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Abstract

We present a heuristic based algorithm to induce nonmono-
tonic logic programs that will explain the behavior of XG-
Boost trained classifiers. We use the technique based on the
LIME approach to locally select the most important fea-
tures contributing to the classification decision. Then, in
order to explain the model’s global behavior, we propose
the LIME-FOLD algorithm —a heuristic-based inductive
logic programming (ILP) algorithm capable of learning non-
monotonic logic programs—that we apply to a transformed
dataset produced by LIME. Our proposed approach is agnos-
tic to the choice of the ILP algorithm. Our experiments with
UCI standard benchmarks suggest a significant improvement
in terms of classification evaluation metrics. Meanwhile, the
number of induced rules dramatically decreases compared to
ALEPH, a state-of-the-art ILP system.

Introduction
Dramatic success of machine learning has led to a torrent of
Artificial Intelligence (AI) applications. However, the effec-
tiveness of these systems is limited by the machines’ cur-
rent inability to explain their decisions and actions to human
users. That’s mainly because the statistical machine learning
methods produce models that are complex algebraic solu-
tions to optimization problems such as risk minimization or
data likelihood maximization. Lack of intuitive descriptions
makes it hard for users to understand and verify the underly-
ing rules that govern the model. Also, these methods cannot
produce a justification for a prediction they compute for a
new data sample.

The Explainable AI program (Gunning 2015) aims to cre-
ate a suite of machine learning techniques that: a) Produce
more explainable models, while maintaining a high level of
prediction accuracy. b) Enable human users to understand,
appropriately trust, and effectively manage the emerging
generation of artificially intelligent partners.

Inductive Logic Programming (ILP) (Muggleton 1991) is
one Machine Learning technique where the learned model
is in the form of logic programming rules (Horn Clauses)
that are comprehensible to humans. It allows the background
knowledge to be incrementally extended without requiring
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the entire model to be re-learned. Meanwhile, the compre-
hensibility of symbolic rules makes it easier for users to un-
derstand and verify induced models and even edit them.

The ILP learning problem can be regarded as a search
problem for a set of clauses that deduce the training exam-
ples. The search is performed either top down or bottom-up.
A bottom-up approach builds most-specific clauses from the
training examples and searches the hypothesis space by us-
ing generalization. This approach is not applicable to large-
scale datasets, nor it can incorporate Negation-As-Failure
into the hypotheses. A survey of bottom-up ILP systems
and their shortcomings can be found at (Sakama 2005). In
contrast, top-down approach starts with the most general
clauses and then specializes them. A top-down algorithm
guided by heuristics is better suited for large-scale and/or
noisy datasets (Zeng, Patel, and Page 2014).

The FOIL algorithm by Quinlan (Quinlan 1990) is a pop-
ular top-down algorithm. FOIL uses heuristics from infor-
mation theory called weighted information gain. The use
of a greedy heuristic allows FOIL to run much faster than
bottom-up approaches and scale up much better. For in-
stance, the QuickFOIL system (Zeng, Patel, and Page 2014)
can deal with millions of training examples in a reasonable
time. However, scalability comes at the expense of losing ac-
curacy if the algorithm is stuck in local optima and/or when
the number of examples is insufficient. The former is an in-
herent problem in hill climbing search and the latter is due to
the shrinking of examples during clause specialization. Also,
elimination of already covered examples from the training
set (to guarantee the termination of FOIL) causes a similar
impact on the quality of heuristic search for the best clause.
Therefore, the predicates picked-up by FOIL are not always
globally optimal with respect to the concept being learned.
Based on our research, we believe that a successful ILP al-
gorithm must satisfy the following criteria:

• It must employ heuristic-based search for clauses for the
sake of scalability.

• It should be able to figure out relevant features, regardless
of the number of current training examples.

• It should be able to learn from incomplete data, as well as
be able to distinguish between noise and exceptions.

Unlike top-down ILP algorithms, statistical machine
learning methods are bound to find the relevant features be-

3052



cause they optimize an objective function with respect to
global constraints. This results in models that are inherently
complex and cannot explain what features account for a clas-
sification decision on any given data sample.

