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Abstract

Belief change and non-monotonic reasoning are arguably dif-
ferent perspectives on the same phenomenon, namely, jetti-
soning of currently held beliefs in response to some incom-
patible evidence. Investigations in this area typically assume,
among other things, that the underlying (background) logic
is compact, that is, whatever can be inferred from a set of
sentences X can be inferred from a finite subset of X . Re-
cent research in the field shows that this compactness assump-
tion can be dispensed without inflicting much damage on the
AGM paradigm of belief change. In this paper we investi-
gate the impact of such relaxation on non-monotonic logics
instead. In particular, we show that, when compactness is not
guaranteed, while the bridge from the AGM paradigm of be-
lief change to expectation logics remains unaffected, the “re-
turn trip” from expectation logics to AGM paradigm is no
longer guaranteed. We finally explore the conditions under
which such guarantee can be given.

1 Introduction
Classical logics are monotonic: accumulation of new infor-
mation (in form of additional premises) does not invalidate
old conclusions. For instance, since from All birds fly and
Tweety is a bird we can infer Tweety flies, acquiring another
piece of information, Tweety is a penguin is not going to
invalidate that inference – we will, classically, still be able
to infer that Tweety flies. However, commonsense dictates
that in light the new piece of information, that Tweety is a
penguin, we should no longer be able to infer that Tweety
flies since we “know” that penguins, though birds, cannot fly.
Commonsense reasoning is non-monotonic: although some
set of premises ∆ entails some conclusion x, the inference
of x from ∆′ may not be guaranteed even if ∆ ⊆ ∆′. This
realisation has led to the development of a number of ap-
proaches to non-monotonic logics, including, default logics
(Besnard 2013), defeasible logics (Nute 1994) and expecta-
tion logics (Gärdenfors and Makinson 1994).

One may attribute the non-monotonic behaviour of the
commonsense inference to our tendency to “deactivate”
some premises in light of some conflicting information – it is
as if the new information, Tweety is a penguin, triggers deac-
tivation of the premise, All birds fly. When viewed from this
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angle, non-monotonic reasoning appears to be closely con-
nected to accounts of rational belief change, such as the clas-
sic AGM account, (Alchourrón, Gärdenfors, and Makinson
1985), further developed in many works such as (Gärdenfors
1988; Hansson 1999; Rott 2001). Indeed it has been ar-
gued that belief dynamics and non-monotonic reasoning are
different perspectives on the same phenomenon (Makin-
son and Gärdenfors 1991): I am licensed to (common-
sensically/non-monotonically) infer sentence y from sen-
tence x if it is rational on my part to believe y after accepting
evidence x. This idea is concisely captured in the standard
notation:

BRNM: x |∼K y if and only if y ∈ K ∗ x
where K represents a contextually fixed background knowl-
edge, |∼K is the non-monotonic inference operation that em-
ploys K in the background, and ∗ is a belief revision oper-
ation that yields the new “belief set” K ∗ x from the old
belief set K in light of evidential input x. Oftentimes the
subscript K from the relation |∼K is dropped for notational
convenience when the intention is clear from the context.

The connection between belief revision and non-
monotonic reasoning captured by BRNM comes out handy
in going back and forth between these two systems. Con-
sider for instance a constraint on belief revision, that revi-
sion of a set of beliefs K by evidence x should not license
one to believe in something that does not follow fromK and
x together, that is,

Inclusion: K ∗ x ⊆ Cn(K ∪ {x})
where the consequence operation Cn represents the back-
ground (classical) logic. Assuming Cn satisfies Deduction,
this constraint on belief revision can be rewritten as:

If y ∈ K ∗ x, then x→ y ∈ K.
Now, since a tautology > brings in no new information, we
can take K ∗ > to be equivalent to K, which allows us to
rewrite Inclusion as:

If y ∈ K ∗ x, then x→ y ∈ K ∗ >.
Since this version of Inclusion is of the same syntactic form
as BRNM, we get

Weak Conditionalisation: If x |∼ y, then > |∼ x→ y

which says that if y is a non-monotonic consequence of x,
then the material conditional x → y should be a theorem
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of that non-monotonic system. Principles of non-monotonic
logic can similarly be translated to and viewed as princi-
ples of belief revision. The translation process is not always
as straightforward as in this example; a rigorous recipe for
this translation procedure as well as a comprehensive list
of such translations can be found in in the seminal work
(Makinson and Gärdenfors 1991). This work was later gen-
eralised to non-monotonic reasoning based on expectation
orderings, ordering over sentences reflecting the extent they
are expected to hold true (Gärdenfors and Makinson 1994).
As noted in (Dix and Makinson 1992), non-monotonic rea-
soning based on expectation orderings is very similar to
the classic approach to non-monotonic reasoning based on
preference structures, often called the KLM-system, as pro-
pounded in (Kraus, Lehmann, and Magidor 1990).

