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Abstract

This paper proposes Multi-context System for Optimiza-
tion Problems (MCS-OP) by introducing conditional cost-
assignment bridge rules to Multi-context Systems (MCS).
This novel feature facilitates the definition of a preorder
among equilibria, based on the total incurred cost of ap-
plied bridge rules. As an application of MCS-OP, the pa-
per describes how MCS-OP can be used in modeling Dis-
tributed Constraint Optimization Problems (DCOP), a promi-
nent class of distributed optimization problems that is fre-
quently employed in multi-agent system (MAS) research.
The paper shows, by means of an example, that MCS-OP is
more expressive than DCOP, and hence, could potentially be
useful in modeling distributed optimization problems which
cannot be easily dealt with using DCOPs. It also contains a
complexity analysis of MCS-OP.

Introduction
The paradigm of Multi-context Systems (MCS) has been
introduced in (McCarthy 1987; Roelofsen and Serafini
2005; Brewka and Eiter 2007) as a framework for inte-
gration of knowledge from different sources. Intuitively, an
MCS (Brewka and Eiter 2007) consists of several theories,
referred to as contexts, e.g., representing different reason-
ing components in distributed settings or different agents
in multi-agent systems (MAS). The contexts may be het-
erogeneous, in the sense that each context could use a dif-
ferent logical language for its knowledge base (e.g., de-
ductive databases, triple-stores, description logic, logic pro-
gramming (Gelfond and Lifschitz 1991)) and thus may use
a different inference system. The flow of information be-
tween contexts are modeled via bridge rules in a declarative
way, where bridge rules describe how the beliefs of one con-
text depend on the beliefs of other contexts. The semantics
of MCS is defined in terms of equilibria (Brewka and Eiter
2007).

An equilibrium of an MCS can be seen as a state where
each context holds a set of its beliefs, and those sets of be-
liefs of contexts must together satisfy the conditions speci-
fied in the bridge rules. Therefore, MCSs are very suitable
for modeling distributed satisfaction problems. However, it
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does not provide a means for modeling distributed optimiza-
tion problems where distributed components (or agents) co-
ordinate with each other to achieve a most preferred (best)
solution. This is because an MCS may have many equilibria
but there is no means to express the preference among them
as well as obtain a most preferred equilibrium.

In a different line of research, within the MAS com-
munity, Distributed Constraint Optimization Problems
(DCOPs) (Modi et al. 2005; Petcu and Faltings 2005;
Mailler and Lesser 2004; Gershman, Meisels, and Zivan
2009; Yeoh and Yokoo 2012) have emerged as a promi-
nent agent model to govern the agents’ autonomous behav-
ior in solving distributed optimization problems. A DCOP
is typically specified by a finite set of variables and a fi-
nite set of constraints among these variables. Each con-
straint indicates a utility for each value assignment of the
variables involved in it. Agents in DCOPs need to coor-
dinate value assignments of their variables, in a decentral-
ized and distributed manner, to optimize their objective func-
tions. Researchers have used DCOPs to model various multi-
agent coordination and resource allocation problems (Ma-
heswaran et al. 2004; Zivan, Glinton, and Sycara 2009;
Zivan, Okamoto, and Peled 2014; Lass et al. 2008; Kumar,
Faltings, and Petcu 2009; Ueda, Iwasaki, and Yokoo 2010;
Léauté and Faltings 2011).

Although both the MCS and DCOP research communi-
ties have the similar goal of developing a general frame-
work for modeling multi-agent and distributed systems, it
is interesting to observe that there is little connection be-
tween the two communities. Obviously, the two frameworks
cannot be more different: DCOP is homogeneous and MCS
is heterogenous. DCOP emphasizes optimization and MCS
satisfaction. There have been several systems developed for
computing solutions of DCOP whilst only a few experimen-
tal systems for computing equilibria of MCSs are available.
Can we develop a framework that exploits the advantages of
both MCS and DCOP?

In this paper, we make the first steps to bridge the two
different research directions, MCS and DCOP, exploiting
their advantages in modeling distributed optimization prob-
lems. We introduce a novel, more general form of MCS,
called MCS for Optimization Problems (MCS-OP), where
each bridge rule can be associated to a conditional cost via
the so-called cost-assignment bridge rules. This feature al-
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lows MCS-OP to derive preferences among its equilibria us-
ing their total incurred cost.

This paper contributes to both areas of MCS and DCOP
by formally showing how a DCOP can be modeled using
an MCS-OP. For the MCS community, this demonstrates
that MCS-OP can be used to represent a large and interest-
ing class of optimization problems that DCOP can, some-
thing beyond the immediate capabilities of the original MCS
model, and hence, a useful and much-needed extension of
MCS to model distributed optimization problems. For the
DCOP community, MCS-OP can be viewed as an extension
of DCOP allowing heterogeneous agents to work with each
other.

The paper is organized as follows: after recalling the back-
ground on MCS, we introduce the MCS-OP framework,
study its computational properties. Next we illustrate how
to use MCS-OP to model DCOP and show that MCS-OP is
more expressive than DCOP. This is followed by a discus-
sion on the related work. The paper ends with its conclusion
and future works1.