Recently, some solutions have been proposed by re-
searchers to explain black-box classifiers’ predictions lo-
cally. LIME (Ribeiro, Singh, and Guestrin 2016) is a novel
model-agnostic system that explains the classification deci-
sions made by any classifier on any given data sample. The
idea comes from the fact that explaining classifier’s behav-
ior in a local region around any data turns out to be easier
than explaining its global behavior. Each local explanation
is a set of feature-value pairs that would determine what fea-
tures and how strongly each feature, relative to other fea-
tures, contributes to the classification decision.

In order to capture model’s global behavior, we propose
an algorithm called LIME-FOLD, to learn concise logic pro-
grams from a transformed data set that is generated by stor-
ing the explanations provided by LIME. The LIME system
takes as input a black-box model (such as a Neural Network,
Random Forest, etc.) and a data sample. For any given data
sample, it outputs a list of (weighted) features that contribute
most to the classification decision. By repeating the same
process for all training samples, we can generate a trans-
formed version of the original data set that only contains the
relevant features for each data sample.

The LIME-FOLD algorithm learns a non-monotonic logic
program from the transformed data set. This logic program
explains the global behavior of the model. Our experiments
on 10 UCI standard benchmark suggests that the hypotheses
generated by LIME-FOLD algorithm are very concise and
outperform the baseline ALEPH system (Srinivasan 2001).
It also outperforms ALEPH once ALEPH is given the trans-
formed dataset (i.e., ALEPH is extended with the LIME
technique). Performance is measured in terms of classifi-
cation evaluation scores, number of generated clauses and
running time.

Although LIME is model-agnostic, in this research we
incorporate the XGBoost algorithm to train our statistical
models. XGBoost (Chen and Guestrin 2016) is a scalable
tree boosting machine learning algorithm that is widely
used by data scientists to achieve state-of-the-art results on
many challenges. In essence, the hypotheses (a nonmono-
tonic logic program) that our LIME-FOLD algorithm in-
duces, explain the behavior of XGBoost models.

This paper makes the following novel contribution: We
present a new ILP algorithm capable of learning non-
monotonic logic programs from local explanations of
boosted tree models provided by LIME. We call this new
algorithm LIME-FOLD. The LIME-FOLD algorithm is a
scalable heuristic-based algorithm that explains the behav-
ior of boosted tree models globally and outperforms ALEPH
in terms of classification evalutation metrics as well as in
providing more concise explanations measured in terms of
number of clauses induced.

Background
Problem Definition
Inductive Logic Programming (ILP) (Muggleton 1991) is a
subfield of machine learning that learns models in the form
of logic programming rules (Horn Clauses) that are compre-
hensible to humans. This problem is formally defined as:
Given
1. a background theory B, in the form of an ex-

tended logic program, i.e., clauses of the form h ←
l1, ..., lm, not lm+1, ..., not ln, where l1, ..., ln are pos-
itive literals and not denotes negation-as-failure (NAF)
and B has no even cycle

2. two disjoint sets of ground target predicates E+, E−

known as positive and negative examples respectively
3. a hypothesis language of function free predicates L, and

a refinement operator ρ under θ−subsumption (Plotkin
1971) that would disallow even cycles.

Find a set of clauses H such that:
• ∀e ∈ E+, B ∪H |= e

• ∀e ∈ E−, B ∪H 6|= e

• B ∧H is consistent.

The FOIL Algorithm
The LIME-FOLD algorithm is an extension of the FOIL
algorithm (Quinlan 1990). Therefore, we first briefly dis-
cuss the FOIL algorithm. FOIL is a top-down ILP algo-
rithm which follows a sequential covering approach to in-
duce a hypothesis. The FOIL algorithm is summarized in
Algorithm 1. This algorithm repeatedly searches for clauses
that score best with respect to a subset of positive and neg-
ative examples, a current hypothesis and a heuristic called
information gain (IG).