The belief revision operation ∗ alluded to above is one
of three forms of belief change operations dealing with be-
lief dynamics arguably in a static environment (Katsuno and
Mendelzon 1992):1

(a) one for adding the new information possibly inviting
inconsistency (expansion);

(b) one for removing an existing belief (contraction); and

(c) one for incorporating the new information without
courting inconsistency (revision).

The desired behaviour of these operations are captured
by corresponding rationality postulates that are motivated
by the principle that the change involved should be min-
imised, and different constructions of such operations are
well known. Furthermore, belief revision and belief contrac-
tion are inter-definable via well known identities. It is typical
to assume in these approaches that the background logic that
drives this process is, among other things, compact, that is, if
this background logic allows inference of a sentence x from
a set of premises ∆, then it allows the inference of x from
a finite subset ∆′ of ∆. In a recent work we have shown
that this compactness assumption can be relaxed and yet ra-
tional belief contraction operations can be constructed given
innocuous conditions on the background language and logic
(Ribeiro, Nayak, and Wassermann 2018):

Theorem 1. (Ribeiro, Nayak, and Wassermann 2018) AGM
(full) rational contraction functions can be defined in every
non-compact logic as long as it is Tarskian and closed under
classical negation and disjunction.

Given the inter-definability between contraction and revi-
sion via the Levi Identity and the Harper Identity, it is easily
shown that the compactness assumption can be similarly re-
laxed in case of belief revision. Indeed, one can check step-
by-step the relevant proofs in (Gärdenfors 1988) and verify
that compactness plays no special role in them, and hence
can be dispensed with without any damage.

That many logics such as Temporal Logics (Gabbay, Ro-
drigues, and Russo 2008) that play important roles in both

1The corresponding operations of contraction and revision in a
dynamic environment are respectively known as erasure and up-
date.

Artificial Intelligence and Computing Science do not sat-
isfy compactness lends practical significance to such relax-
ation. For instance, temporal logics such as Computation
Tree Logic and Linear Temporal Logic, though not com-
pact, are widely used in both Computing Science (e.g. For-
mal specification and verification of systems) and Artifi-
cial Intelligence (in planning, for instance). Arguably, such
extension of belief revision to the realm of non-compact
logics will be of particular relevance to research on AI
agents dealing with (semi)-automatic repair of formal sys-
tem specifications when the desired formal requirements
(specified in temporal logics) are not complied with. Be-
lief revision can be used in this scenario to recommend ra-
tional modification of a system specification so that the re-
quired properties are satisfied. Some initial efforts towards
this end can be found in (Guerra and Wassermann 2010;
Ribeiro and Andrade 2015) and in (Guerra, Andrade, and
Wassermann 2013).

Since non-monotonic reasoning and belief revision are
strongly connected, the nature of non-monotonic reasoning
is worth enquiring when the background logic of the corre-
sponding belief revision is not assumed to be compact. That
is precisely the problem we address in this paper. In partic-
ular, we study the connection between the AGM paradigm
of belief revision and the non-monotonic logic based on
expectation orderings, and show that when compactness is
dropped, it is still possible to walk from belief revision to
non-monotonic reasoning. However, the walking back from
non-monotonic reasoning to belief revision cannot be as-
sured without further appropriate measures, and we identify
such measures.

In the rest of this section we will briefly outline the no-
tation we employ in this paper and the formal background.
We review in the next section, Section 2, the AGM account
of belief revision (Alchourrón, Gärdenfors, and Makinson
1985) as well as the non-monotonic inference system based
on Expectation orderings (Gärdenfors and Makinson 1994),
and indicate the significance of the compactness assumption.
This is followed by a demonstration in Section 3 that relax-
ing the compactness assumption does not affect the transi-
tion from belief revision to non-monotonic reasoning. We
show in the next section, Section 4, and explain why, the trip
back from non-monotonic systems to belief revision cannot
be completed in absence of the compactness assumption.
The subsequent Section 5 is devoted to identify the required
conditions under which the desired connection between the
belief revision and non-monotonic reasoning can be estab-
lished in the absence of compactness and provide the ex-
pected representation results. Finally, in section 6, we con-
clude with a brief discussion and considerations of future
work.

We sketch proof of selected results in this paper; others
will be provided in a planned future publication.

Notation and Technical Preliminaries
Given a set A, the power set of A will be denoted as 2A.
We use the terms formula and sentence interchangeably. We
will use upper case Roman letters (A, B, X, Y . . . ) to de-
note sets, and lower case Greek letter (ϕ,ψ, α, β, . . . ) will
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be used to denote formulas. We will reserve the upper case
letter K for a sepcial kind of sets called belief sets, and the
Greek lower case letter γ to denote a kind of function called
selection function. The letter Γ is reserved to denote a collec-
tion of sets. Propositional symbols will be denoted by lower
case Roman letters (p, q, r, . . . ), while > and ⊥ will be used
to denote truth and falsum. The letter M will denote
a model. Moreover we will use the symbol ⊆ for subset,
whereas ⊂ will denote proper subset.