Background: Multi-context System
A logic L is a tuple (KBL, BSL, ACCL) where KBL is
the set of well-formed knowledge bases of L—each being a
set of formulae. BSL is the set of possible belief sets; each
element of BSL is a set of syntactic elements representing
the beliefs L may adopt. ACCL : KBL → 2BSL describes
the “semantics” of L by assigning to each element of KBL

a set of acceptable sets of beliefs.
An MCS M = (C1, . . . , Cn) consists of contexts

Ci=(Li, kbi, bri), (1 ≤ i ≤ n), where Li =
(KBi, BSi, ACCi) is a logic, kbi ∈ KBi is a specific
knowledge base of Li, and bri is a set of Li-bridge rules
of the form:

(rik) s←(c1 : p1), . . . , (cj : pj),

not (cj+1 : pj+1), . . . ,not (cm : pm) (1)

where, rik is the name of the bridge rule (e.g., the k-th bridge
rule in the contextCi) and for each 1 ≤ t ≤ m, we have that:
1 ≤ ct ≤ n, pt is an element of some belief set of Lct , and
kbi ∪ {s} ∈ KBi. Intuitively, a bridge rule r allows us to
add s to a context, depending on the beliefs in the other con-
texts. We denote with head(r) the part s of r, and denote
with body(r) the right-hand part of the arrow in r. The se-
mantics of MCS is described by the notion of belief states.
Let M=(C1, . . . , Cn) be an MCS. A belief state is a tuple
S=(S1, . . . , Sn) where each Si is an element of BSi. Let
Bri be the set of the names of all bridge rules in bri.

Given a belief state S = (S1, . . . , Sn) and a bridge rule r
of the form (1), we say that r is applicable in S if pv ∈ Scv
for each 1 ≤ v ≤ j and pk 6∈ Sck for each j + 1 ≤ k ≤ m.
By app(B,S) we denote the set of the bridge rules r ∈ B
that are applicable in S.

1Due to space constraint, most proofs of lemmae and theorems
are presented in the supplemental file at the URL https://www.cs.
nmsu.edu/∼tile/AAAI19/supplementary.pdf

A belief state S = (S1, . . . , Sn) of M is an equi-
librium if, for all 1 ≤ i ≤ n, we have that
Si ∈ ACCi(kbi ∪ {head(r) | r ∈ app(bri, S)}).
Example 1. Consider a scenario in which two people want
to travel together. The first person C1 needs to decide
whether they purchase the business (b) or economic (e)
class for their flight whilst the second person C2 chooses
whether they will stay in Hilton (h) or Inn (i) hotel. Note
that the knowledge bases of C1 and C2 are given under An-
swer Set Programming (ASP) (Gelfond and Lifschitz 1991))
and Propositional Logic under the closed world assumption
(PL), respectively. There are constraints among such selec-
tions in order to have an affordable travel together. If C2

chooses to stay in a fancy hotel like h (resp. affordable hotel
like i), C1 would choose a cheaper flight like e (resp. more
comfortable flight like b). Similarly, if C1 picks b (resp. e)
class for their flights, C2 would select i (resp. h) to stay.

This scenario can be modeled as an MCS Mfh =
(C1, C2) where L1 and L2 are ASP and PL, respectively2.
The knowledge bases and the bridge rules are given as fol-
lows.

kb1 = { 1{b; e}1←} kb2 = {(h ∧ ¬i) ∨ (¬h ∧ i)}

br1 =

{
(r11) e← (2 : h)

(r12) b← (2 : i)
br2 =

{
(r21) h← (1 : e)

(r22) i← (1 : b)

It is possible to see that Mfh has two equilibria:

S = ({e}, {h}). S′ = ({b}, {i}).

S (resp. S′) corresponds to the group decision in which
C1 selects economic class (e) and C2 selects Hilton (h)
(resp. C1 selects business class (b) and C2 selects Inn (i))
for their flight and hotel respectively.

MCS-OP: Multi-context System for
Optimization Problems

Motivation
Roughly speaking, there is no qualitative distinction among
the equilibria of an MCS. As such, MCSs are ideal for mod-
eling (distributed) satisfaction problems; e.g., the scenario in
Example 1 where a decision for C1 and C2 to travel together
need to satisfy the constraints among them. In many scenar-
ios, some selection among the equilibria might be preferred.
Let us consider the following example.
Example 2. Let us continue with Example 1. Assume that
business class and economic class tickets cost $100 and $50
respectively. Further, staying in Hilton or Inn hotels cost
$120 or $60 respectively. The most preferred group deci-
sion is to select the flight and the hotel in such a way that
minimizes the total cost.

Intuitively, the preference of C1 and C2 indicates that
equilibrium S′ is more preferred than S since the total cost
associated with S′ ($160) is smaller than the total cost as-
sociated with S ($170).

2The logics of ASP and PL were given in (Brewka and Eiter
2007).
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As we have mentioned earlier, MCSs were not focused on
providing a mechanism for preferring an equilibrium over
another. For this reason, to utilize MCS in solving the prob-
lem in Example 2, certain modifications to Mfh needs to
be done. For example, one might have to add to Mfh (i)
rules to encode the total cost of a selection to some contexts;
and (ii) rules to eliminate the less desirable equilibrium. We
next introduce MCS for Optimization Problems (MCS-OP),
an extension of MCS, that allows for a principled and effi-
cient way to model distributed optimization problems.

Syntax
There are many possible ways to take into consideration
preferences among equilibria. Previous work in this direc-
tion such as the framework on Multi-Context System with
Preferences (MCSP) in (Le, Son, and Pontelli 2018) focuses
on creating an order among equilibria from individual pref-
erences which are expressed in each context. In this paper,
we focus on establishing a notion of the aggregate prefer-
ence of an equilibrium and using this notion in defining
an order among equilibria. Inspired by the formulation of
Distributed Constraint Optimization Problem (see below),
where, intuitively, constraints among agents that could be
considered as bridges between contexts are associated with
costs/utilities, we consider that the aggregate preference of
an equilibrium depends on the bridge rules. For this rea-
son, we introduce an extra component to MCS, the cost-
assignment bridge rules. Formally, a cost-assignment bridge
rule is defined as follows.
Definition 1. Let M=(C1, . . . , Cn) be a multi-context sys-
tem where Ci = (Li, kbi, bri) with 1 ≤ i ≤ n. A Ck-cost-
assignment bridge rule over M , 1 ≤ k ≤ n, is of the form

r@x←(c1 : p1), . . . , (cj : pj),

not (cj+1 :pj+1), . . . ,not (cm :pm) (2)

where:
• r ∈ Brk is the name of a bridge rule in brk;
• x∈R∪{+∞} that specifies the cost of the bridge rule r;
• for each 1 ≤ k ≤ m, we have that: 1 ≤ ck ≤ n, pk is

an element of some belief set of Lck .
Let cr be a cost-assignment bridge rule of the form (2).

