS . The training pro-
cedure can be formulated as a maximum-a-posterior (MAP)
learning given labelled source {XS , YS} and unlabelled tar-
get data XT ,

θ̂ = argmax
θ

p(θ|XS , YS , XT ), (1)

where p(θ|XS , YS , XT ) is the posterior of model parameter
θ given data XS , YS , XT . This can be rewritten as
p(θ|XS , YS , XT ) ∝p(θ,XS , YS , XT )

∝p(YS |XS , XT , θ)p(θ|XS , XT ).
(2)

So the optimisation in Eq. 1 is equivalently

θ̂ = argmax
θ

p(YS |XS , θ)p(θ|X). (3)

1The proposed model can be easily extended to deal with mul-
tiple source and target domains
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Figure 2: The proposed model architecture is illustrated. Dif-
ferent colours corresponding to different data streams. Green
indicates source data. Blue is used for target data. Purple
means joint data from both source and target domains.

The first term p(YS |XS , θ) in Eq. 3 represents the likeli-
hood of source labels w.r.t. θ. Optimising this term is a
conventional supervised learning task with a loss denoted
`sup(XS , YS ; θ).

The second term p(θ|X) in Eq. 3 is a prior depending on
the input data X of both source and target datasets. From an
optimisation perspective, this is the regulariser that will play
the key role in solving unsupervised DLSTL problems since
it requires no labels. Given the model architecture, it can be
further decomposed as:

p(θ|X) =p(θM , θC |X)

=p(θC |θM , X)p(θM |X),
(4)

where θS is excluded since no supervision is used. Specifi-
cally, the first term p(θC |θM , X) serves as the regulariser on
the CFS layer while the second term p(θM |X) regularises
the deep feature extractor ΦθM .

Low-Entropy Regularisation: Unsupervised Adaptation
We first discuss how to define the prior p(θC |θM , X) regu-
lariser for CFS layer. The sigmoid activated outputs FC from
CFS layer ΨθC can be interpreted as multi-label predictions
on latent factors. The uncertainty measure for label predic-
tion can be defined by using its entropy

h(θC |θM , X) =−
N∑
i=1

< FC,i, log(FC,i) >

=−
N∑
i=1

< ΨθC (xi), log(ΨθC (xi)) >

(5)

where FC,i denotes the common factor representation
ΨθC (xi) of instance xi ∈ X . This is applied on both
source and target data, so N is the number of instances in
both datasets. log(·) is applied element-wise, and < ·, · >
is vector inner product. According to the low-uncertainty
criterion (Carlucci et al. 2017), optimising the prior term
p(θC |θM , X) can be achieved by minimising this uncer-
tainty measure. Eq. 5 is thus the regulariser corresponding

to the prior p(θC |θM , X). Specifically, this loss biases the
representation FC to contain more certain predictions, e.g.,
closer to 0 or 1 for each discovered latent factor. Therefore,
we denote it as unsupervised factorisation loss.

In summary, the low-entropy regulariser on CFS is built
upon the assumption that the two domains share a set of la-
tent attributes and that if a source classifier is well adapted
to the target, then the presence/absence of these attributes
should be certain for each instance. Therefore, it essentially
generalises the low-uncertainty principle (widely used in ex-
isting unsupervised and semi-supervised learning literature)
to the disjoint label space setting.

Graph Regularisation: Robust Feature Learning The
second prior in Eq. 4 is p(θM |X) which acts as the regu-
lariser for the feature extractor ΦθM . The unique property of
our setup so far is that the knowledge transfer into the target
domain is via the CFS layer; therefore we are interested in
ensuring that the feature extractor network extracts features
whose similarity structure reflects that of the latent factors in
the CFS layer. Unlike conventional graph Laplacian losses
that regularise higher-level features with a graph built on
lower-level features (Belkin, Niyogi, and Sindhwani 2006;
Zhu 2006), we do the reverse and regularise the feature ex-
tractor ΦθM to reflect the similarity structure in FC . This is
particularly important for applications where the target prob-
lem is retrieval, because we use deep features F = ΦθM (·)
as an image representation.