We consider a logic as a pair 〈L,Cn〉, where L is a lan-
guage and Cn: 2L → 2L is a logical consequence operator
that maps a set of formulas to the set of all formulas that
can be inferred from it. For readability, for any formula ϕ,
the set Cn({ϕ}) will often simply be written as Cn(ϕ). We
will often pretend that the consequence operation Cn itself
represents a logic when no confusion is imminent. We limit
ourselves to logics that are Tarskian, that is, logics whose
consequence operator satisfies the following three proper-
ties:

1. (Monotonicity): A ⊆ B iff Cn(A) ⊆ Cn(B);

2. (Idempotence): Cn(A) = Cn(Cn(A));

3. (Inclusion): A ⊆ Cn(A);

Apart from being Tarskian, the consequence operation is
often taken to satisfy some other properties in the AGM be-
lief change literature:

(deduction): ϕ ∈ Cn(A ∪ {ψ}) iff ψ → ϕ ∈ Cn(A);

(supraclassicality): if ϕ is a logical consequence of A in
classical propositional logic, then ϕ ∈ Cn(A);

(compactness): if ϕ ∈ Cn(A) then there is a finite subset
A′ of A such that ϕ ∈ Cn(A′).

We will say that a logic 〈L,Cn〉 is closed under classi-
cal negation iff the language L is closed under the negation
operator ¬ such that, for each formula ϕ ∈ L, Cn(ϕ) ∩
Cn(¬ϕ) = Cn(∅), and Cn({ϕ,¬ϕ}) = L. In other words,
the negation is interpreted classically. Analogously, a logic
is closed under the disjunction if the associated language is
closed under such a connective (classically interpreted, that
is, if ϕ ∈ Cn(X) then ϕ ∨ ψ ∈ Cn(X), for every ψ ∈ L
and X ⊆ L).

2 Belief Revision and Non-monotonic
Reasoning

Earlier in the introductory section we outlined in an informal
way accounts of belief revision and non-monotonic reason-
ing, and the interconnection between them. We now elabo-
rate it a bit in a more formal setting, and discuss the role that
compactness plays in them.

AGM Belief Revision
All the beliefs of an agent as a whole is represented as
a set of sentences K, called a belief set (or theory), that
is assumed to be closed under logical consequence: K =
Cn(K). For notational convenience we take K+ϕ to mean

Cn(K ∪ {ϕ}), for any belief set K and sentence ϕ.2 In the
AGM paradigm of belief revision, as well as other forms of
AGM belief change (Alchourrón, Gärdenfors, and Makinson
1985), the background logicCn is assumed to satisfy a set of
properties called AGM assumptions, namely, it is Tarskian,
supra-classical, compact, closed under all boolean connec-
tives (conjunction, disjunction and negation), and satisfies
deduction. Let K be the collection of all belief sets. Then
any function f : K × L → K is a belief change operation.
The full set of AGM rationality postulates is listed below.3
For any theory K, sentences ϕ and ψ, and belief revision
function ∗:
K1 K ∗ ϕ = Cn(K) (Closure)
K2 ϕ ∈ K ∗ ϕ (Success)
K3 K ∗ ϕ ⊆ K + ϕ (Inclusion)
K4 if ¬ϕ 6∈ K, then K + ϕ ⊆ K ∗ ϕ (Preservation)
K5 K ∗ ϕ = Cn(⊥) iff ¬ϕ ∈ Cn(∅) (Consistency)
K6 if Cn(ϕ) = Cn(ψ), then K ∗ ϕ = K ∗ ψ

(Extensionality)
K7 K ∗ (ϕ ∧ ψ) ⊆ (K ∗ ϕ) + ψ (Conjunctive Inclusion)
K8 if ¬ψ 6∈ K ∗ ϕ, then (K ∗ ϕ) + ψ ⊆ K ∗ (ϕ ∧ ψ)

(Conjunctive Preservation).

Postulates (K1) to (K6) are the basic AGM postulates
for revision, and the last two constitute the supplementary
postulates. Discussion of and rationale behind these postu-
lates can be found in (Gärdenfors 1988), among others. We
will call any belief change operation that satisfies postulates
(K1) to (K6) an AGM rational belief revision operation. Any
AGM rational belief revision operation that also satisfies the
supplementary postulates (K7) and (K8) will be said to be
fully AGM rational.

The postulates (K1) to (K8) prescribe a good set of
behaviours for a revision function, but do not tell us
where to find such a function. There are different avail-
able constructions of (fully) AGM-rational belief revision
functions. These constructions employ certain extra-logical
mechanisms in the form of preference relations over be-
liefs/sentences reflecting how epistemically entrenched each
belief is (how hard it is to give up a belief) or over possible
worlds captured by Grove’s System of Spheres(Grove 1988)
reflecting their plausibility. Expectation orderings studied
in (Gärdenfors and Makinson 1994) are generalisations of
the epistemic entrenchment relation, and preference struc-
tures propounded in the KLM-system (Kraus, Lehmann, and
Magidor 1990) are generalisation of such plausibility order-
ings.