We denote with the head(cr) (resp. body(cr)) of cr, the left-
hand (resp. right-hand) part of the arrow in cr. Intuitively, (2)
states that if its right hand side is satisfied then the context
Ck will incur a cost x.
Definition 2. A Multi-Context System for Optimization
Problems (MCS-OP) M = (C1, . . . , Cn) consists of a col-
lection of cost-assignment contextsCi = (Li, kbi, bri, cbri),
where M ′ = (C ′1, . . . , C

′
n) with C ′i = (Li, kbi, bri) is a

MCS and cbri is a finite set of Ci-cost-assignment bridge
rules over M ′.

For simplicity, given an MCS-OP M = (C1, . . . , Cn)
where Ci = (Li, kbi, bri, cbri), we denote with MCS(M)
the multi-context system MCS(M) = (C ′1, . . . , C

′
n) in

which C ′i = (Li, kbi, bri).
Example 3. To model the problem in Ex-
ample 2, we extend the MCS Mfh described

in Example 1 into an MCS-OP M where:
MCS(M)=Mfh; and cbr1={r11@50←; r12@100←},
cbr2={r21@120←; r22@60←}.

The proposal to use cost-assignment bridge rules deserves
some discussion. One can observe that it is possible to have
bridge rules deriving costs straightforwardly, we decide to
use cost-assignment bridge rules mainly because of the fol-
lowing reason. We want to extend original MCS in a mod-
ular way, where bridge rules are dedicated to model the
flow of information between contexts while cost-assignment
bridge rules are dedicated exclusively to assign costs to
bridge rules. One benefit of such a modular extension is that
one can apply preference elicitation techniques to elicit the
costs of bridge rules in future work.

Most Preferred Equilibria
For an MCS-OP M , a belief state of M is defined as a belief
state ofMCS(M). Given a belief state S ofM , a bridge rule
r is applicable in S with respect to M if r is applicable in S
with respect toMCS(M). A belief state S is an equilibrium
of an MCS-OP M iff S is an equilibrium of MCS(M).

As our goal in proposing cost-assignment bridge rules is
to select “best” equilibria, we establish a preference order
among belief states of an MCS-OP. Clearly, this order has to
be based on the set of cost-assignment bridge rules. We first
define the applicability of a cost-assignment bridge rule.

Definition 3. A cost-assignment bridge rule of the form (2)
is fireable in a belief state S = (S1, . . . , Sn) if
• r is applicable in S; and
• its body is satisfied in S, i.e., pv ∈ Scv for each 1 ≤ v ≤
j and pk 6∈ Sck for each j + 1 ≤ k ≤ m.

Given a belief state S = (S1, . . . , Sn) and a cost-
assignment bridge rule cr of the form (2), we define the cost
impact of cr in S, denoted with cS(cr), as follows:
i. cS(cr) = 0 if cr is not fireable in S, that is, either r is not

applicable or pk 6∈ Sck for some k ∈ {1, . . . , j}, or some
pk ∈ Sck for k ∈ {j + 1, . . . ,m}; otherwise,

ii. cS(cr) = x if cr is fireable in S.
Intuitively, cr has some impact on the belief state S if it is
fireable in S. As such, for case (i), since cr is not fireable, the
cost impact of cr is 0. For case (ii), cr is fireable, its body is
satisfied and the bridge rule r is actually applicable in S. As
such, the indicated cost of x is incurred, for the application
of r. Then, the cost impact of cr is x.

Definition 4. Let Ci = (Li, kbi, bri, cbri) be a context of
an MCS-OPM . The cost impact of the context Ci in a belief
state S of M , denoted by ciS , is defined as

ciS =
∑

cr∈cbri

cS(cr)

The cost impact of an MCS-OP in a belief state S is the
summation of the cost impacts of all contexts in S.

Definition 5. Let M = (C1, . . . , Cn) be an MCS-OP and S
be a belief state of M . The cost impact of M in S, denoted
by cMS , is defined as cMS =

∑
Ci∈M ciS .
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When no confusion is possible, we omit the superscript
M in cMS . It is worth to notice that given an MCS-OP M , a
belief state S, and a cost-assignment bridge rule cr, by the
definition of the cost impact of cr in S, cS(cr) is always
determined. As such, the following proposition is derived
immediately given Definitions 4 and 5.

Proposition 1. Given an MCS-OP M , cMS is well-defined,
i.e., it is determined for every belief state S of M .

The cost impact can be used to define a preference order
among belief states as follows.

Definition 6. Let S1 and S2 be two belief states of an MCS-
OP M . We write S1 � S2 if cS1 ≤ cS2 , S1 � S2 if cS1 <
cS2 , and S1 ≈ S2 if cS1 = cS2 .

� is referred to as the preference order among belief states.

Proposition 2. The ordering � is a total preorder, i.e., � is
total, reflexive, and transitive.

Since � is a preorder, we can use this ordering to define
an order among the equilibria of an MCS-OP as follows.

Definition 7. A belief state S of an MCS-OP M is a most
preferred equilibrium of M if
• S is an equilibrium of M , and
• There does not exist another equilibrium S′ of M where
S′ 6= S such that S′ � S.