The proposed graph loss is expressed as

Tr(FT∆FC
F ), (6)

where ∆FC
is the graph Laplacian (Cai et al. 2011) built on

the common space features FC .
Summary We unify the proposed model architecture
θ := {θM , θC , θDS} with source {XS , YS} and target
{XT } data for unsupervised DLSTL problems from an
maximum-a-posterior (MAP) perspective. This decomposes
into a standard supervised term p(YS |XS , θ) (source data
only) and data-driven priors for the CFS layer and fea-
ture extraction module. They correspond to supervised loss
`sup(XS , YS ; θ), unsupervised factorisation loss (Eq. 5) and
the graph loss (Eq. 6) respectively. Taking all terms into ac-
count, the final optimisation objective of Eq. 3 is

L(θ) =`sup(XS , YS ; θ) + βMTr(F
T∆FC

F )

− βC
1

N

N∑
i=1

< FC,i, log(FC,i) > .
(7)

where βC and βM are balancing hyper-parameters. In order
to select βC and βM , the model is first run by setting all
weights to 1; after the first few iterations, we check the val-
ues of each loss. We then set the two hyper-parameters to
rescale the losses to a similar range so that all three terms
contribute approximately equally to the training.
Mini-batch organisation Convolutional Neural Net-
works (CNNs) are usually trained with SGD mini-batch
optimisation, but Eq. 7 is expressed in a full-batch fash-
ion. Converting Eq. 7 to mini-batch optimisation is straight-
forward. However, it is worth mentioning the mini-batch

3291



scheduling: each mini-batch contains samples from both
source and target domains. The supervised loss is applied
only to source samples with corresponding supervision, the
entropy and graph losses are applied to both, and the graph
is built per-mini-batch. In this work, the number of source
and target samples are equally balanced in a mini-batch.

Experiments
The proposed model is evaluated on progressively more
challenging problems. First, we evaluate CFSM on unsuper-
vised domain adaptation (UDA). Second, different DLSTL
settings are considered, including semi-supervised DLSTL
classification and unsupervised DLSTL retrieval. CFSM
handles all these scenarios with minor modifications. The
effectiveness CFSM is demonstrated by its superior perfor-
mance compared to the existing work. Finally insight is pro-
vided through ablation study and visualisation analysis.

Unsupervised Domain Adaptation: SVHN-MNIST
Dataset and Settings We evaluate the UDA setting from
(Ganin et al. 2016) where SVHN (Netzer et al. 2011) is the
labelled source dataset and MNIST (LeCun et al. 1998) is
the unlabelled target. For fair comparison we use an identi-
cal feature extractor network to (Luo et al. 2017). Our CFSM
is pre-trained on the source dataset with cross-entropy su-
pervision and dC = 50, followed by joint training on source
and target with our regularisers as in Eq. 7. Since the label-
space is shared in UDA, we also apply entropy loss on the
softmax classification of the target (Long et al. 2016). We
set βM = 0.001 and βC = 0.01.
Results We compare our method with two baselines.
Source only: Supervised training on the source and directly
apply to target data. Joint FT: Model is initialised with
source pre-train, and fine-tuning on both domains with su-
pervised loss for source and semi-supervised entropy loss
for target. We also compare several deep UDA methods
including Gradient Reversal (Ganin et al. 2016), Domain
Confusion (Tzeng et al. 2015), ADDA (Tzeng et al. 2017),
Label Efficient Transfer (LET) (Luo et al. 2017), Asym.
tri-training (Saito, Ushiku, and Harada 2017) and Res-
para (Rozantsev, Salzmann, and Fua 2018).

As shown in Table 1, CFSM boosts the performance
on both baselines with clear margin (25.5% and 9.3% vs.
Source only and Joint FT respectively). Moreover, it is 5.5%
higher than LET (Luo et al. 2017), the nearest competitor
and only alternative that also addresses the DLSTL setting.

Semi-supervised DLSTL: Digit Recognition
Dataset and Settings We follow the semi-supervised DL-
STL recognition experiment of (Luo et al. 2017) where again
two digit datasets, SVHN and MNIST, are used. Images of
digits 0 to 4 from SVHN are fully labelled as source data
while images of digits 5 to 9 from MNIST are target data.
The target dataset has sparse labels (k labels per class) and
unlabelled images available. Thus we also add a classifier
χθT after the CFS layer ΨθC for the target categories.