Non-monotonic reasoning
Unlike in the AGM approach to belief revision, in the non-
monotonic reasoning system based on expectation order-

2This is actually called the belief expansion operator that is used
to add beliefs without consideration of whether or not the result is
consistent.

3In (Alchourrón, Gärdenfors, and Makinson 1985), the rational-
ity postulates for belief revision effectively incorporated the Harper
Identity which defines contraction in terms of revision as one of the
postulates. Here we have followed the presentation in (Gärdenfors
1988), which has become the de facto standard in the literature.
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ings there are seven basic axioms and two supplementary
axioms. This separation into two groups, first proposed in
(Gärdenfors and Makinson 1994), makes the alignment of
these axioms with the postulates for AGM belief revision
explicit.

We will assume that a non-monotonic inference relation,
denoted |∼, builds up upon to an underlying logic Cn. We
will assume very little about Cn, except that it is required
to be Tarskian. The basic postulates (or axioms) for non-
monotonic inference relation |∼ are:

N1 If ψ ∈ Cn(ϕ), then ϕ |∼ ψ (Supraclassicality)

N2 If Cn(ϕ) = Cn(ψ) and ϕ |∼ α then ψ |∼ α
(Left Logical Equivalence)

N3 If ϕ |∼ ψ and α ∈ Cn(ψ) then ϕ |∼ α
(Right Weakening)

N4 If ϕ |∼ ψ and ϕ |∼ α then ϕ |∼ ψ ∧ α (And)

N5 If ϕ |∼ ψ then |∼ ϕ→ ψ (Weak Conditionalization)

N6 If 6|∼ ¬ϕ and |∼ ϕ→ ψ, then ϕ |∼ ψ
(Weak Rational Monotony)

N7 If ϕ |∼⊥ then Cn(ϕ) = Cn(⊥)

(Consistency Preservation).

For simplicity, we will call any inference relation that sat-
isfies the above seven (basic) postulates of non-monotonicity
a non-monotonic inference relation.

Besides these basic postulates, two supplementary postu-
lates were also introduced for non-monotonic reasoning:

N8 If ϕ ∧ ψ |∼ φ then ϕ |∼ ψ → φ (Conditionalization)

N9 If ϕ 6|∼ ¬ψ and ϕ |∼ φ then ϕ ∧ ψ |∼ φ
(Rational Monotony).

Let us, for the time being, assume that Cn satisfies Com-
pactness. Then it is easily verified that postulates N3 and N4
jointly imply the following closure axiom:

ClosureNM If ϕ |∼ ψ for all ψ ∈ A, then ϕ |∼ α for all
α ∈ Cn(A).

named after the closure postulate K1 of belief revision that
it corresponds to (Gärdenfors and Makinson 1994). On the
other hand, postulates N5 through N7 respectively corre-
spond to the AGM revision postulates K3 through K5. Fur-
thermore, postulate N2 corresponds to K6 (extensionality).
Similarly, postulates N8 and N9 correspond respectively to
the revision postulates K7 and K8.

We will see in Section 4 that this nice correspondence be-
tween the revision operation ∗ and the inference relation |∼
breaks down at many points when the compactness assump-
tion is dropped. Here we give an indication of how com-
pactness can have consequences for non-monotonic reason-
ing systems. Let us consider ClosureNM which follows from
axioms N3 and N4 when Cn satisfies compactness. How-
ever, in absence of compactness, ClosureNM no longer fol-
lows from N3 and N4.
Theorem 2. If the underlying logic Cn is not compact, then
N3 and N4 do not imply ClosureNM.

Proof Sketch. Assume that Cn is not compact. Also sup-
pose that |∼ is a nonmonotonic inference relation that satis-
fies N3 and N4. Let ϕ be such that ϕ |∼ β for all β ∈ A
for some (infinite) set of formulae A, α ∈ Cn(A), but
α 6∈ Cn(A′) for any finite subset A′ of A. Satisfaction of
ClosureNM would require that ϕ |∼ α. However, N3 and N4
would jointly allow non-monotonic derivation of α only if
α ∈ Cn(A′) for some finite subset A′ of A contradicting
our assumption.

3 From * to |∼ without Compactness
We recall from the introductory section the inter-
translatability between revision operation * and non-
monotonic inference relation |∼ captured by BRNM:

ψ ∈ K ∗ ϕ if and only if ϕ |∼ ψ.

This allows us to navigate between a belief revision operator
∗ and an inference relation |∼. For convenience, when an
inference relation |∼ is taken to have been obtained from a
revision operation *, we say that * induces |∼. Conversely,
when navigating on the opposite direction, we will say that
|∼ induces ∗. We will not assume that the background logic
Cn is compact.