Let EM be the set of all equilibria of an MCS-OP M .
In other words, a most preferred equilibrium S∗ of M can
be defined mathematically as S∗ = argminS∈EM

cS . Note
that, in this paper, we consider cost instead of utility, i.e.,
whenever a bridge rule is applied, a cost is incurred instead
of a utility is produced. As such, a most preferred equilib-
rium minimizes the total incurred cost. The framework can
thus easily be adapted to consider utility instead of cost, i.e.,
defining S1 � S2 if cS1

≥ cS2
and maximizing utility by

using S∗=argmaxS∈EM
cS .

Example 4. The MCS-OP M in Example 3 has two equi-
libria S and S′ that are the two equilibria of the MCS Mfh

in Example 1 because MCS(M)=Mfh. In addition, cS =
c1S+c

2
S = 50+120 = 170. Similarly, cS′ = c1S′+c2S′ =

100+60 = 160. S′ � S since cS′ < cS , and thus, S′ is the
most preferred equilibrium of M .

Complexity Analysis
We present some results on complexity analysis of MCS-OP
M in this section. We consider here two problems:
• CONS(M): Decide whether M has a most preferred

equilibrium;
• MOST (M,S): Decide whether a belief state S is a most

preferred equilibrium of M .
For this, we utilize the approach of output-projected belief
states similar as in (Eiter et al. 2014; Brewka et al. 2011).
Given an MCS-OP M , brM (resp. cbrM ) denotes the set of
all bridge rules (resp. cost-assignment bridge rules) in M .

Definition 8. Given an MCS-OP M and a context Ci of
M , OUTi = {p | p is a belief of Ci, (i : p) or not (i : p)
occurs in the body of some bridge rule or cost-assignment

CC(M) in P ΣP
i PSPACE EXPTIME

CONS(M) NP ΣP
i PSPACE EXPTIME

MOST (M,S) DP
0 DP

i PSPACE EXPTIME

Table 1: Complexity of problems CONS(M) and
MOST (M,S) with i ≥ 1.

bridge rule of some other context Cj in M} is called the set
of output beliefs of Ci.

Furthermore, given a belief state S = (S1, . . . , Sn) of
M , the output-projected belief state S′ = (S′1, . . . , S

′
n) is

the projection of S to output beliefs of M : S′i = Si ∩OUTi.
An output-projected belief state provides sufficient infor-

mation to evaluate the applicability of bridge rules, and thus
one can define witnesses for equilibria using this projection.
Definition 9. An output-projected belief state S′ =
(S′1, . . . , S

′
n) of an MCS-OP M is an output-projected equi-

librium iff the following holds: for all 1 ≤ i ≤ n, S′i ∈
ACCi(kbi ∪ {head(r) | r ∈ app(bri, S′)}) ∩OUTi.

An output-projected belief state S′ contains information
about all output beliefs, which is sufficient to determine
whether a bridge rule is applicable and its cost impact as
well. Thus, app(bri, S) = app(bri, S

′), and cS = cS′ . In
addition, equilibria of an MCS-OP M are defined as equi-
libria of MCS(M) which is identical to M excluding cost-
assignment bridge rules. As a result, Lemma 1 below is ob-
tained immediately from Lemma 1 in (Eiter et al. 2010).
Lemma 1. For each equilibrium S of an MCS-OP M , its
output-projected belief state S′ is an output-projected equi-
librium. Conversely, for each output-projected equilibrium
S′ of M , there exists at least one equilibrium T of M and
its output-projected belief state T ′ such that T ′ = S′.

Following (Eiter et al. 2010), we also let the context com-
plexity of a context Ci be the complexity of the problem:
given an output-projected belief state S′ = (S′1, . . . , S

′
n)

of an MCS-OP M , decide whether there exists an Si ∈
ACCi(kbi ∪ {head(r) | r ∈ app(bri, S

′)}) such that
S′i = Si ∩OUTi.

The context complexity of an MCS-OP M , denoted with
CC(M), is a (smallest) upper bound for the context com-
plexity classes of all contexts Ci in M .

For complexity analysis, as in (Brewka et al. 2018), we
only consider finite MCS-OP, i.e., we do not consider rule
schemas (which stand potentially for an infinite amount of
bridge rules or cost-assignment bridge rules), and assume
that all knowledge bases in the given MCS-OP are finite.
The complexity of MCS-OP are specified in Theorem 1.
Theorem 1. Table 1 summarizes the complexities of mem-
bership of problems CONS(M) and MOST (M,S) de-
pending on the context complexity. Here, the class DP

0 con-
tains decision problems which are the “conjunction” of a P
and an independent co-NP decision problem. Further, the
class of DP

i with i ≥ 1 contains decision problems which
are the “conjunction” of a ΣP

i and an independent ΠP
i de-

cision problem (e.g., for i = 1, a SAT and an independent
UNSAT instance).
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Proof. For CONS(M): By Proposition 2, the problem
CONS(M) is equivalent with consistency checking (equi-
librium existence) of M . As such, by the definition of equi-
libria of M , the complexity of CONS(M) is obtained
based on the complexity of consistency checking (equilib-
rium existence) of MCS(M) whose result was investigated
in (Brewka and Eiter 2007) and is given in Table 1.
For MOST (M,S): Checking whether a belief state S =
(S1, . . . , Sn) is a most preferred equilibrium includes: (T1)
checking whether S is an equilibrium ofM , and (T2) check-
ing there is no other equilibrium T that is preferred to S (i.e.,
there is no T such that cT < cS).
• For (T1): this can be decided by (T1.1) evaluating the

bridge rules on S, yielding for each context Ci a set Hi

of applied bridge rule heads with respect to S—which is
linear with the finite number of bridge rules in Ci; and
(T1.2) decides whether Si ∈ ACCi(kbi ∪ Hi)—which
is the context complexity of Ci. As such, (T1) can be de-
cided in CC(M).
• For (T2): this can be decided by:

(T2.1) guessing all output-projected belief states T ′;
(T2.2) evaluating the bridge rules on each T ′ ∈ T ′, yield-

ing for each context Ci a set Hi of applied bridge rule
heads with respect to T ′—which is linear with the finite
number of bridge rules in Ci;

(T2.3) deciding, whether there exists an T =
(T1, . . . , Tn) such that Ti ∈ ACCi(kbi ∪ Hi)
and T ′i = Ti∩OUTi—which is the context complexity
of Ci.