The feature extractor architecture ΦθM is exactly the same
as in (Luo et al. 2017) for fair comparison. We pre-train

Method Accuracy
Domain confusion ICCV’15 68.1
Grad. reversal JMLR’16 73.9
ADDA CVPR’17 76.0
LET NIPS’17 81.0
Res-para CVPR’18 84.7
Asym. tri-training ICML’17 85.0
Source only 61.0
Joint FT 77.2
CFSM 86.5

Table 1: Unsupervised domain adaptation results. Classifi-
cation accuracy (%) on SVHN→MNIST transfer.

CFSM on source data as initialisation, and then train it with
both source and target data using only loss in Eq. 7. We set
dC = 10, βM = βC = 0.01. The learning rate is 0.001 and
the Adam (Kingma and Ba 2014) optimiser is used.
Results The results for several degrees of target label
sparsity k = 2, 3, 4, 5 (corresponding to 10, 15, 20, 25 la-
belled samples, or 0.034%, 0.050%, 0.066%, 0.086% of to-
tal target training data respectively), are reported in Table 2.
Results are averaged over ten random splits as in (Luo et al.
2017). Besides the FT matching nets (Vinyals et al. 2016)
and state-of-the-art LET results from (Luo et al. 2017), we
run two baselines: Train Target: Training CFSM architecture
from scratch with partially labelled target data only, and FT
Target: The standard pre-train/fine-tune pipeline, i.e., pre-
train on the labelled source, and fine-tune on the labelled
target samples only.

As shown in Table 2, the performances of baseline models
are significantly lower than LET and the proposed CFSM.
The Train Target baseline performs poorly as it is hard to
achieve good performance with few target samples and no
knowledge transfer from source. The Fine-Tune Target base-
line performs poorly as the annotation here is too sparse
for effective fine-tuning on the target problem. Fine-Tune
matching nets follows the 5-way (k − 1)-shot learning with
sparsely labelled target data only, but no improvement is
shown over the other baselines. Our proposed CFSM consis-
tently outperforms the state-of-the-art LET alternative. For
example, under the most challenging setting (k = 2), CFSM
is 1.8% higher than LET on mean accuracy and 0.2% lower
on standard error.

Unsupervised DLSTL: ReID and SBIR
ReID The person re-identification (ReID) problem is to
match person detections across camera views. Annotating
person image identities in every camera in a camera network
for training supervised models is infeasible. This motivates
the topical unsupervised Re-ID problem of adapting a Re-
ID model trained on one dataset with annotation to a new
dataset without annotation. Although they are evaluated with
retrieval metrics, contemporary Re-ID models are trained
using identity prediction (classification) losses. This means
that unsupervised Re-ID fits the unsupervised DLSTL set-
ting, as the label-spaces (person identities) are different in
different Re-ID datasets, and the target dataset has no labels.

We adopt two highly contested large-scale benchmarks
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k = 2 k = 3 k = 4 k = 5
Train Target 66.5± 1.7 77.2± 1.1 83.0± 0.9 88.3± 1.1
FT Target 69.8± 1.6 79.1± 1.2 84.5± 0.8 89.3± 0.9

FT matching nets NIPS’16 64.5± 1.9 75.5± 2.4 79.3± 1.3 82.7± 1.1
LET NIPS’17 91.7± 0.7 93.6± 0.6 94.2± 0.6 95.0± 0.4

CFSM 93.5± 0.5 94.8± 0.5 95.5± 0.3 96.7± 0.2

Table 2: Semi-supervised DLSTL image categorisation results (%), with mean classification accuracy and standard error for
SVHN (0-4)→MNIST (5-9).

M2D D2M
model R1 mAP R1 mAP
UMDL CVPR’16 18.5 7.3 34.5 12.4
PTGAN CVPR’18 27.4 - 38.6 -
PUL arXiv’17 30.0 16.4 45.5 20.5
CAMEL ICCV’17 - - 54.5 26.3
TJ-AIDL CVPR’18 44.3 23.0 58.2 26.5
SPGAN CVPR’18 46.4 26.2 57.7 26.7
MMFA BMVC’18 45.3 24.7 56.7 27.4
CFSM 49.8 27.3 61.2 28.3

Table 3: Unsupervised transfer for person Re-ID (%). M2D
indicates Market as source dataset and Duke as target, vice
versa. Target Dataset Performance is reported.