Let us at this point make the following observation, that
if we start with a revision operator ∗, obtain the inference |∼
induced by it, and then again obtain the revision operator in-
duced by this inference relation in turn, we will get back the
revision operator ∗ we started with. Similarly, if we started
with an inference operation |∼ and obtain another inference
via a revision operation induced by it, we will go back to our
original inference operation |∼. This simple observation will
give us much flexibility with writing the proofs, and we will
implicitly assume it throughout.

Observation 1. Let ∗ be a belief change operator and |∼
an inference relation. Further more, with a bit of notational
overloading, let us denote by |∼ (∗) the inference relation
induced from ∗, and similarly, by ∗ (|∼) the belief revision
operator induced by |∼. Then,

(a) ∗ (|∼ (∗)) = ∗, and
(b) |∼ (∗ (|∼)) = |∼.

Proof. Let K be fixed. We sketch the proof of (a) here, and
the proof of (b) is analogous. We need to show that

α ∈ K ∗ ϕ iff α ∈ K ∗ (|∼ ∗) ϕ,

(⇒.) Suppose α ∈ K∗ϕ. Thus, ϕ |∼ (∗) α, which implies
that α ∈ K ∗ (|∼ (∗))ϕ.

(⇐.) Suppose α ∈ K ∗ (|∼ (∗)). Then, ϕ |∼ (∗) α which
implies that α ∈ K ∗ ϕ.

First we show that as long as ∗ satisfies the six basic
AGM revision postulates, the induced |∼ relation satisfies
the seven basic axioms of non-monotonicity (Theorem 3).
Towards this end we first make the following useful obser-
vation which trivially follows from Deduction.

Observation 2. If ϕ ∈ K + ψ then ψ → ϕ ∈ K, for every
theory K.
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Theorem 3. If a belief change operator ∗ is (basic) AGM
rational then its induced inference relation |∼ is a non-
monotonic inference relation.

As the basic revision postulates translates to the basic
non-monotonic axioms, the next step is to investigate if the
supplementary postulates also imply the supplementary non-
monotonic axioms. In Corollary 1 below we show that a
fully AGM rational belief revision operator induces a non-
monotonic inference relation that satisfies the supplemen-
tary axioms of non-monotonicity. Theorem 4 below shows
a strong alignment, respectively between the revision postu-
lates K7 and K8, and the axioms of non-monotonicity N8
and N9.

Theorem 4. Let ∗ be a belief revision operator that satisfies
K1, and |∼ be its induced inference relation. Then,

(i) if ∗ satisfies K7, then |∼ satisfies N8;
(ii) if ∗ satisfies K8, then |∼ satisfies N9.

Putting Theorems 3 and 4 together tells us that a fully
AGM rational belief revision operator induces a non-
monotonic inference relation that satisfies the supplemen-
tary axioms of non-monotonicity:

Corollary 1. Let ∗ be a fully AGM rational revision opera-
tion. The non-monotonic inference relation |∼ induced by it
satisfies the two supplementary axioms of non-monotonicity.

What remains to be shown is that the supplementary ax-
ioms N8 and N9 induce belief change operators that satisfy
respectively K7 and K8. However, we postpone this discus-
sion to Section 5, since the transition from the basic non-
monotonic inference axioms to the basic AGM postulates
proves problematic, as we show in the next section.

4 From |∼ to * without Compactness
We have shown that a rational belief revision function be-
haves as a non-monotonic inference relation. Moreover, we
also saw that the supplementary revision postulates imply
the supplementary non-monotonic axioms, where: N8 is ob-
tained from K7, and N9 from K8. In this section, we ex-
amine the converse problem, that is, if every non-monotonic
inference induces a rational AGM revision operator.

As we will see, the basic non-monotonic axioms are too
general to capture some of the basic AGM postulates in ab-
sence of compactness. We subsequently identify the condi-
tions under which a non-monotonic inference relation be-
haves in accordance with the belief revision postulates.

Let us first show that the basic non-monotonic axioms do
not correspond to the basic AGM revision postulates. For
this purpose we need construct a non-monotonic inference
relation |∼ such that the revision function ∗ induced by it
violates some of the basic AGM postulates. We will con-
veniently take a revision function ∗ which violates one of
the AGM postulates (namely, K3), and then we show that
the non-monotonic inference relation |∼ induced by it satis-
fies all the basic non-monotonic axioms. In light of Obser-
vation 1, this will suffice our purpose. We construct such a
belief revision operator in Example 1.

Example 1. Let ⊗ be a fully AGM rational revision func-
tion, and p an arbitrary formula. The belief revision opera-
tion ∗ is constructed as follows:

K ∗ ϕ =

{
(K + ϕ) + p if ϕ→ ¬p 6∈ K
K ⊗ ϕ otherwise.

The revision operation from Example 1 behaves in a sim-
ple way. It adds both p and a formula ϕ to K, if both ϕ and
p are jointly consistent with K. On the other hand, if K is
inconsistent with ϕ or p, it resorts to the rational AGM func-
tion ⊗. It is trivial to show that although it violates postulate
K3, the inference relation |∼ induced by it satisfies N1 to
N7. This example helps us to prove the following interesting
result:

Theorem 5. Let |∼ be the inference relation induced from
the belief change function ∗. It is not necessary for * to sat-
isfy K1-K6 in order that |∼ satisfies all the basic axioms of
non-monotonicity.