(T2.4) checking whether cT = cT ′ < cS . Note that if
there are many T that satisfy (T2.3), then they will all
incur identical costs, which equal to cT ′ .

(T2.4) the instance is yes instance iff all such checks fail,
leading to the class co-NP (resp. ΠP

i ) if CC(M) = P
(resp. CC(M) = ΣP

i ).
If CC(M) = P, the complexity of MOST (M,S) is the
class DP

0 that contains decision problems which are the
“conjunction” of a P (i.e., for (T1)) and an independent co-
NP decision problem (i.e., for (T2)). Further, if CC(M) =
ΣP

i with i ≥ 1, the complexity of MOST (M,S) is the
class of DP

i that contains decision problems which are the
“conjunction” of a ΣP

i (i.e., for (T1)) and an independent
ΠP

i decision problem (i.e., for (T2)). Similarly, if CC(M) =
PSPACE (resp. EXPTIME), then MOST (M,S) is
the class of PSPACE (resp. EXPTIME).

Modeling Distributed Constraint Optimization
Distributed Constraint Optimization Problems (DCOPs)
have emerged as a prominent agent model to govern the
agents’ autonomous behavior, where agents coordinate their
value assignments, in a decentralized and distributed man-
ner, to optimize their objective functions. DCOPs can ef-
fectively model a wide range of problems in MAS set-
ting (Fioretto, Pontelli, and Yeoh 2018). Next, we will re-
view DCOP and show how it can be modeled by MCS-OP.

A Distributed Constraint Optimization Problem
(DCOP) (Modi et al. 2005; Petcu and Faltings 2005;

x1 x2 f1
0 0 10
0 1 20
1 0 35
1 1 40

x2 x3 f2
0 0 7
0 1 9
1 0 6
1 1 15

x3 x1 f3
0 0 9
0 1 2
1 0 27
1 1 35

Figure 1: Three Constraints of DCOP in Example 5

Gershman, Meisels, and Zivan 2009; Yeoh and Yokoo 2012)
is a tuple D = 〈X ,D,F ,A, α〉 where
• X = {x1, . . . , xm} is a finite set of (decision) variables;
• D = {D1, . . . , Dm} is a set of finite domains, where each
Di is the domain of variable xi ∈ X ;

• F = {f1, . . . , fp} is a finite set of constraints, where each
kj-ary constraint fj : Dj1 × Dj2 × . . . × Djkj

7→ R ∪
{+∞} specifies the cost of each combination of values of
the variables in its scope; the scope of fj is denoted by
scp(fj) = {xj1 , . . . , xjkj

};3

• A = {a1, . . . , an} is a finite set of agents;
• α : X 7→ A maps each variable to an agent.
In the DCOP literature, the constraints fj are also called ob-
jective functions or cost functions. We say that an agent ai
owns the variable xj if α(xj) = ai. Each constraint in F
can be either hard (i.e., some value combinations result in a
utility of +∞ and must be avoided), or soft, (i.e., all value
combinations result in a finite cost and need not be avoided).
Given a constraint fj and a complete value assignment x
(i.e., a value assignment for all variables), we denote with
xfj a partial value assignment from x for all variables in
scp(fj). For simplicity, given two value assignments x and
x′, we write x = x′ whenever (1) if (xi = di) ∈ x, then
(xi = di) ∈ x′, and (2) conversely, if (xi = di) ∈ x′, then
(xi = di) ∈ x. A solution of a DCOP is a complete value
assignment x, and its corresponding total cost is the evalua-
tion of all cost functions on x. The goal of a DCOP is to find
a cost-minimal solution x∗ = argminx

∑p
j=1 fj(xfj ).

In this paper, we adopt a simplifying assumption that each
agent owns exactly one variable. This assumption is a com-
mon practice in the DCOP literature (Petcu and Faltings
2005; Gershman, Meisels, and Zivan 2009; Ottens, Dimi-
trakakis, and Faltings 2012). Thus, without loss of general-
ity, we assume α(xi) = ai. It is relatively straightforward
to generalize the ideas presented below to model a general
DCOP, which allows agents to own multiple variables.
Example 5. Considering a DCOP D = 〈X ,D,F ,A, α〉
where X = {x1, x2, x3}, D = {D1, D2, D3} in which
Di = {0, 1} with i ∈ {1, 2, 3}, A = {a1, a2, a3}, and α
is defined as α(xi) = ai. Figure 1 exhibits the three con-
straints f1, f2, and f3 between x1 and x2, between x2 and
x3, and between x3 and x1, respectively.

It is possible to see that the solution of D is the value
assignment in which x1 = x2 = x3 = 1 which yields the
minimal total cost of 40 + 15 + 35 = 90.

We will now show how a DCOP can be encoded using
an MCS-OP. We first specify the space of all solutions of a

3For simplicity, we assume a given ordering of variables
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DCOP D = 〈X ,D,F ,A, α〉 with n agents (i.e., |A| = n)
as equilibria of an MCS M ′D = (C1, . . . , Cn) of n contexts.
Each context Ci corresponds to the agent ai ∈ A. For sim-
plicity, we specify Ci=(Li, kbi, bri), for 1 ≤ i ≤ n, where:
• Li is the logic of the Answer Set Programming (ASP)

framework (Gelfond and Lifschitz 1991). We also use the
extended syntax of logic programs such as choice atoms,
aggregates, etc. that have been adapted and implemented
in most ASP solvers.

