The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Fast Iterative Combinatorial Auctions via Bayesian Learning

Gianluca Brero
University of Zurich
brero@ifi.uzh.ch

Abstract

Iterative combinatorial auctions (CAs) are often used in multi-
billion dollar domains like spectrum auctions, and speed of
convergence is one of the crucial factors behind the choice
of a specific design for practical applications. To achieve
fast convergence, current CAs require careful tuning of the
price update rule to balance convergence speed and alloca-
tive efficiency. Brero and Lahaie (2018) recently introduced
a Bayesian iterative auction design for settings with single-
minded bidders. The Bayesian approach allowed them to in-
corporate prior knowledge into the price update algorithm,
reducing the number of rounds to convergence with minimal
parameter tuning. In this paper, we generalize their work to
settings with no restrictions on bidder valuations. We intro-
duce a new Bayesian CA design for this general setting which
uses Monte Carlo Expectation Maximization to update prices
at each round of the auction. We evaluate our approach via
simulations on CATS instances. Our results show that our
Bayesian CA outperforms even a highly optimized benchmark
in terms of clearing percentage and convergence speed.

1 Introduction

In a combinatorial auction (CA), a seller puts multiple indivis-
ible items up for sale among several buyers who place bids on
packages of items. By placing multiple package bids, a buyer
can express complex preferences where items are comple-
ments, substitutes, or both. CAs have found widespread appli-
cations, including for spectrum license allocation (Cramton,
2013), the allocation of TV advertising slots (Goetzendorf et
al., 2015), and industrial procurement (Sandholm, 2013).
Practical auctions often employ iferative designs, giving
rise to iterative combinatorial auctions, where bidders inter-
act with the auctioneer over the course of multiple rounds.
A well-known example is the combinatorial clock auction
(CCA) which has been used by many governments around
the world to conduct their spectrum auctions, and it has gen-
erated more than $20 Billion in revenue since 2008 (Ausubel
and Baranov, 2017). The CCA consists of two phases: an
initial clock phase used for price discovery, followed by a
sealed-bid phase where bidders can place additional bids.
One of the key desiderata for a CA is its speed of conver-
gence because each round can involve costly computations

Copyright (© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Sébastien Lahaie
Google Research
slahaie@google.com

1820

Sven Seuken
University of Zurich
seuken @ifi.uzh.ch

and business modeling on the part of the bidders (Kwasnica
et al., 2005; Milgrom and Segal, 2013; Bichler, Hao, and
Adomavicius, 2017). Large spectrum auctions, for example,
can easily take more than 100 bidding rounds.! To lower
the number of rounds, in practice many CAs use aggressive
price updates (e.g., increasing prices by 5% to 10% every
round), which can lead to low allocative efficiency (Ausubel
and Baranov, 2017). Thus, the design of iterative CAs that
are highly efficient but also converge in a small number of
rounds still remains a challenging problem.

1.1 Machine Learning in Auction Design

Al researchers have studied this problem from multiple an-
gles. One early research direction has been to employ ma-
chine learning (ML) techniques in preference elicitation (La-
haie and Parkes, 2004; Blum et al., 2004). In a related thread
of research, Brero, Lubin, and Seuken (2017, 2018) inte-
grated ML into a CA design, but they used value queries
instead of demand queries (prices).

In recent work, Brero and Lahaie (2018) proposed a
Bayesian price-based iterative CA that integrates prior knowl-
edge over bidders’ valuations to achieve fast convergence
and high allocative efficiency. In their design, the auction-
eer maintains a model of the buyers’ valuations which is
updated and refined as buyers bid in the auction and reveal
information about their values. The valuation model is used
to compute prices at each round to drive the bidding process
forward. However, their design has two substantial limita-
tions: (i) it only works with single-minded bidders (i.e., each
bidder is only interested in one bundle), and (ii) it only al-
lows for Gaussian models of bidder valuations (even if other
models are more suitable and accurate). These limitations are
fundamental, because their design relies on both assumptions
to obtain an analytical form for the price update rule.

Similarly to Brero and Lahaie (2018), Nguyen and Sand-
holm (2014, 2016) studied different ways to determine prices
in reverse auctions based on probabilistic knowledge on bid-
ders’ values. However, in contrast to the setting studied by
Brero and Lahaie (2018), in these papers bidders’ valuations
were not combinatorial, and the auctioneer was allowed to
propose personalized prices to each bidder.

'See for example: https://www.ic.gc.ca/eic/site/smt-gst.nsf/eng/
sf11085.html

1.2 Overview of our Approach

In this paper, we generalize the approach by Brero and La-
haie (2018). We propose a new, general Bayesian CA that can
make use of any model of bidders’ valuations and, most im-
portantly, can be applied without any restrictions on the true
valuations. At the core of our new auction design is a modular
price update rule that only relies on samples from the auction-
eer’s valuation model, rather than a specific analytic form as
used by Brero and Lahaie (2018). We provide a new Bayesian
interpretation of the price update problem as computing the
most likely clearing prices given the current valuation model.
This naturally leads to an Expectation-Maximization (EM) al-
gorithm to compute modal prices, where valuations are latent
variables. The key technical contributions to implement EM
are (i) a generative process to sample from the joint distribu-
tion of prices and valuations (the expectation) and (ii) linear
programming to optimize the approximate log likelihood (the
maximization).