Which trivially yields the following as a corollary:

Corollary 2. There is a non-monotonic inference relation |∼
whose induced belief change operator ∗ violates some AGM
revision postulates.

One might wonder that although the basic non-monotonic
axioms do not lead to the six basic AGM postulates, perhaps
the supplementary axioms of non-monotonicity can play a
compensating role. However, the inference relation |∼ in-
duced from the belief change function of Example 1 already
satisfies these supplementary axioms. This means that even
in the presence of the supplementary axioms it is not possi-
ble to navigate from a non-monotonic inference relation to
the AGM postulates.

Observation 3. The belief change operator ∗ used in Exam-
ple 1 satisfies the supplementary AGM revision postulates.

Theorem 6. There is a non-monotonic inference relation
that satisfies the supplementary non-monotonic axioms, but
violate some of the basic AGM revision postulates.

Theorem 6 shows us that even in the presence of the sup-
plementary axioms, it is not possible to establish the de-
sired connection between AGM revision postulates and non-
monotonic inference axioms without the compactness as-
sumption. This naturally leads to the question whether there
are conditions under which the revision operation induced
by a rational inference relation |∼ is AGM-rational in ab-
sence of compactness. This is the issue we examine in the
next section.

5 Bridging the gap
We have seen that the basic axioms of non-monotonicity
alone are not strong enough to capture all the basic AGM
revision postulates. We also saw that resorting to the supple-
mentary axioms does not help in capturing the basic AGM
revision postulates either, let alone the supplementary AGM
revision postulates.

In this section, we will show that it is possible to connect
AGM revision and non-monotonic inference. We will also
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show what conditions are needed to establish such a con-
nection. Towards this end let us first identify the largest set
of AGM postulates that are induced by the basic axioms of
non-monotonicity.

Let us start with the easy ones. Axiom N2 corresponds to
K6 (extensionality), and says that if two formulae are logi-
cally equivalent modulo Cn, then they entail the same set of
formulae. The success postulate K2 is captured by the ax-
iom N1. The following theorem shows that postulate K5 is
jointly captured by axioms N7 and N1.

Theorem 7. Let |∼ be an inference relation and ∗ its in-
duced belief change operator. Then:

(i) if |∼ satisfies N1, then ∗ satisfies K2 (success);
(ii) if |∼ satisfies N2, then ∗ satisfies K6 (extensionality);
(iii) if |∼ satisfies both N7 and N1 then ∗ satisfies K5 (con-
sistency).

So far, of the basic AGM postulates, the ones that are
missing are K1, K3 and K4. As we will see, the basic ax-
ioms of non-monotonicity are not strong enough to capture
these three AGM postulates. We start with K1 (the closure).

As we discussed in Section 2, when the underlying
logic Cn is compact, axioms N3 and N4 trivially imply
ClosureNM. However, when Cn is not assumed to be com-
pact, N3 and N4 may no longer guarantee ClosureNM. Con-
sequently, a non-monotonic inference may fail to induce a
belief change operator ∗ that satisfies K1. Therefore, sat-
isfaction of K1 necessitates the presence of the ClosureNM

axiom.

Proposition 1. An inference relation |∼ satisfies ClosureNM

if and only if the belief change operator ∗ induced by it sat-
isfies K1.

One question that immediately arises is: Do we still need
N3 and N4 in presence of ClosureNM? It turns out that
ClosureNM implies both N3 and N4.

Proposition 2. ClosureNM implies N3 and N4.

Now we analyse the other two missing postulates: K3
and K4. In Section 4, we showed in Example 1 that non-
monotonic inference relations may fail to induce postulate
K3. In that example, reasoning from a tautological evidence
allowed the inference of new information not previously be-
lieved: recall thatCn(>)∗> entailed the propositional sym-
bol p which is clearly not in Cn(>).

This means that, the axioms do not forbid a non-
monotonic inference to augment its body of knowledge in
the light of a tautology. In other words, if a formula ϕ does
not belong to a theory K, it is possible that > |∼ ϕ. So,
our first task is to prevent such inappropriate acquisition of
information. Hence we propose the following condition:

(keeper) if |∼ ϕ then ϕ ∈ K.

This allows us to capture postulate K3.

Proposition 3. Let |∼ be an inference relation. If it satisfies
both N5 and the keeper, then the belief change operator ∗
induced by it satisfies K3.

Proof. Let |∼ be an inference relation that satisfies both N5
and keeper. We will show that its induced belief change op-
erator ∗ satisfies K3, that is, K ∗ ϕ ⊆ K + ϕ. Let α be a
formula inK ∗ϕ. It follows then that ϕ |∼ α. Then it follows
from N5 that |∼ ϕ→ α. Thus, from the keeper, we get that
ϕ→ α ∈ K. Therefore, α ∈ K + ϕ.