• kbi consists of a rule (assuming that Di = {d1i , . . . , dsi})

1{value(xi, d1i ), . . . , value(xi, dsi )}1← (3)

Intuitively, the rule of the form (3) enforces the selec-
tion of exactly one of the listed values (i.e., value(xi, d`i)
with 1 ≤ ` ≤ s) to an answer set of kbi. Furthermore,
value(xi, d

`
i) in an answer set of kbi means that the vari-

able xi is assigned the value d`i ∈ Di.
• bri consists of bridge rules of the form

(Bfj(dj1 ,...,djkj
)) costfj (V ) ← (j1 : value(xj1 , dj1)),

. . . , (4)
(jkj : value(xjkj

, djkj
))

for each constraint fj (e.g., scp(fj) = {xj1 , . . . , xjkj
})

such that α(xj1) = ai, where for 1 ≤ ` ≤ kj , dj` ∈ Dj`
and V = fj(dj1 , . . . , djkj

). Intuitively, V is the cost
specified by the constraint fj with respect to the respec-
tive value assignment of variables in scp(fj) that are
given in the body of the bridge rule (i.e., value(xj` , dj`)).
Thus, V ∈ R ∪ {+∞}. Note that bri will contain
|Dj1 | × |Dj2 | × . . .× |Djkj

| bridge rule(s) for every fj
such that α(xj1) = ai. In (4), Bfj(dj1

,...,djkj
) is the

unique name of the respective bridge rule.
Given a solution x of a DCOP D in which xi is assigned

value di ∈ Di (i.e., xi = di) for 1 ≤ i ≤ n, let
E(x) = (S1, . . . , Sn) be a belief state where:

Si ={value(xi, di)}∪ (5)
{costfj (V ) | scp(fj) = {xj1 , . . . , xjkj

}, α(xj1 ) = ai,

V = fj(xj1 = dj1 , . . . , xjkj
= djkj

)} (6)

Furthermore, given a belief state S = (S1, . . . , Sn) of M ′D,
we letA(S) be a (partial) value assignment in which xi = di
if value(xi, di) ∈ Si. The next theorem relates D and M ′D.

Theorem 2. Let D be a DCOP and M ′D be its correspond-
ing MCS. We have:

• If S is an equilibrium ofM ′D, then x = A(S) is a solution
of D; and

• If x is a solution of D, then, S = E(x) is an equilibrium
of M ′D.

To be able to model the cost-minimal solution of DCOP,
we extend the MCS M ′D into an MCS-OP MD by adding
a set of cost-assignment bridge rules (i.e., cbri) to con-
texts of M ′D. Formally, given a DCOP D let MD =
(C1, . . . , Cn) be an MCS-OP with Ci = (Li, kbi, bri, cbri)

where MCS(MD) =M ′D and cbri is:
cbri ={Bfj(dj1

,...,djkj
)@V ← | Bfj(dj1

,...,djkj
) ∈ bri,

head(Bfj(dj1
,...,djkj

)) ≡ costfj (V )} (7)

Intuitively, a cost-assignment bridge rule of the form (7)
means that if the bridge rule Bfj(dj1

,...,djkj
) is applicable

and its head (e.g., costfj (V )) is added to the respective
knowledge base, then this bridge rule will incur a cost (e.g.,
a cost of V ).

By Definition 5 and cost-assignment bridge rules of the
form (7), it is simple to derive Lemma 2 below. Let us re-
mind that, given a belief state S of MD, cMD

S (cS , for short)
is the cost impact of MD in S.
Lemma 2. Let S be an equilibrium of MD. We have

cS =
∑

costfj (V )∈S

V (8)

We also can conclude the next lemma to relate cS with the
total cost on value assignment x = A(S).
Lemma 3. Let D be a DCOP and MD be its correspond-
ing MCS-OP. If x is a solution of D and S = E(x) is an
equilibrium of MD (see the second item of Theorem 2), then

cS =

p∑
j=1

fj(xfj ) (9)

The next theorem relates DCOP D and MCS-OP MD.
Theorem 3. Let D be a DCOP and MD be its correspond-
ing MCS-OP. We have:
• If S is a most preferred equilibrium of MD, then x =
A(S) is a cost-minimal solution of D; and

• If x is a cost-minimal solution of D, then S = E(x) is a
most preferred equilibrium of MD.
To sum up, Theorem 3 means that one can use MCS-OP

to model DCOPs, where the semantics of MCS-OP as most
preferred equilibria are directly related to the semantics of
DCOPs as cost-minimal solutions.
Example 6. The DCOPD in Example 5 can be modeled us-
ing a MCS-OPMD = (C1, C2, C3) where with i ∈ {1, 2, 3}
Ci = (Li, kbi, bri, cbri) in which (for short, in the following
we use predicate“val” instead of “value”):

kbi = {1{val(xi, 0), val(xi, 1)}1←}

br1 =


(br11) costf1 (10)← (1 : val(x1, 0)), (2 : val(x2, 0))

(br12) costf1 (20)← (1 : val(x1, 0)), (2 : val(x2, 1))

(br13) costf1 (35)← (1 : val(x1, 1)), (2 : val(x2, 0))

(br14) costf1 (40)← (1 : val(x1, 1)), (2 : val(x2, 1))

br2 =


(br21) costf2 (7)← (2 : val(x2, 0)), (3 : val(x3, 0))

(br22) costf2 (9)← (2 : val(x2, 0)), (3 : val(x3, 1))

(br23) costf2 (6)← (2 : val(x2, 1)), (3 : val(x3, 0))

(br24) costf2 (15)← (2 : val(x2, 1)), (3 : val(x3, 1))

br3 =


(br31) costf3 (9)← (3 : val(x3, 0)), (1 : val(x1, 0))

