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Abstract

Explaining the decisions of a Deep Learning Network is im-
perative to safeguard end-user trust. Such explanations must
be intuitive, descriptive, and faithfully explain why a model
makes its decisions. In this work, we propose a framework
called FLEX (Faithful Linguistic EXplanations) that gener-
ates post-hoc linguistic justifications to rationalize the deci-
sion of a Convolutional Neural Network. FLEX explains a
model’s decision in terms of features that are responsible for
the decision. We derive a novel way to associate such fea-
tures to words, and introduce a new decision-relevance metric
that measures the faithfulness of an explanation to a model’s
reasoning. Experiment results on two benchmark datasets
demonstrate that the proposed framework can generate dis-
criminative and faithful explanations compared to state-of-
the-art explanation generators. We also show how FLEX can
generate explanations for images of unseen classes as well as
automatically annotate objects in images.

Introduction

Despite the remarkable performance of Deep Neural Net-
work (DNN) in many applications, its opaque nature has
hindered its usability in the real world (Caruana et al. 2015).
Post-hoc interpretation techniques such as visualizations and
linguistic descriptions aim to provide explanations for DNN
model decisions (Ribeiro, Singh, and Guestrin 2016).
Visualizations indicate which regions/pixels of the input
have significantly influenced a model’s decision. Figure 1
shows GradCAM (Selvaraju et al. 2016) visual explanations
for the decisions of fine-grained bird classification model
in (Gao et al. 2016). GradCAM reveals that for these images,
it is the region around the bird’s head that has influenced the
predicted bird categories the most. However, these visualiza-
tions do not reveal which aspects of the bird’s head region
(be it the beak’s shape or color, eye ring, or eye color) are
responsible for differentiating the different species of birds.
On the other hand, linguistic descriptions such as “The
bird in Figure 1(a) is a Laysan Albatross because of its long
thick hooked bill, and the dark shading on its face.” provide
specific details which are important for understanding the
classification especially when variations among the different
classes are subtle. Hendricks et al. (Hendricks et al. 2016)
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(b) California Gull

(a) Laysan Albatross

Figure 1: Saliency maps of sample images from CUB.

and Park et al. (Park et al. 2018) take into consideration the
class labels to generate linguistic descriptions. They adapt a
neural image captioning model and condition the model not
only on image features but also on the predicted class and
train their language generator using the visual descriptions
provided by human. However, the explanations generated by
their approach may not necessarily reflect the model’s actual
reasoning (Kim et al. 2017). This is evident as their gener-
ated explanation for an image may mention features that are
not even visible in the image. Figure 2 shows two birds with
different poses. The same explanation is generated by Hen-
drick’s model for these two birds even though black streaks
are not visible on the crown of the bird in Figure 2(b).

(b)

Figure 2: Same explanation “This is an Le Conte Sparrow
because this is a small brown bird with black streaks on its
crown” for different images irrespective of whether the fea-
tures are visible.

In addition, we observe that a model may make its deci-
sion using features different from that used by human. Fig-
ure 3(a) shows an image of a ‘Cardinal’. The feature that hu-
man uses to distinguish this type of bird is its “black cheek
patch” (Reed et al. 2016). The model’s confidence that the



bird in Figure 3(a) belongs to the class ‘Cardinal’ is 0.9583.
Figure 3(b) and (c) show the model’s confidence when we
occlude the black cheek patch and the crown of the bird re-
spectively. There was a greater decrease in confidence when
the crown was occluded indicating the model has based its
decision more on the feature “crown” than the “black cheek-
patch”, unlike the human. Knowing the true rationale behind
a model’s decision is crucial particularly in mission-critical
applications such as the medical domain.

iy,

(a) Conf=09583  (b)Conf=0.7742  (c) Conf = 0.6731
Figure 3: Model’s confidence that the bird is ‘Cardinal’

when different parts are occluded.

In this work, we propose a novel linguistic justification
generator framework called FLEX to elucidate image clas-
sification models by generating intuitive and descriptive ex-
planations that truly reflect how the models make their deci-
sions. We justify each classification decision with decision-
relevant features that are automatically derived from the
model being interpreted and generate a description which
is aligned with the model’s decision process.