Though keeper is strong enough to capture K3, it fails to
capture postulate K4 even in the presence of the seven basic
axioms of non-monotonicity. To notice that, let us take the
Example 2 below.

Example 2. Let ⊗ be a fully AGM rational revision func-
tion. We construct the following belief change operation:

K ∗ ϕ =

{
Cn(ϕ) if ¬ϕ 6∈ K
K ⊗ ϕ otherwise.

Example 2 is similar to Example 1 except that when the
input evidence is consistent with the current knowledge, the
agent believes the information contained in that evidence
alone (and forgoes all the old information). Clearly * so de-
fined violates K4. We will show that ∗ induces an inference
relation |∼ that satisfies all basic non-monotonic inference
axioms and the keeper.

Proposition 4. Satisfaction of K4 by a revision operation
* is not necessary to induce an inference relation |∼ which
satisfies all basic axioms of non-monotonicity.

The next step deals with keeper.

Proposition 5. The belief change operation used in Ex-
ample 2 induces an inference relation |∼ that satisfies the
keeper.

Proof. Let us suppose that |∼ ϕ, we need to show that ϕ ∈
K. As |∼ is induced from ∗, we have that ϕ ∈ K ∗ >. We
have two cases to consider K ∗ > = K ⊗ > or K ∗ > =
Cn(>).

For K ∗ > = K ⊗ >, as ⊗ satisfies all the basic AGM
revision postulates, we have from K3 that K ∗ > ⊆ K, thus
ϕ ∈ K.

For K ∗ > = Cn(>) we have that ϕ ∈ Cn(>), which
implies that ϕ ∈ K, as K is a theory.

Example 2 helps to show that adding the keeper is not
enough to capture the K4. In that example, the main reason
that K4 failed is that we are allowing loss of information.
This suggests that we should avoid losing formulae when
the input formula is consistent with a theory K. Hence we
introduce a further condition:

(rooting) if ϕ ∈ K then |∼K ϕ.

The rooting axiom is the converse of the keeper and en-
forces that the formulae present in a theoryK should remain
in the non-monotonic inferences by a tautology. The rooting
is the last piece of the puzzle to our first side of the repre-
sentation theorem. The rooting together with the keeper and
N6 captures K4.

Proposition 6. If an inference relation |∼ satisfies keeper,
rooting and N6, then its induced belief change operator ∗
satisfies K4.
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Proof. Let |∼ be an inference relation that satisfies keeper,
rooting and N6, and ∗ its induced belief change operator. We
will show that ∗ satisfies K4. To show this, let us suppose
that ¬ϕ 6∈ K, we need to show that K + ϕ ⊆ K ∗ ϕ. In
other words, for every formula α ∈ K +ϕ we need to show
that α ∈ K ∗ ϕ. By hypothesis, ¬ϕ 6∈ K which from the
contrapositive of the keeper implies that 6|∼ ¬ϕ.

As α ∈ K + ϕ, we have that ϕ → α ∈ K from Obser-
vation 1. Thus, from rooting |∼ ϕ → α. Thus we have that
both 6|∼ ¬ϕ and |∼ ϕ → α. Thus, from N6 we have that
ϕ |∼ α which implies that α ∈ K ∗ ϕ.

Now we have all the pieces of the puzzle to show the first
result of the representation theorem, that is, the basic non-
monotonic axioms augmented with the keeper and rooting
induces AGM rational revision operators.
Theorem 8. Let |∼ be a non-monotonic inference relation, if
it satisfies the keeper, rooting and ClosureNM then its induced
belief revision operator ∗ is AGM rational.

Proof. From Propositions 3 and 6 we have that ∗ satisfies
K3 and K4. Moreover, from Theorem 7 we have K2, K5
and K6. Finally, from Proposition 1 we have that ClosureNM

implies K1. This finishes the proof.

So far, we were able to show one direction of the represen-
tation theorem. However, as we have included two new ax-
ioms to the systems, we need to show that rational AGM re-
vision operators induces non-monotonic inferences that sat-
isfy, besides the basic axioms, the keeper, rooting and the
ClosureNM.
Theorem 9. An AGM rational belief revision operator
induces a non-monotonic inference that satisfies rooting,
keeper and ClosureNM.

Proof. Let ∗ be an AGM rational operator, that is, it satisfies
the six basic AGM revision postulates. We have from The-
orem 3 that it induces a non-monotonic inference relation
|∼. We will show that it also satisfies rooting, keeper and
ClosureNM. From K3 and K4, we have that

K ∗ > = K. (1)

As a formula ϕ ∈ K ∗ ψ iff ψ |∼ ϕ, we have then from
(1) that ϕ ∈ K ∗ > iff |∼ ϕ. This means that |∼ satisfies
both keeper and rooting. Furthermore, since * satisfies K1,
it follows from the contrapositive of Proposition 2 that |∼
satisfies the ClosureNM.