Algorithm 1 Summarizing the FOIL algorithm
Input: target, B,E+, E−

Output: Initialize H ← ∅
1: while (|E+| > 0) do
2: c← (target :- true.)
3: while (|E−| > 0 ∧ c.length < max length) do
4: for all c′ ∈ ρ(c) do
5: compute score(E+, E−, H ∪ {c′}, B)
6: end for
7: let ĉ be the c′ ∈ ρ(c) with the best score
8: E− ← covers(ĉ, E−)
9: end while

10: add ĉ to H
11: E+ ← E+ \ covers(ĉ, E+)
12: end while
13: return H

The inner loop searches for a clause with the highest infor-
mation gain using a general-to-specific hill-climbing search.
To specialize a given clause c, a refinement operator ρ under
θ-subsumption (Plotkin 1971) is employed. The most gen-
eral clause is p(X1, ..., Xn) ← true. where the predicate
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p/n is the predicate being learned and each Xi is a vari-
able. The refinement operator specializes the current clause
h← b1, ...bn. This is realized by adding a new literal l to the
clause yielding h ← b1, ...bn, l. The heuristic based search
uses information gain. In FOIL, information gain for a given
clause is calculated as follows:

IG(L,R) = t

(
log2

p1
p1 + n1

− log2
p0

p0 + n0

)
(1)

where L is the candidate literal to add to rule R, p0 (n0)
is the number of positive (negative) examples covered by R
respectively, p1 (n1) is the number of positive (negative) ex-
amples covered byR+L respectively, and t is the number of
positive examples that are covered byR andR+L together.

The LIME Approach
LIME (Ribeiro, Singh, and Guestrin 2016) is a novel tech-
nique that finds easy to understand explanations for the pre-
dictions of any complex black-box classifier in a faithful
manner. LIME constructs a linear model by sampling N in-
stances around any given data sample x. Every instance x′
represents a perturbed version of x where perturbations are
realized by sampling uniformly at random for each feature
of x. LIME stores the classifier decision f(x′) and the kernel
π(x, x′). The π function measures how similar the original
and perturbed sample are and it is then used as the associ-
ated weight of x′ in fitting a locally weighted linear regres-
sion (LWR) curve around x. TheK greatest learned weights
of this linear model are interpreted as top K contributing
features into the decision made by the black-box classifier.
Algorithm 2 illustrates how a locally linear model is created
around x to explain a classifier’s decision.

Algorithm 2 Linear Model Generation by LIME
Input: f : Classifier
Input: N : Number of samples, K : length of explanation,
Input: x : sample to explain, π : similarity kernel
Output: w : fitted curve’s weights

1: Z ← {}
2: for i ∈ {1, 2, 3, ..., N} do
3: // x′i is generated by perturbing features of x
4: x′i ← sample around(x)
5: Z ← Z ∪ 〈x′i, f(x′i), π(x′i, x)〉
6: end for
7: // Fit a line to (weighted) points in Z
8: w ← LWR(Z,K)
9: return w

The interpretation language should be understandable by hu-
mans. Therefore, LIME requires the user to provide some in-
terpretation language as well. In case of tabular data, it boils
down to specifying the valid range of each table column. In
particular, if the data column is a numeric variable (as op-
posed to categorical), the user must specify the intervals or a
discretization strategy to allow LIME to create intervals that
are used later on to explain the classification decision.
Example 1 The UCI heart dataset contains features such
as patient’s blood pressure, chest pain, thallium test results,

Figure 1: Top 3 Relevant Features in Patient Diagnosis Ac-
cording to LIME

number of major vessels blocked, etc. The classification task
is to predict whether the subject suffers from heart disease
or not. Figure 1 shows how LIME would explain a model’s
prediction over a data sample.

In this example, LIME is called to explain why the model
predicts heart disease. In response, LIME returns the top
features along with their importance weight. According to
LIME, the model predicts “heart disease” because of high
serum cholesterol level, and having a chest pain of type 4
(i.e., asymptomatic). In this dataset, chest pain level is a cat-
egorical variable with 4 different values.

The categorical variables should be binarized before a sta-
tistical model can be applied. Binarization is the process of
transforming each categorical variable with domain of car-
dinality n, into n new binary features. The feature “thallium
test” is a categorical feature too. However, in this case LIME
reports that the feature “thal 7” which is a new feature that
resulted from binarization and has the value “false”, would
have made the model predict “healthy”. The value 7 for thal-
lium test in this dataset indicates reversible defect which is
a strong indication of heart disease. It should be noted that
the feature “serum cholesterol” is discretized with respect to
the training examples’ label. Discretization aims to reduce
the number of values a continuous variable takes by group-
ing them into intervals. Discretization method should max-
imize the interdependence between the variable values and
the class labels. One of the most practiced methods for dis-
cretizing continuous data is the MDL method (Fayyad and
Irani 1993) which uses mutual information to recursively de-
fine the best bins. In this research, we discretize all numeric
features using the MDL method.