Inspired by the work in (Selvaraju et al. 2016), we use
the gradient of the predicted class backpropagated to the
penultimate layer to identify features that contribute more
towards the model decision. Then we condition a Long-
Short Term Memory based (Hochreiter and Schmidhuber
1997) language generator on these features to generate de-
scriptive explanations. We utilize a relevance loss function to
assist the justification generator in picking up words related
to visual features that are relevant to the model decision.

We derive a novel way to associate visual features to
words. Finding this association frees us from being lim-
ited to generate explanations only for classes that FLEX is
trained for. This enables FLEX to generate explanations for
images of unseen classes where there are no ground truth
descriptions. This association allows objects in images to be
annotated automatically, thus eliminating the bottleneck in
semantic segmentation due to the lack of annotated images.

We evaluate the effectiveness of the proposed framework
on CUB (Wah et al. 2011) and MPII (Andriluka et al. 2014)
datasets. We introduce a new metric to measure how much
the justification matches the model’s reasoning. Experiment
results show that our framework can generate discriminative
and decision-relevant explanations compared to state-of-art
linguistic explanation models.

Related Work

In this section, we review works that provide explanations in
the form of visualization and linguistic description.
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A visualization technique that uncovers image features
such as color, shape, texture, etc. at any inner layer in a CNN
model was introduced in (Zeiler and Fergus 2014). They
used “decovnet” technique to project stimulation of each
feature map back to the input space. The guided backpropa-
gation introduced in (Springenberg et al. 2015) extends this
idea by modifying the backward flow of gradients through
ReLU (Rectified Linear Units) layers. Saliency map gener-
ation techniques (Simonyan, Vedaldi, and Zisserman 2014;
Bach et al. 2015) were proposed to highlight regions in the
input space that have influenced the model decision most.
Grad-CAM (Selvaraju et al. 2016) computes the importance
of feature maps of the last convolutional layer towards the
predicted class and use weighted feature maps to generate
a heatmap which highlights the class-discriminative regions
of the image. All these techniques do not provide explicit
explanations on why a model makes a certain decision.

Recent approaches try to use more descriptive linguistic
explanations to explain CNN model decisions. These in-
clude a mechanism for interpretable models (Barratt 2017),
post-hoc interpretation technique in terms of discrimina-
tive features (Hendricks et al. 2016), and an attention-based
multi-modal explanation framework (Park et al. 2018). The
reinforcement learning based discriminative loss in (Hen-
dricks et al. 2016) enforced class specificity and conditioned
the language generator not only on the image but also on the
predicted class. However, directly conditioning on the class
label may lead to the generation of the same explanation for
images belonging to the same class regardless of the applica-
bility of the explanation for a target image. The explainer in
(Park et al. 2018) used visual features weighted by an atten-
tion map to generate explanations. However, the attention
map is generated solely based on the class label and does
not involve in the decision-making process of the classifier.
Thus, the multi-modal explanations may not capture the true
visual features used by the classifier.

FLEX Framework

The proposed framework has three key steps. We first iden-
tify features that contribute to a model’s decision by extract-
ing a subset of important feature maps from the CNN classi-
fication model. Next, we associate words to these features so
that we can derive words describing decision-relevant fea-
tures. Finally, the weighted image features are fed into a
justification generator based on LSTM units. We introduce
a relevance loss function which is based on the identified
decision-relevant words to ensure that the generated justifi-
cations faithfully describe how the model makes its decision.
Figure 4 gives an overview of FLEX.

Identify Important Features

The contribution of hidden units in a CNN towards its deci-
sions can be identified in different granularities such as per
neuron, per channel (filter response also known as feature
map) or per a factorization of the whole layer (Olah et al.
2018). Given an image and its predicted class, we identify
the importance of each feature map from various convolu-
tional layers.
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Figure 4: Overview of FLEX Framework.

Suppose we have a CNN that classifies an image I into
some class c. Let {AY, A2 ..., AK} be the set of feature
maps at some layer h in CNN. In order to determine the
importance of a feature map A, we compute the gradient
of the score 4° for class ¢ with respect to each ij*" neuron
of the feature map A, denoted by a;;, and take the global
average. Thus, the weight o of feature map A with respect
to cis given by:

ey

where Z is the total number of neurons in A.
We apply softmax to the weight a to obtain the normal-
ized score B¢:
fa®)

C

e ?
We sort the feature maps according to their scores and se-
lect a minimum set of feature maps Ay, such that > 3¢ is
greater than some given threshold 7. This threshold is deter-
mined based on the percentage of contribution we want to
consider in selecting feature maps from each layer. In our
experiments, we set 7 to 80%. This process is repeated for
each layer in the CNN and we obtain the set of important

feature maps F’ for all the convolutional layers.

where f(z) =e”

Associate Words to Features

Next, we want to associate some word w to each important
feature v € F' such that w best describes v.