We reached our first representation theorem, in the form
of Corollary 3 below, which comprises Theorems 8 and
9. This results is due to that adding keeper, rooting and
ClosureNM axioms to the basic set of non-monotonic infer-
ence axioms stablish a bridge between AGM belief revision
operators and non-monotonic logics.
Corollary 3. A belief change operator ∗ is AGM rational iff
its induced inference relation |∼ is a non-monotonic infer-
ence relation that satisfies ClosureNM, keeper and rooting.

Proof. It is straightforward from Theorems 8 and 9.

Capturing Supplementary postulates
Our first representation result comprises Corollary 3, which
says that a non-monotonic inference relations augmented
with the keeper and rooting induce an AGM rational belief
revision operators, and AGM rational belief revision opera-
tors also induce non-monotonic inference relations that sat-
isfy, besides the basic axioms, the keeper and rooting.

The next representation theorem concerns the supple-
mentary postulates and the supplementary axioms. We start
showing that axioms N8 and N9 induce belief change oper-
ators that satisfy K7 and K8 respectively.

Theorem 10. If a non-monotonic inference relation |∼ sat-
isfies N8 then the belief change function ∗ induced by it sat-
isfies K7.

Proof. Given a formula α ∈ K∗ϕ∧ψ, we need to show that
α ∈ K ∗ϕ+ψ. As α ∈ K ∗ϕ∧ψ, we have that ϕ∧ψ |∼ α
which from N8 implies that ϕ |∼ ψ → α. This means that
ψ → α ∈ K ∗ ϕ. Thus, α ∈ K ∗ ϕ+ ψ.

Theorem 11. If an inference relation |∼ satisfies both N9
and ClosureNM, then its induced belief change operation ∗
satisfies K8.

Proof. Let us suppose that ¬ψ 6∈ K∗ϕ, the we need to show
thatK ∗ϕ+ψ ⊆ K ∗ϕ∧ψ. In other words, given a formula
α ∈ K ∗ ϕ + ψ, we need to show that α ∈ K ∗ ϕ ∧ ψ.
From ¬ψ 6∈ K ∗ ϕ, we have that ϕ 6|∼ ¬ψ. Moreover, as |∼
satisfies ClosureNM, we have that bothK∗ϕ andK∗ϕ∧ψ are
theories. Therefore, α ∈ (K ∗ϕ) +ψ implies Observation 1
that ψ → α ∈ K ∗ ϕ, which means that ϕ |∼ ψ → α.
This together with ϕ 6|∼ ¬ψ implies from N9 that ϕ ∧ ψ |∼
ψ → α. This means that ψ → α ∈ K ∗ ϕ ∧ ψ. Thus, as
ψ ∈ K ∗ ϕ ∧ ψ, we have that α ∈ K ∗ ϕ ∧ ψ.

This second representation result, an immediate conse-
quence from Corollary 3, together with Theorems 10 and
11, shows that N8 and N9 translates respectively into K7
and K8, and vice-versa.

Corollary 4. A belief change operator ∗ is fully AGM ratio-
nal iff its induced inference relation |∼ satisfies all the ba-
sic, and supplementary axioms of non-monotonicity together
with keeper and rooting.

We know from Proposition 2 that N3 and N4 are superflu-
ous in presence of ClosureNM. Therefore, we may assume a
shorter set of non-monotonic axioms: N1, N2, N5 to N7 and
the keeper, rooting and ClosureNM. Hence the Corollary 3
can be stated more simply as:

Corollary 5. A belief change operator ∗ is AGM rational iff
its induced inference relation |∼ satisfies N1, N2, (N5 - N7),
keeper, rooting and ClosureNM.

6 Conclusion and Future Works
In this work we have addressed the connection between
AGM revision operators and non-monotonic logics. Un-
like the previous works, we no longer assume compactness.
We showed that dropping compactness has some immediate
consequences on the non-monotonic system. For instance,
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ClosureNM needs to be assumed as it no longer immedi-
ately follows from N3 and N4. Moreover, in presence of
ClosureNM, N3 and N4 become redundant. Another two con-
sequences is that, though the direction from AGM revision
postulates to the non-monotonic system we addressed re-
mains untouched, the converse is not true. We showed that
the postulates K3 and K4 are violated in this side of the trip.
To solve this problem, we studied which axioms remained
as a translation of the AGM postulates, and then we pro-
posed two new axioms, the keeper and rooting, in order to
strength the non-monotonic system to be able to reconnect
with AGM paradigm.

At the end, we were able to show a connection between
the enhanced non-monotonic system and the AGM belief
postulates: both for the basic postulates as well as the sup-
plementary postulates. One more difference between our
work and the classical one is that whereas the study between
AGM revision and non-monotonic inference rides on spe-
cific belief revision operators such as partial meet or other
constructions, our proofs navigate directly from postulates
to axioms and vice-versa without the need to assume any
specific construction. This makes the study more general, as
we assume very little about the underlying logics, namely,
to be only Tarskian and closed under classical negation and
disjunction.
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