Learning Default Theories
ILP algorithms such as FOIL induce logic programs that
contain negated goals of the form not p, where the not is con-
sidered as negation as failure. Logic programs containing
negation-as-failure (with nonmonotonic semantics) are more
expressive and concise when it comes to describing concepts
(e.g., default reasoning, used in common sense reasoning
used by humans) (Baral 2003). The handling of negation-as-
failure in the FOIL algorithm is problematic. We illustrate
these problems in (Shakerin, Salazar, and Gupta 2017) with
many compelling examples. In addition, (Shakerin, Salazar,
and Gupta 2017) builds upon the FOIL algorithm to develop
a new algorithm called FOLD (First Order Learner of De-
faults) for inducing default theories. FOLD induces non-
monotonic logic programs that are more precise and more
concise. In this paper we build upon our work in (Shakerin,
Salazar, and Gupta 2017): we adapt and integrate the FOLD
algorithm with LIME to develop a new algorithm called

3054



LIME-FOLD that not only is more accurate, it also produces
significantly more concise nonmonotonic logic programs as
explanations.

The FOLD algorithm which is an extension of FOIL,
learns a concept in terms of a default and possibly mul-
tiple exceptions (and exceptions to exceptions, exceptions
to exceptions of exceptions, and so on). FOLD tries first to
learn the default by specializing a general rule of the form
{target(V1, ..., Vn) :- true.} with positive literals.
As in FOIL, each specialization must rule out some already
covered negative examples without decreasing the number
of positive examples covered significantly. Unlike FOIL, no
negative literal is used at this stage. Once the heuristic score
(i.e., information gain) (IG) becomes zero, or the maximum
clause length is reached (whichever happens first), this pro-
cess stops. At this point, if any negative example is still cov-
ered, they must be either noisy data or exceptions to the cur-
rent hypothesis. Exceptions could be learned by swapping
the current positive and negative examples, then calling the
same algorithm recursively. As a result of this recursive pro-
cess, FOLD can learn exceptions to exceptions, and so on.
In presence of noise, FOLD identifies and enumerates noisy
samples, that is, outputs them as ground facts in hypothesis,
to make sure that the algorithm converges. Maximum De-
scription Length Principle (Quinlan 1990) is incorporated
to heuristically control the hypothesis length and identify
noise. Algorithm 3 presents FOLD’s pseudo-code.

Example 2 B,E+, E− are background knowledge, posi-
tive and negative examples respectively. The target, i.e., the
predicate being learned is fly(X).

B: bird(X) :- penguin(X).
bird(tweety). bird(et).
cat(kitty). penguin(polly).

E+: fly(tweety). fly(et).
E-: fly(kitty). fly(polly).

By calling FOLD, at line 2 while loop, the clause {fly(X)
:- true.} is specialized. Inside the SPECIALIZE
function, at line 10, the literal bird(X) is selected to add
to the current clause, to get the clause ĉ = fly(X) :-
bird(X), which happens to have the greatest IG among
{bird,penguin,cat}. Then, at lines 20-21 the follow-
ing updates are performed: E+ = {}, E− = {polly}. A
negative example polly, a penguin is still covered. In the
next iteration, SPECIALIZE fails to introduce a positive
literal to rule it out since the best IG in this case is zero.
Therefore, the EXCEPTION function is called by swapping
theE+,E−. Now, FOLD is recursively called to learn a rule
for E+ = {polly}, E− = {}. The recursive call (line 27),
returns {fly(X) :- penguin(X)} as the exception. In
line 28, a new predicate ab0 is introduced and at lines 29-
31 the clause {ab0(X) :- penguin(X)} is created and
added to the set of invented abnormalities, namely, AB. In
line 32, the negated exception (i.e not ab0(X)) and the
default rule’s body (i.e bird(X)) are compiled together to
form the following theory:

fly(X) :- bird(X), not ab0(X).
ab0(X) :- penguin(X).