Suppose we have a training dataset of images, their class
labels, and ground truth descriptions. Let D be the ground
truth description for each image I. Then we have a word
dictionary D = | D;. For each noun/adjective w € D, we
compute its co-occurrence score with each feature v € F
using the Dice’s coefficient in Equation 3:

2 x occur(w,v)
count(w) + count(v)

3

score(w,v) =
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where count(w) is the number of occurrences of w in the
ground truth descriptions, count(v) is the number of occur-
rences of v in the training set, and occur(w, v) is the number
of times v and w occur together.

The word w with the highest co-occurrence score is as-
sociated with the feature v. Figure 5 shows that the words
"belly’ and ’white’ are associated with the features v’ and

” respectively.

Describe Decision-Relevant Features

Features at different layers represent concepts at different
granularities. For example, a feature at the last layer of a
CNN may represent the concept of “ear”, while the middle
layer feature may represent the concept of “flurry”. In order
to generate coherent linguistic justification, we start from the
last convolutional layer L to get the top-k features based on
their importance scores and their associated words. These
words depict the concepts used by the CNN model to make
its classification decision c for a given image 1.

For each of these concepts, we obtain its finer granular-
ity description by computing the gradient of activations with
respect to the feature maps in layer L — 1, and obtain the
top-k features as well as their associated words. We do this
recursively until we reach the first convolutional layer of the
network. The union of all the words associated with the top-
k features from layer 1 to L forms the set of words D,. that
describe the features used by the model for its decision.

We compute the relevance of a word w to the set D, as
follows:

0

—log (

Similarly, we can compute the relevance of a word w to
the ground truth description of an image I as:

0 w ¢ Dy
log (I‘D"‘) otherwise

w ¢ D,

D, .
| Dr | ) otherwise

|DI

relevance(w, D) = {

relevance(w, Dy) = {
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Figure 5: Associating words to filter responses.

Finally, let D, = |J Dy where class label of [ is ¢. Then
the relevance of a word w to D, relevance(w, D), can be
similarly determined as above.

Given the dictionary of words D, we construct a relevance
vector z = (g(w1), g(wz), ..., g(w|p|)) where w; is the 7"
word in D and

g(w;) relevance(w;, D,.) + relevance(w;, Dy) +

relevance(w;, D)

For example, the set of words relevant to the class “Cardi-
nal” is D, = {red, crown, black, cheekpatch, gray, wing,
belly, beak}. If we have the image I as shown in Figure 3(a),
then Dy {red, crown, black, cheekpatch, belly, beak}.
The set of descriptive words for features that a CNN model
may use to classify the bird in Figure 3(a) as a Cardinal is
D, = {red, crown}.

Generate Linguistic Justification

Finally, FLEX generates linguistic justifications based on
two stacked LSTMs. The training for the LSTMs is as fol-
lows. For each input image in the training dataset, we ob-
tain visual features from the penultimate layer of the CNN
and calculate their importance towards model decision as in
Equation 1. To eliminate features with negative influence,
ReLU is applied to the importance scores. We weight visual
features with their refined importance and create visual fea-
ture vector V. A training instance consists of this visual fea-
ture vector V', ground truth description of the image com-
prising of a sequence of 7" words <wy, ..., wr>, and the
corresponding relevance vector z as described earlier.

The first LSTM takes the ground truth word w;_; and
its hidden state 3%_1 at time step ¢ — 1 as inputs and com-

pute the next state, s%. Then we concatenate s% with the
visual feature vector V. This becomes the input to the sec-
ond LSTM which outputs s?. We encode s to the vocabu-
lary space to produce the conditional probability distribution
P(w;—1|w<¢—1, ) which is used to sample the current word
Wt.
Together with the relevance vector z, we carry out an
element-wise multiplication to compute the relevance loss,
denoted as loss(wy, I), incurred by the justification genera-
tor by predicting the word wy.