for unsupervised person Re-ID: Market (Zheng et al. 2015)
and Duke (Zheng, Zheng, and Yang 2017). ImageNet pre-
trained Resnet50 (He et al. 2016) is used as the feature ex-
tractor ΦθM . Cross-entropy loss with label smoothing and
triplet loss are used for the source domain as supervised
learning objectives. We set dC = 2048, βM = 2.0, βC =
0.01. Adam optimiser is used with learning rate 3.5e−4. We
treat each dataset in turn as source/target and perform unsu-
pervised transfer from one to the other. Rank 1 (R1) accu-
racy and mean Average Precision (mAP) results on the target
datasets are used as evaluation metrics.

In Table 3, We show that our method outperforms
the state-of-the-art alternatives purpose-designed for unsu-
pervised person Re-ID: UMDL (Peng et al. 2016), PT-
GAN (Wei et al. 2018), PUL (Fan, Zheng, and Yang 2017),
CAMEL (Yu, Wu, and Zheng 2017), TJ-AIDL (Wang et al.
2018), SPGAN (Deng et al. 2018) and MMFA (Lin et al.
2018). Note that TJ-AIDL and MMFA exploit attribute la-
bels to help alignment and adaptation. The proposed method
automatically discovers latent factors with no additional an-
notation. However, CFSM improves at least 3.0% over TJ-
AIDL and MMFA on the R1 accuracy of both settings.

FG-SBIR Fine-grained Sketch Based Image Retrieval
(SBIR) focuses on matching a sketch with its corresponding
photo (Sangkloy et al. 2016). As demonstrated in (Sangkloy
et al. 2016), object category labels play an important role
in retrieval performance, so existing studies make a closed
world assumption, i.e., all testing categories overlap with
training categories. However, if deploying SBIR in a real
application such as e-commerce (Yu et al. 2016), one would
like to train the SBIR system once on some source object
categories, and then deploy it to provide sketch-based im-
age retrieval of new categories without annotating new data

and re-training for the target object category. Unsupervised
adaptation to new categories without sketch-photo pairing
labels is therefore another example of the unsupervised DL-
STL problem. Comparing to Re-ID, where instances are per-
son images in different camera views, instances in SBIR are
either photos or hand-drawn sketches of objects.

There are 125 object classes in the Sketchy
dataset (Sangkloy et al. 2016). We randomly split 75
classes as a labelled source domain and use the remaining
50 classes to define an unlabelled target domain with
disjoint label space. ImageNet pre-trained Inception-V3
(Szegedy et al. 2016) is used as the feature extractor
ΦθM . Cross-entropy and triplet loss are used for source
supervision. We set dC = 512, βM = 10−3, βC = 0.1.
Adam optimiser with learning rate 10−4 is used. As a
baseline, Source Only is the direct transfer alternative that
uses the same architecture but trains on the source labelled
data only, and is applied directly to the target without
adaptation. The retrieval performance on unseen classes
(tar. cls.) are reported. Results are averaged over 10 random
splits. As shown in Table 4, the proposed CFSM improves
the retrieval accuracy on unseen cases by 2.48%.

Source only CFSM
tar. cls. 23.74± 0.24 26.22± 0.25

Table 4: SBIR: Sketch-photo retrieval results (%). Averaged
Rank 1 accuracy and standard error.

Further Analysis
Ablation study Unsupervised person Re-ID is chosen as
the main benchmark for an ablation study. Firstly because it
is a challenging and realistic large-scale problem in the un-
supervised DLSTL setting, and secondly because it provides
a bidirectional evaluation for more comprehensive analysis.

The following ablated variants are proposed and com-
pared with the full CFSM. Source Only: The proposed ar-
chitecture is learned with source data and supervised losses
only. Source+Regs: The regularisers, unsupervised factori-
sation and graph losses can be added with source dataset
only. CFSM−Graph: Our method without the proposed
graph loss. CFSM+ClassicGraph: Replacing our proposed
graph loss with a conventional Laplacian graph (i.e., graphs
constructed in lower-level feature space extracted by ΦθM to
regularise the proposed CFS). AE: Other regularisers such as
feature reconstruction as in autoencoder (AE) is used to pro-
vide the prior term p(θ|X). We reconstruct the deep features
F using the outputs of CFS layer as hidden representations.
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M2D D2M
model R1 mAP R1 mAP

Source Only 39.2 20.2 54.4 23.0
Source+Regs 41.6 21.2 55.8 24.0

AE 43.6 22.8 56.4 24.9
CFSM−Graph 46.8 25.6 60.0 27.6

CFSM+ClassicGraph 47.4 26.1 59.0 27.0
CFSM 49.8 27.3 61.2 28.3

Table 5: Ablation study on unsupervised person Re-ID
benchmarks. Target dataset performance (%) is reported.