(br32) costf3 (2)← (3 : val(x3, 0)), (1 : val(x1, 1))

(br33) costf3 (27)← (3 : val(x3, 1)), (1 : val(x1, 0))

(br34) costf3 (35)← (3 : val(x3, 1)), (1 : val(x1, 1))
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cbr1 =


(br11)@10←
(br12)@20←
(br13)@35←
(br14)@40←

cbr2 =


(br21)@7←
(br22)@9←
(br23)@6←
(br24)@15←

cbr3 =


(br31)@9←
(br32)@2←
(br33)@27←
(br34)@35←

It is possible to see that MD has the most preferred equi-
libria: S = ({val(x1, 1)}, {val(x2, 1)}, {val(x3, 1)})

Expressivity: MCS-OP vs. DCOP
The previous section shows that MCS-OP can model DCOP.
For a researcher in the DCOP community, it raises the ques-
tion whether the use of MCS-OP would bring any advan-
tages over the DCOP formalization or it is just yet another
way to formalize DCOP. This section answers this question
by presenting a problem that can be straightforwardly for-
malized using MCS-OP but not in DCOP.

Example 7. We extend Example 2 assuming that C2 also
decides whether they go to their hotel by shuttle (s) or taxi
(t). If they stay in Hilton, using s (resp. t) costs them $10
(resp. $30), and if they stay in Inn, using s or t costs them
$40 or $30 respectively. C2 prefers the cheaper transporta-
tion because he will pay for this cost because it is not ac-
counted to the total cost for C1 and C2 to travel together.

It is clear to see that since the cost of going to hotel is not
accounted to the total cost, the most preferred group decision
is the same as the one in Example 2 (i.e., select b and i) and
thus taking a taxi to go to Inn because it is cheaper than
taking a shuttle. The total cost remains the same as $160.

Example 7 can be modeled using the MCS-OP M in Ex-
ample 3, with the following modification: (i) L2 is answer
set optimization program (Brewka, Niemelä, and Truszczyn-
ski 2003), and (ii) kb2 is extended with the two rules
s > t← h and t > s← i. Intuitively, the former rule states
that if C2 stays in h, he prefers s to t. The latter rule means
that if he stays in i, he prefers t to s. It is possible to check
that the most preferred equilibrium of this updated MCS-OP
is ({b}, {i, t}) that corresponds to the most preferred group
decision mentioned above (i.e., select b, i and t).

If we were to use DCOP to model Example 7, it
is necessary to introduce three variables x1, x2, and
x3 to represent the flight, hotel, and taxi, respectively.
Formally, a DCOP that may model Example 7 is D =
〈{x1, x2, x3}, {D1, D2, D3}, {f1, f2, f3, f4}, {C1, C2}, α〉
where D1 = {b, e}, D2 = {h, i}, D3 = {s, t}, α(x1) =
C1, α(x2) = C2, α(x3) = C2, and the four constraints
f1, f2, f3, and f4 are given in Figure 2. Intuitively, f1 and
f2 represent the cost relation for x1 (by C1) and x2 (by C2),
respectively. While f3 models the hard constraints between
x1 and x2 (similar to br1 and br2), f4 represents the cost
relation between x2 and x3 (by C2).

x1 f1
e 50
b 100

x2 f2
h 120
i 60

x1 x2 f3
e h 0
e i ∞
b h ∞
b i 0

x2 x3 f4
h s 10
h t 30
i s 40
i t 30

Figure 2: Four Constraints of DCOP Modeling Example 7

It is possible to check that this DCOP D derives an un-
expected cost-minimal solution (i.e., select e, h, and s)
which yields the minimal total cost of $180. It is because
the preferences of C2 on taking a taxi or a shuttle to the
hotel must be encoded as a constraint (i.e., f4), and thus its
respective cost is accumulated to the total cost, deriving an
unexpected minimal-cost solution. We believe that the lack
of expressibility of the representation formalism of DCOP is
the reason that prevents DCOP from successfully modeling
the scenario in Example 7. MCS-OP is indeed more expres-
sive than DCOP and could be useful in scenarios where
some preferences among agents need to be considered
locally and not be accounted for in the aggregation.

Related Work
To the best of our knowledge, MCS with preferences
(MCSP), introduced in (Le, Son, and Pontelli 2015) and ex-
tended in (Le, Son, and Pontelli 2018) is the most similar
proposal to MCS-OP in that both approaches aim at defin-
ing a preference order (or a qualitative comparison) among
equilibria of MCSs. We therefore relate MCSP and MCS-OP
in details before discussing others extensions of MCS.

MCSP assumes that the underlying logic of each context
is a ranked logic, i.e., a logic with a preference order among
its pairs of knowledge bases and belief sets. The preference
order among equilibria of an MCSP is defined by pairwise
combining the local preference orders. Specifically, an equi-
librium S = (S1, . . . , Sn) is strongly (weakly) preferred to
another equilibrium S′ = (S′1, . . . , S

′
n) if for every i, Si

is strongly (weakly) preferred to S′i with respect to the un-
derlying ranked logic of context i. An equilibrium is most
strongly (weakly) preferred if there exists no other equilib-
rium that is strongly (weakly) preferred to it. Thus, a most
strongly (weakly) preferred equilibrium in MCSP is similar
to a Nash equilibrium of a game for “personal” preferences
among the contexts. Then, it is not an easy task to use MCSP
in formalizing problems such as DCOP where the preference
order often spans more than a single local context.