“

loss(wy, I) = max(z © P(w|w<i—1,1))
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Our objective function is a linear combination of negative
log-likelihood and relevance loss with regularization \:

T
Z [—log P(w¢|w<i—1,I) — Aloss(wy, I)]

t=1

(&)

During the inference, we sample from the conditional dis-
tribution to get the next word in the generated justification
and provide it as the next input to the LSTM.

Experimental Study

In this section, we carry out experiments to compare our
framework with the state-of-the-art linguistic explanation
frameworks, visual explanations (GVE) (Hendricks et al.
2016) and multi-modal explanations (MME) (Park et al.
2018). We also implemented a baseline model which as-
sumes the weights of all visual features to be 1, and does
not include the relevance loss in its objective function.

We use the following datasets for our experiments.

CUB. This is the Caltech UCSD Birds dataset containing
11,788 images of birds belonging to 200 classes (Wah et
al. 2011). Each image is annotated with 15 object parts
and has 5 sentences describing the details of the bird
species (Reed et al. 2016).

MPII. This dataset has 25k images of human poses for
different activities (Andriluka et al. 2014). There are 3
verbal explanations provided for 397 activities (Park et
al. 2018). Since this dataset does not have object level an-
notations, we manually annotated 150 images with 600
object categories.

The classifier for CUB dataset is the compact bilinear pool-
ing model which has an accuracy of 84% (Gao et al. 2016).
In FLEX, visual features are embedded to 512-dimensional
space whereas words are embedded to 1000-dimensional
space. LSTM hidden state dimension is 1000.

For the MPII dataset, we fine-tuned a ResNet-50 pre-
trained on Imagenet. We learn a 256-dimensional embed-
ding space for words and a 512-dimensional space for visual
features. LSTM hidden state dimension is 512.

We use publicly available GVE and MME codes. For
CUB dataset, we use the trained GVE model provided
by (Hendricks et al. 2016), while the MME model is trained



using visual features extracted by the classifier in (Gao et
al. 2016). To ensure fair comparison on the MPII dataset,
we train both GVE and MME models using visual features
extracted from our classification model. In all experiments,
explanations are conditioned on the predicted class.

Evaluation Metric

The standard image captioning metrics like BLEU (Pap-
ineni et al. 2002), METEOR (Banerjee and Lavie 2005)
and CIDEr (Vedantam, Lawrence Zitnick, and Parikh 2015)
measure how similar a generated explanation is to the
ground truth description. However, these metrics do not cap-
ture whether the generated justification truly corresponds to
the features used by the model to make decision.

Here, we propose a decision-relevance measure called
DREL to determine how well the generated linguistic de-
scription matches the visual features used by a model in
its prediction. Given the fine-grained annotations for each
image that describe objects in the image, we use the heat
maps generated by GradCAM (Selvaraju et al. 2016) to iden-
tify objects that are responsible for the model’s decision.
For CUB, this is the bird’s body part that is closest to the
maximum point in the heatmap. For MPII, these are ob-
jects whose bounding boxes overlap with the regions in the
heatmap with values greater than some threshold /.

Let O be the set of objects that are responsible for the
model’s decision, and OT be the set of words in the ground
truth description that refer to the objects in O. Then the met-
ric DREL is defined as

0T NG|

DREL =
0T

(6)
where G J is the set of words in the generated justification.

Note that DREL requires fine-grained annotations for test
images. For CUB dataset, we need part-level annotations
(e.g., beak, belly, etc) whereas for MPII dataset, we need
object level annotations (e.g., bicycle, ball, etc).

Sensitivity Experiments

We first carry out experiments to set the value of A in Equa-
tion 5. Table 1 shows the DREL results as A varies. We use
A = 0.1 for CUB, and A = 0.001 for MPII for subsequent
experiments as these values give us the best DREL results.

We also examine the effect of various components of
FLEX on providing faithful explanations. Table 2 shows the
DREL results for variants of FLEX on the CUB and MPII
test sets respectively.

The baseline model uses neither the relevance vector nor
the weights of CNN features. In other words, it merely de-
scribes the image content with no concern for the classifier
decision. Thus, it has the least score compared to the other
two models.