In this case both source and target data are used and the re-
construction error provides the regularisation loss.

The results are shown in Table 5. Firstly, by compar-
ing the variants that use source data only (Source Only
and Source+Regs) with the joint training methods, we find
they are consistently inferior. This illustrates that it is cru-
cial to leverage target domain data for adaptation. Sec-
ondly, CFSM and its variants consistently achieve bet-
ter results than AE, illustrating that our unsupervised fac-
torisation loss and graph losses provide better regulari-
sation for cross-domain/cross-task adaptation. The effec-
tiveness of our graph loss is illustrated by two com-
parisons: (1) CFSM−Graph is worse than CFSM, show-
ing the contribution of the graph loss; and (2) replac-
ing our graph loss with the conventional Laplacian graph
loss (CFSM+ClassicGraph) shows worse results than ours,
justifying our choice of regularisation direction. Finally,
we note that applying our regularisers to the source only
(Source+Regs) still improves the performance slightly on
target dataset vs Source Only. This shows that training with
these regularisers has a small benefit to representation trans-
ferability even without adaptation.
Visualisation analysis To understand the impact of unsu-
pervised factorisation loss, Figure 3 illustrates the distribu-
tion of target CFS activations in the semi-supervised DLSTL
setting (SVHN→MNIST). The left plot shows the activa-
tions without any such loss, leading to a distribution of mod-
erate predictions peaked around 0.5. In contrast, the right
plot shows the activation distribution on the target dataset of
CFSM. We can see that our regulariser has indeed induced
the target dataset to represent images with a low–entropy
near-binary code. We also compare training a source model
by adding low-entropy CFS loss, and then applying it to the
target data. This leads to a low-entropy representation of
the source data, but the middle plot shows that when trans-
ferred to the target dataset or adaptation the representation
becomes high-entropy. That is, joint training with our losses
is crucial to drive the adaptation that allows target dataset to
be represented with near-binary latent factor codes.
Qualitative Analysis We visualise the discovered latent
attributes qualitatively. For each element in FC , we rank
images in both source and target domains by their activa-
tion. Person images corresponding to the highest ten values
of a specific FC are recorded. Figure 4 shows two exam-
ple factors with images from the source (first row) and tar-
get (second row) dataset. We can see that the first example
in Figure 4(a) is a latent attribute for the colour ‘red’ cov-
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Figure 3: CFS activations distribution on target data. Left:
Train on source with supervised loss. Middle: Train on
source with both supervised and low-entropy CFS losses.
Right: CFSM, jointly trained on source and target.

(a)

(b)

Figure 4: Illustration of images selected by two different la-
tent factors: (a) red and (b) female/textured/bag-carrying. In
each case the top row is the source (Market) data and the
bottom row is the target (Duke) data. Best viewed in colour.

ering both people’s bags and clothes. The second example
in Figure 4(b) is a higher-level latent attribute that is selec-
tive for both females, as well as textured clothes and bag-
carrying. Importantly, these factors have become selective
for the same latent factors across datasets, although the tar-
get dataset has no supervision (i.e., unsupervised DLSTL).

Conclusion

We studied a challenging transfer learning setting DLSTL,
where the label space between source and target labels are
disjoint, and the target dataset has few or no labels. In order
to transfer the discriminative cues from the labelled source
to the target, we propose a simple yet effective model which
uses an unsupervised factorisation loss to discover a com-
mon set of discriminative latent factors between source and
target datasets. And to improve feature learning for subse-
quent tasks such as retrieval, a novel graph-based loss is fur-
ther proposed. Our method is both the first solution to the
unsupervised DLSTL, and also uniquely provides a single
framework that is effective at both unsupervised and semi-
supervised DLSTL as well as the standard UDA.
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