Algorithm 3 FOLD Algorithm
Input: target, B,E+, E−

Output: D = {c1, ..., cn} . defaults’ clauses
AB = {ab1, ..., abm} . exceptions/abnormal clauses

1: function FOLD(E+, E−)
2: while (|E+| > 0) do
3: c← (target :- true.)
4: ĉ← SPECIALIZE(c,E+,E−)
5: E+ ← E+ \ covers(ĉ, E+, B)
6: D ← D ∪ {ĉ}
7: end while
8: end function
9: function SPECIALIZE(c, E+, E−)

10: while |E−| > 0∧c.length < max rule length do
11: (cdef , ˆIG)← ADD BEST LITERAL(c,E+,E−)
12: if ˆIG > 0 then
13: ĉ← cdef
14: else
15: ĉ← EXCEPTION(c, E−, E+)
16: if ĉ == null then
17: ĉ← enumerate(c, E+)
18: end if
19: end if
20: E+ ← E+ \ covers(ĉ, E+, B)
21: E− ← covers(ĉ, E−, B)
22: end while
23: end function
24: function EXCEPTION(cdef , E+, E−)
25: ˆIG← ADD BEST LITERAL(c, E+, E−)

26: if ˆIG > 0 then
27: c set← FOLD(E+, E−)
28: c ab← generate next ab predicate()
29: for each c ∈ c set do
30: AB ← AB ∪ {c ab:- bodyof(c)}
31: end for
32: ĉ← (headof(cdef ):- bodyof(c),not(c ab))
33: else
34: ĉ← null
35: end if
36: end function

Once the FOLD algorithm terminates and a hypothesis
is created, it would iterate through each clause’s body and
eliminates the redundant or counterproductive predicates.
These are the predicates whose elimination does not make
the clause cover significant number of negative examples.
Next, FOLD sorts the hypothesis clauses in ascending order
based on the number of positive examples each clause cov-
ers. Then, starting from the smallest, FOLD eliminates each
clause and measures the coverage of positive examples. If
elimination of a clause does not affect the overall coverage,
the clause is removed from the hypothesis permanently.

The LIME-FOLD Algorithm
In this section we introduce the LIME-FOLD algorithm by
integrating FOLD and LIME. This yields a powerful ILP
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algorithm capable of learning very concise logic programs
from a transformed dataset. The new algorithm outperforms
FOLD and ALEPH (Srinivasan 2001) which is a state-of-
the-art ILP system.

There are two major issues with the sequential covering
algorithms such as FOIL (and FOLD): 1) As number of ex-
amples decreases during specialization loop, probability of
introducing an irrelevant predicate that accidentally splits a
particular set of examples increases. 2) elimination of posi-
tive examples that are covered in previous iterations, impacts
the precision of heuristic scoring. By filtering out the irrel-
evant features of each training example, the greedy clause
search procedure is forced to pick up predicates only from a
relevant subset of features to cover training examples. Rel-
evant features for each training example is found by LIME
once it is given an accurate classifier.

For instance in Figure 1, for a particular training exam-
ple with 13 features, LIME returns only 3 as relevant to the
underlying concept of heart disease on that particular data
sample. This helps the FOLD algorithm to always pick up
the relevant features regardless of the number of examples
left.

The success of this approach highly depends on the choice
of statistical algorithm as well as tuning its parameters to
make sure that the model makes the fewest errors in its pre-
dictions. In this research we conducted all experiments us-
ing the “Extreme Gradient Boosting” (XGBoost) algorithm
(Chen and Guestrin 2016). XGBoost is an implementation
of the Gradient Boosted Decision Tree algorithm. Although
LIME is model agnostic, in the experiments presented in this
paper, XGBoost happened to always lead to better results.

Algorithm 4 shows how a standard tabular dataset is
transformed into an ILP problem instance for the FOLD
algorithm. This algorithm takes a dataset DS, a target
predicate t, and a classifier model M that takes a feature
vector and returns a binary classification value from the set
{’+’,’-’}. For all data rows r inDS, there is an identifier that
is denoted by r.id. The numeric features once discretized are
sorted based on the produced intervals and the interval index
in the sorted list is used as the second argument of such fea-
tures in generating the background knowledge. For instance
let a numeric feature such as blood pressure be discretized
first and stored as a sorted list of intervals as follows:
{(−∞, 97), [97, 120), [120, 153), [153, 170), [170,+∞)}.
The corresponding predicate for the datarow r
with r.id = 135 and blood pressure value 130 is
blood pressure(135,2) because 135 ∈ [120, 153)
whose index in the above list is 2.