Differently from MCSP, MCS-OP introduces an extra
component, the cost-assignment bridge rules, to MCS and
defines the notion of a cost impact of a belief state of the un-
derlying MCS, which is used to define the order among be-
lief states, and hence, equilibria. Being a non-negative value,
the cost impact allows for the definition of a preorder among
equilibria. Although it is convenient to use MCS-OP in mod-
eling DCOP, we envision that MCS-OP might not be the best
knowledge representation framework to model MCS with
preferences where utilities/costs are difficult to obtain. For
this reason, we see MCS-OP as a useful alternative that com-
pensates rather than competes with MCSP. Example 7 also
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shows that MCS-OP can be used in scenarios where agents
do have local preferences which, desirably, should not be
considered in the aggregate preferences of the whole system.
In this sense, MCS-OP provides a continuum from fully co-
operative agents (as in MCS with a centralized controller) to
non-cooperative or self-interested agents (as in MCSP).

Beside equilibrium semantics, (Brewka and Eiter 2007)
proposed minimal/grounded equilibria and well-founded se-
mantics for MCS. For the former, one can directly utilize our
approach (i.e., assigning conditional cost to bridge rules) to
derive the preferences among equilibria, and thus obtain the
semantics of the most preferred minimal/grounded equilib-
ria. Moreover, it is unclear how our approach could be used
to derive the preference in the well-founded semantics, as it
is defined using an antimonotone operator γM (.).

Some significant extensions of the MCS framework have
been recently introduced. Managed MCS (mMCS) (Brewka
et al. 2011) allows applied bridge rules to also perform arbi-
trary operations on context knowledge bases, e.g., deletion
or revision operators. Reactive MCS (rMCS) (Brewka et al.
2018) and evolving MCS (eMCS) (Gonçalves, Knorr, and
Leite 2014) are extensions of mMCS to allow changes of
observations over time. In order to model real-world situa-
tions of multi-agent systems (MAS), DACMACS (Costantini
and Gasperis 2015) integrates Data-Aware Commitment-
based MAS and MCS where agents not only interact among
themselves, but also consult external heterogeneous data-
and knowledge-bases to extract useful information. Clearly,
these extensions are not designed to derive the preference
among their respective equilibria, sequences of equilibria,
or runs. It is our belief that an integration of cost-assignment
bridge rules in these frameworks can enhance them by al-
lowing the determination of a best run (or most preferred
equilibrium).

Other extensions of MCS have been proposed, where
the introduction of a preference order requires more in-
depth study and will be the subject of future work, e.g.,
preference order among supported equilibrium semantics
in generalized MCS (Tasharrofi and Ternovska 2014), in
operational-like semantics of asynchronous MCS (Ellmau-
thaler and Pührer 2015), or in idealized run semantics of
streaming MCS (Dao-Tran and Eiter 2017).

Another related line of research is preference-based in-
consistency management in MCS. An MCS is inconsistent
if it does not have an equilibrium; research has been done
to analyze the inconsistency to identify the most preferred
diagnoses (Eiter et al. 2014). A diagnosis of an MCS intu-
itively is a pair of the set of all bridge rules that are either
removed or set to be applicable in all belief states to make
the MCS consistent. There are ways to accommodate pref-
erences among diagnoses (see (Eiter and Weinzierl 2017)),
and intuitively one can see that the most preferred equilib-
rium of M is an equilibrium of M after being applied to the
most preferred diagnosis. Different from using diagnoses,
(Mu, Wang, and Wen 2016) proposed to use Preferential
MCS (PMCS), which are stratified MCS based on predeter-
mined partial ordering among contexts. From such ordering,
to address the inconsistency, one may ask for a maximal con-
sistent section as the semantics of PMCS. Compared to our

work in this paper, there is a significant difference: the works
in inconsistency management are used to resolve MCS that
do not admit an equilibrium, while in MCS-OP preference
information is directly integrated into the semantics to select
among existing equilibria.

We note that there have been attempts to extend the DCOP
model. For example, Asymmetric DCOPs (Grinshpoun et
al. 2013) allows different agents owning variables in the
scope of a constraint can incur to different costs, given a
fixed join assignment. Multi-Objective DCOPs (Marler and
Arora 2004) are problems involving more than one objective
function to be optimized simultaneously. However, these ex-
tensions do not address the difficulty in modeling scenarios
where some preferences among agents need to be considered
locally and not be accounted for in the aggregation. MCS-
OP could therefore be viewed as an alternative to DCOP that
avoids this difficulty.

Conclusions and Future Works

We proposed Multi-context System for Optimization Prob-
lems (MCS-OP), which associate each context with a set
of cost-assignment bridge rules that assign conditional cost
to its bridge rules. The preferences order among equilibria
are determined by the total incurred cost of actually-applied
bridge rules in the equilibria. We discussed the MCS-OP’s
complexity and showed how to model DCOPs using MCS-
OP to illustrate the contribution of this paper to both the
MCS community and the DCOP community.

It is not difficult to see that cost-assignment bridge rules
can be introduced to any of the existing MCS extensions
(e.g., MCSP, mMCS, asynchronous MCS (Ellmauthaler and
Pührer 2015) and streaming MCS (Dao-Tran and Eiter
2017)). In other words, MCS-OP can be easily integrated
with almost all of the MCS extensions and the notion of a
most preferred equilibrium of such an extension can be de-
fined as in the “Most Preferred Equilibria” subsection. For
this reason, it would be interesting to investigate the inte-
gration of MCS-OP into other extensions of MCS and their
properties (e.g., as we have mentioned in the previous sub-
section, the cost-assignment bridge rules could be useful in
mMCS to identify the best runs). We also plan to investi-
gate the use of a meta-reasoning transformation as in (Eiter
and Weinzierl 2017), which implements a rewriting tech-
nique, to select most preferred equilibria. Furthermore, as
we have mentioned in the introduction, there is only a few
systems for computing MCS that have been developed. On
the other hand, many efficient and scalable systems for solv-
ing DCOPs. As such, we also plan to investigate algorithms
for computing MCS/MCS-OP that can take advantage of ap-
proaches used in computing DCOP solutions.
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