On the other hand, while “FLEX w/o relevance vector”
provides more faithful explanations compared to the base-
line model, it does not predict decision relevant words well
since it uses only the weighted CNN features. FLEX pro-
vides most faithful explanations indicating the effectiveness
of using weighted CNN features and relevance vector.
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A 1 10 TT10 210310070
CUB | 17.39 | 17.85 | 17.35 | 17.11 | 17.02 | 1648
MPIT | 15.01 | 1546 | 15.19 | 16.11 | 15.36 | 14.13

Table 1: DREL as A varies on CUB and MPII.

CUB | MPII
FLEX 17.85 | 16.11
FLEX w/o relevance vector | 16.48 | 14.13
Baseline 13.67 | 13.48

Table 2: DREL Results of FLEX variants.

Comparative Experiments

Next, we compare the performance of FLEX with state-of-
art verbal explainers GVE and MME. Table 3 shows the
DREL results on the CUB and MPII test sets respectively.
We observe that our framework achieved the highest scores
compared to GVE and MME in both datasets, indicating that
FLEX can provide explanations with more decision-relevant
features. In contrast, GVE and MME provide almost the
same explanation for all images of the same class.

Table 4 compares the BLEU-4 scores of FLEX, GVE and
MME on the CUB and MPII datasets. The results show
that FLEX achieves comparable BLEU scores with existing
methods. Therefore, we can conclude that FLEX does not
trade off sentence fluency for faithfulness in generating ver-
bal explanations and provide better interpretations for deep
CNNs compared to existing approaches.

CUB | MPII
FLEX 17.85 | 16.11
GVE (Hendricks et al. 2016) | 15.67 | 13.46
MME (Park et al. 2018) 15.02 | 13.92

Table 3: DREL Results on CUB and MPII.

CUB | MPII
FLEX 30.16 | 19.11
GVE (Hendricks et al. 2016) | 28.43 | 13.71
MME (Park et al. 2018) 27.94 | 19.88

Table 4: BLEU-4 Results on CUB and MPII.

Figure 6 and Figure 7 show sample linguistic justifica-
tions generated by FLEX, GVE and MME for CUB and
MPII datasets respectively. We use the GradCAM visual-
izations to highlight the regions used by the model for its
decisions. We observe that although the explanations gener-
ated by GVE and MME describe different visual features in
the images, they do not include the objects in the highlighted
regions, indicating that these explanations do not reflect how
the model makes its decision.

Consider the bird that has been classified as a Bohemian
Waxwing in Figure 6. GradCAM shows that the classifica-
tion model made its decision based on the black throat as
highlighted. FLEX is able to generate the linguistic justi-
fication that contains black throat, which is missing in the
explanations generated by GVE and MME.



This is a Bohemian Waxwing because

FLEX: This bird has a black crown, a black bill, and a black throat.
GVE: This is a gray bird with a black and white wing and a red crown.
MME: This bird has a black crown a white belly and a black bill.

This is a Scarlet Tanager because
FLEX: This bird is red in color with a black beak, and black eye.

GVE: This is a red bird with black wings and a small beak.
MME: This bird has a red crown and a red breast.

Figure 6: Comparison of justifications generated by FLEX with GVE and MME for CUB dataset.

This is classified to polishing floors, standing, using electric polishing machine class because
FLEX: She is standing in a room with a floor polisher and a rag in her hand.

GVE: She is kneeling on the floor with a carpet and is wearing exercise clothing.

MME: She is holding a mop and is in the middle of moving a mop.

This is classified to cello, sitting class because

FLEX: She is sitting on a chair and holding a cello in her hands.
GVE: She is sitting on a chair and playing it with a bow.

MME: She is standing in a room playing a double base.

Figure 7: Comparison of justifications generated by FLEX with GVE and MME for MPII dataset.

Similarly, we see that the explanations generated by
FLEX for MPII images in Figure 7 correctly describe poses
and equipment used for the different activities. In contrast,
GVE and MME seem to have difficulty in providing the cor-
rect description for the human activities in these images.

Insights into Incorrect Model Decision

Generating justification that reveals the features used by a
model in its decision is also useful when the model gives an
incorrect classification. Figure 8 and Figure 9 show the justi-
fications of two images which have been wrongly classified.
By comparing these images with other images (on the right)
from the predicted class, we observe that justification gener-
ated by FLEX describes features which are common across
the two classes, that is, the correct class of the image and the
predicted class. This common features may have caused the
classifier to make the wrong prediction.