In Algorithm 4, explanation pairs with negative weights
are retrieved too. These are the features that would turn
the classification decision into the opposite of concept we
are learning. For instance in Example 1, a healthy subject
may happen to have a high level “serum cholesterol”. There-
fore, if LIME-FOLD algorithm picks up this feature to cover
some positive examples, the healthy subjects—which are
negative examples—are also covered. The LIME-FOLD al-
gorithm is able to rule these negative examples out by in-
troducing an abnormality predicate that would make use of
these negative weighted features. These are the features that

Algorithm 4 Dataset Transformation with LIME
Input: t : target predicate,DS : Dataset
Input: M : trained classifier
Output: BK : background knowledge
Output: E+,E− : positive and negative examples

1: propositionalize categorical features
2: discretize numeric features
3: for each DataRow r ∈ DS do
4: if M(r) =’+’ then
5: E+ = E+ ∪ {t(r.id)}
6: else
7: E− = E− ∪ {t(r.id)}
8: end if
9: explanation = LIME(M,r)

10: for each pair(e, w) ∈ explanation do
11: if e is the nth discretized interval feature f then
12: BK = BK ∪ {f(r.id, n)}
13: end if
14: if e is an equality expr. of the form fv = 0 then
15: // ‘-’ denotes classical negation
16: BK = BK ∪ {-f(r.id, v)}
17: end if
18: if e is an equality expr. of the form fv = 1 then
19: BK = BK ∪ {f(r.id, v)}
20: end if
21: end for
22: end for

led the XGBoost model to predict those subjects as healthy.

Experiments
In this section, we present our experiments on UCI standard
benchmarks (Lichman 2013). The ALEPH system (Srini-
vasan 2001) is used as the baseline. ALEPH is a state-of-
the-art ILP system that has been widely used in prior work.
To find a rule, ALEPH starts by building the most specific
clause, which is called the “bottom clause”, that entails a
seed example. Then, it uses a branch-and-bound algorithm
to perform a general-to-specific heuristic search for a sub-
set of literals from the bottom clause to form a more general
rule. We set ALEPH to use the heuristic enumeration strat-
egy, and the maximum number of branch nodes to be ex-
plored in a branch-and-bound search to 500K. We use the
standard metrics including precision, recall, accuracy and
F1 score to measure the quality of the results. We sepa-
rately report the running time comparison as well. We con-
duct three different sets of experiments as follows: First,
we run ALEPH on 10 different datasets using 5-fold cross-
validation setting. Second, each dataset is transformed as ex-
plained in Algorithm 4. Then the LIME-FOLD algorithm is
run on a 5-fold cross-validated setting, and the classifica-
tion metrics are reported. Third, ALEPH is run on the same
datasets produced in the second experiment. We call this ap-
proach LIME-ALEPH.

Figure 2 compares the average number of clauses gener-
ated by standard ALEPH, LIME-ALEPH and LIME-FOLD
on 10 UCI datasets. With the exception of “breast-w” and
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Figure 2: Average Number of Rules Induced by Each Dif-
ferent Experiment

“wine”, in all other datasets, LIME-FOLD discovers fewer
number of clauses. However, in “breast-w” and “wine” the
F1 score of LIME-FOLD is higher than two other ap-
proaches. Also, it is worth noting that LIME-ALEPH in
most cases generates fewer clauses than ALEPH. How-
ever, incorporating Negation-As-Failure in LIME-FOLD al-
gorithm as well as learning the clauses in terms of defaults
and exceptions allows the algorithm to cover all positive ex-
amples with fewer number of clauses.

Another observation that explains the advantage of LIME-
ALEPH over ALEPH, is that LIME is capable of explaining
propositionalized categorical variables in both affirmative
and negative ways. For instance, in the “UCI heart” dataset,
the thallium-201 stress scintigraphy test is a categorical fea-
ture with three possible values in the set {3,6,7}, indicating
normal, fixed defect and reversible defect in that order. The
covering approach incorporated in ALEPH, would come up
with two clauses corresponding to 6, 7, whereas, in both
LIME-ALEPH and LIME-FOLD a negated feature f 6= 3 is
introduced and stored in the transformed dataset.

The following logic program is induced by LIME-FOLD
algorithm (using the entire data set):

(1) heart_disease(A):- chest_pain(A,4), -thal(A,3).

(2) heart_disease(A):- slope(A,2), major_vessels(A,1).

(3) heart_disease(A):- chest_pain(A,4), sex(A,1),

not ab0(A).

(4) heart_disease(A):- blood_pressure(A,5), sex(A,1).

(5) heart_disease(A):- slope(A,2), blood_pressure(A,5).

(6) heart_disease(A):- slope(A,2), major_vessels(A,3),

serum_cholestoral(A,3).

ab0(A):-major_vessels(A,3).

The induced program can be understood as follows: In
clause (1), chest pain(A,4) indicates an asymptomatic
type of chest pain. While thal(A,3) would indicate a
thallium test with normal results, the classically negated
predicate -thal(A,3) indicates a proof that the thallium
test is abnormal. In clause (2) slope(A,2) indicates the
slope of the peak exercise relative to rest is flat, which is
an indication of heart disease. major vessels(A,N) in-
dicates a patient with N (range: 0-3) colored major vessels
during a Fluoroscopy test. The higher the number, the less
narrowed major vessels. Clause (3) introduces an abnormal-
ity predicate which stipulates that an asymptomatic chest
pain is an indication of heart disease unless there are no nar-
rowed major vessels. High cholestrol and High blood pres-
sure are specified in discretized intervals represented by their

Figure 3: XGboost Feature Importance Plot for UCI Heart

index. For instance serum cholestoral(A,3) denotes
the cholesterol range between 245 mg/dl and 400 mg/dl in
this dataset. Similarly, blood pressure(A,5) indicates
systolic range between 15.7 and 18.6.

Figure 3 shows the “feature importance” plot calculated
by xgboost algorithm. Generally, importance provides a
score that indicates how useful or valuable each feature was
in the construction of the boosted decision trees within the
model. The more an attribute is used to make key deci-
sions with decision trees, the higher its relative importance.
Importance is calculated for a single decision tree by the
amount that each attribute split point improves the perfor-
mance measure, weighted by the number of observations
the node is responsible for. The LIME-FOLD approach,
prefers the more “important” features over less “important”
ones, because the weighted information gain heuristic scores
clauses with more frequently used features higher. ALEPH
induces 18 clauses on the same data. Some of the features
that the plot reports as rarely used by xgboost to split a node
are introduced by ALEPH which makes the theory less rele-
vant compared to what LIME-FOLD induces.

Table 2 compares the average running time of ALEPH
against LIME-FOLD. For all 10 datasets, FOLD algorithm
terminates in less than one minute. All experiments were run
on an Intel Core i7 CPU @ 2.7GHz with 16 GB RAM and a
64-bit Windows 10. The FOLD algorithm is a Java applica-
tion that uses JPL library to connect to SWI prolog. ALEPH
v.5 has been ported into SWI-Prolog by (Riguzzi 2016).

Table 1 presents the comparison of classification metrics
on each of the 10 UCI datasets. The best performer is high-
lighted with boldface font. In 9 cases, the LIME-FOLD pro-
duces a classifier with higher F1 score. However, in case of
“kidney”, LIME-ALEPH produces the highest F1 score al-
though, it generates almost twice as many clauses as LIME-
FOLD does in this dataset.

Related Work
A survey of ILP can be found in (Muggleton et al. 2012).
Rule extraction from statistical Machine Learning models
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Algorithm
Data Set Aleph Aleph+Lime Fold+Lime