For instance, both Fox Sparrow and Sage Thrasher have
a short pointy bill and speckled belly and breast. Similarly,
both Orange Crowned Warbler and Tennessee Warbler have
yellow belly and black wings.

We evaluate the performance of our framework in reveal-
ing causes for mis-classifications by calculating the percent-
age of misclassified images for those FLEX provided correct
insights.We consider that a generated explanation provides
correct insight for a misclassified image if all the features
mentioned in the explanation are common to both the cor-
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rect class and the predicted class. FLEX provides correct in-
sights for 70.51% of misclassified examples. Such insights
may alert users that there may be insufficient training images
to help the model to differentiate the two classes.

Generate Explanations for Unseen Classes

Collecting ground truth descriptions for each class is labori-
ous and expensive. The ability to explain decisions for im-
ages of unseen classes where there is no ground truth de-
scriptions is an advantage that FLEX has over GVE and
MME. We demonstrate this advantage of FLEX by training
the LSTM on CUB dataset leaving out two classes, namely
Black Tern and American Goldfinch.

DREL | BLEU-4
FLEX 36.72 | 32.70
GVE (Hendricks et al. 2016) | 32.35 | 27.96
MME (Park et al. 2018) 13.79 | 26.80

Table 5: DREL and BLEU-4 results on Black Tern and
American Goldfinch classes when models are trained with-
out instances from those classes.

Table 5 shows DREL and BLEU-4 results of FLEX, GVE
and MME on the left out classes. Since FLEX learns to asso-
ciate visual features to words and describe decision relevant
features, it can provide more faithful and meaningful expla-
nations for CNN decisions of classes not used in training.



FLEX: This bird has a speckled belly and breast with a short pointy bill.

3
L

(a) Fox Sparrow (b) Typical images of Sage Thrasher

Figure 8: Fox Sparrow misclassified as Sage Thrasher.

FLEX: This bird has wings that are black and has a yellow belly

(a) Orange Crowned Warbler (b) Typical images of Tennessee Warbler

Figure 9: Orange Crowned Warbler misclassified as Tennessee Warbler.

e

(a) Black Tern (b) American Goldfinch

FLEX : This bird has a yellow belly and breast and white wingbars.

GVE : This bird has a yellow belly and breast with a black crown and white crown.
MME : This bird has a yellow head a black breast and a black crown.

FLEX : This bird has a long black bill, a white throat, and a white speckled breast.
GVE : This bird has a white belly and breast with a black crown and white bill.
MME : This bird has a white belly a black belly and a black crown.

Figure 10: FLEX, GVE and MME explanations for unseen classes.

Beak Breast Feet Crown Belly

Figure 11: Annotations via a word to feature map association.
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Figure 10 shows the explanations generated for sam-
ple images from the Black Tern and American Goldfinch
classes. FLEX explanations are consistent with the Grad-
CAM visualizations, that is, long black beak for Figure 10(a)
and yellow belly and breast and white wing bars for Fig-
ure 10(b).

Annotate Decision Relevant Features

Another time-consuming task is the fine-grained annotation
of objects in images which is useful for semantic segmenta-
tion. One key advantage in FLEX is its ability to learn the
association between words and feature maps of a CNN. This
association allows us to automatically generate annotations
for an image.

We extract feature maps from the CNN and calculate the
importance of each feature map towards the model decision
as in Equation 1. Next, each feature map is multiplied by its
importance and values less than a threshold are suppressed
to create a heat map. Finally, we resize the heatmap, overlay
on the image and annotate it with the word associated with
the feature map.

Figure 11 shows the annotations obtained for the CUB
dataset. We observe that different parts of the birds such
as beak, breast and feet have been correctly annotated. The
CUB dataset has 15 part-annotations per image. Our method
can correctly annotate at least one part in 88% of images,
and can correctly annotate all 15 parts in 35% of images.

Conclusion

In this paper, we have introduced a novel framework that
generates linguistic justifications to explain the decisions
of a CNN. The proposed framework extracts information
about decision relevant features from the model being inter-
preted, and trains a justification generator using a new objec-
tive function to ensure that the generated justifications are
relevant to the model decision. Further, we propose a new
metric to evaluate how much of the true model reasoning
has been revealed in the justifications. Experimental results
on the CUB and MPII datasets indicate that the proposed
framework outperforms state-of-the-art explanation genera-
tors and the justifications generated by our framework can
reveal the true rationale behind model decisions.
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