Prec. Recall Acc. F1 Prec. Recall Acc. F1 Prec. Recall Acc. F1
credit-j 0.78 0.72 0.78 0.75 0.89 0.69 0.82 0.77 0.86 0.90 0.89 0.88
breast-w 0.92 0.87 0.93 0.89 0.98 0.65 0.87 0.76 0.94 0.92 0.95 0.92
ecoli 0.85 0.75 0.84 0.80 0.95 0.84 0.92 0.89 0.95 0.88 0.93 0.91
kidney 0.96 0.92 0.93 0.94 0.99 0.95 0.96 0.97 0.93 0.95 0.93 0.94
voting 0.97 0.94 0.95 0.95 0.98 0.95 0.96 0.96 0.98 0.96 0.97 0.97
autism 0.73 0.43 0.79 0.53 0.88 0.38 0.81 0.52 0.84 0.88 0.91 0.86
ionosphere 0.89 0.87 0.85 0.88 0.92 0.85 0.86 0.88 0.91 0.86 0.86 0.89
sonar 0.74 0.56 0.66 0.64 0.81 0.72 0.74 0.76 0.87 0.75 0.78 0.80
heart 0.76 0.75 0.78 0.75 0.79 0.70 0.79 0.74 0.82 0.74 0.82 0.78
wine 0.94 0.86 0.93 0.89 0.91 0.85 0.92 0.88 0.98 0.85 0.93 0.91
Average 0.86 0.79 0.85 0.82 0.9 0.77 0.87 0.82 0.92 0.87 0.91 0.89

Table 1: Evaluation of Our Three Experiments with 10 UCI Datasets

Running Time (s)
Data Set size ALEPH LIME-FOLD
credit-j 125 1680 15
breast-w 699 83 7.8
ecoli 336 132 3
kidney 400 24 0.6
voting 435 252 1.8
autism 704 480 10.8
ionosphere 351 1080 4.8
sonar 208 834 9.6
heart 270 277 18.6
wine 178 18 1.8

Table 2: Average Running Time Comparison

has been a long-standing goal of the community. The rule
extraction algorithms from machine learning models are
classified into two categories: 1) Pedagogical (i.e., learn-
ing symbolic rules from black-box classifiers without open-
ing them) 2) Decompositional (i.e., to open the classifier
and look into the internals). TREPAN (Craven and Shavlik
1995) is a successful pedagogical algorithm that learns deci-
sion trees from neural networks. SVM+Prototypes (Núñez,
Angulo, and Català 2002) is a decompositional rule extrac-
tion algorithm that makes use of KMeans clustering to ex-
tract rules from SVM classifiers by focusing on support vec-
tors. Another rule extraction technique that is gaining atten-
tion recently is “RuleFit” (Friedman, Popescu, and others
2008). RuleFit learns a set of weighted rules from ensemble
of shallow decision trees combined with original features.
In ILP community also, researchers have tried to combine
statistical methods with ILP techniques. Support Vector ILP
(Muggleton et al. 2005) uses ILP hypotheses as kernel in
dual form of the SVM algorithm. kFOIL (Landwehr et al.
2006) learns an incremental kernel for SVM algorithm us-
ing a FOIL style specialization. nFOIL (Landwehr, Kerst-
ing, and Raedt 2005) integrates the Naive-Bayes algorithm
with FOIL. The advantage of our research over all of the
above mentioned research work is that, first it is model ag-

nostic, second it is scalable thanks to the greedy nature of
our clause search.

Conclusions and Future Work
In this paper we presented a heuristic based algorithm called
LIME-FOLD. This novel algorithm can induce very concise
nonmonotonic logic programs to explain the implicit rules
captured by any sophisticated classifier such as XGBoost.
LIME is used to provide explanations as to what features
contribute most to the XGBoost model’s prediction. How-
ever, these explanations are local and specific to a given data
sample and do not represent the global model’s behavior.
We have shown that by filtering out the locally irrelevant
features, a transformed dataset is created that, once given
to the LIME-FOLD algorithm, yields a very concise non-
monotonic logic program that is much more accurate than
hypotheses induced by ALEPH, a state-of-the-art ILP sys-
tem. We have justified our claim by running LIME-FOLD
and ALEPH on the standard and transformed UCI standard
benchmarks. In terms of the running time, our LIME-FOLD
algorithm in average runs 80 times faster than ALEPH on 10
datasets reported in this paper.

There are number of directions for future work: (i) Ex-
planations provided by LIME could be used to discover the
sub-concepts; for example, one may create vectors from the
explanations to examine whether a clustering algorithm such
as KMeans could successfully separate the sub concepts. (ii)
While LIME perturbs each feature in isolation from other
features, the interactions between features are ignored. ILP
on the other hand is a promising technique when it comes
to feature construction. We plan to investigate how ILP and
LIME can mutually reinforce each other to produce better
machine learning algorithms.
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Núñez, H.; Angulo, C.; and Català, A. 2002. Rule extraction
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