We evaluate our general Bayesian CA on instances from
the Combinatorial Auction Test Suite (CATS), a widely used
instance generator for CAs (Leyton-Brown, Pearson, and
Shoham, 2000). We first consider single-minded valuations,
and compare against the Brero and Lahaie (2018) design.
The performance of our general Bayesian CA design matches
theirs in terms of clearing percentage and speed of con-
vergence, even though their design is specialized to single-
minded bidders. Next, we evaluate our design in settings
with general valuations, where we compare it against two
very powerful benchmarks that use a subgradient CA design
with a non-monotonic price update rule. Our results show
that, on average (across multiple CATS domains), our general
Bayesian CA outperforms the benchmark auctions in terms
of clearing percentage and convergence speed.

Practical Considerations and Incentives. One can view
our Bayesian iterative CA as a possible replacement for the
clock phase of the CCA. Of course, in practice, many other
questions (beyond the price update rule) are also important.
For example, to induce (approximately) truthful bidding in
the clock phase, the design of good activity rules play a major
role (Ausubel and Baranov, 2017). Furthermore, the exact
payment rule used in the supplementary round is also impor-
tant, and researchers have argued that the use of the Vickrey-
nearest payment rule, while not strategyproof, induces good
incentives in practice (Cramton, 2013). Our Bayesian CA,
like the clock phase of the CCA, is not strategyproof. How-
ever, if our design were used in practice in a full combina-
torial auction design, then we envision that one would also
use activity rules, and suitably-designed payment rules, to
induce good incentives. For this reason, we consider the in-
centive problem to be orthogonal to the price update problem.
Thus, for the remainder of this paper, we follow prior work
(e.g., Parkes (1999)) and assume that bidders follow myopic
best-response (truthful) bidding throughout the auction.

2 Preliminaries

The basic problem solved by an iterative combinatorial auc-
tion is the allocation of a set of items, owned by a seller,

1821

among a set of buyers who will place bids for the items dur-
ing the auction. Let m be the number of items and n be the
number of buyers. The key features of the problem are that
the items are indivisible and that bidders have preferences
over sets of items, called bundles. We represent a bundle
using an m-dimensional indicator vector for the items it con-
tains and identify the set of bundles as X = {0,1}™. We
represent the preferences of each bidder ¢ with a non-negative
valuation function v; : X — R, that is private knowledge
of the bidder. Thus, for each bundle x € X, v;(z) represents
the willigness to pay, or value, of bidder 7 for obtaining x.
We denote a generic valuation profile in a setting with n bid-
ders as v = (v1,...,v,). We assume that bidders have no
value for the null bundle, i.e., v; (@) = 0, and we assume free
disposal, which implies that v;(z") > v;(x) for all ' > z.

At a high level, our goal is to design a combinatorial auc-
tion that computes an allocation that maximizes the total
value to the bidders. An iferative combinatorial auction pro-
ceeds over rounds, updating a provisional allocation of items
to bidders as new information about their valuations is ob-
tained (via the bidding), and updating prices over the items
to guide the bidding process. Accordingly, we next cover the
key concepts and definitions around allocations and prices.

An allocation is a vector of bundles, a = (a1, ...,a,),
with a; being the bundle that bidder ¢ obtains. An allocation
is feasible if it respects the supply constraints that each item
goes to at most one bidder.? Let 7 C X denote the set of
feasible allocations. The total value of an allocation a, given
valuation profile v, is defined as

Via;v) = Z vi(a;), (D
1€[n]
where the notation [n] refers to the index set {1,...,n}.

An allocation a* is efficient if a* € arg max,c » V(a;v). In
words, the allocation is efficient if it is feasible and maximizes
the total value to the bidders.

An iterative auction maintains prices over bundles of items,
which are represented by a price function § : X — R, as-
signing a price 6(x) to each bundle « € X. Even though our
design can incorporate any kind of price function 6, our im-
plementations will only maintain prices over items, which are
represented by a non-negative vector p € R’"; this induces
a price function over bundles given by 6(z) = ¢, P;;-
Item prices are commonly used in practice as they are very in-
tuitive and simple for the bidders to parse (see, e.g., Ausubel
et al. (2006)).3

Given bundle prices 6, the utility of bundle x to bidder i is
v;(x) — 6(x). The bidder’s indirect utility at prices 0 is

U(0;v;) = maxzex{vi(z) — 0(z)} (2)
i.e., the maximum utility that bidder ¢ can achieve by choos-
ing among bundles from X'.

2We assume that there is one unit of each item for simplicity, but
our work extends to multiple units without complications.

3We emphasize that, although the framework generalizes con-
ceptually to any kind of price function 8, complex price structures
may bring additional challenges from a computational standpoint.

On the seller side, the revenue of an allocation a at prices
01is 3_;c(n) 0(ai). The seller’s indirect revenue function is

R(0) = maxae 7 {3, cpy 0(ai)} 3
i.e., the maximum revenue that the seller can achieve among
all feasible allocations.

Market Clearing. We are now in a position to define the
central concept in this paper.

Definition 1. Prices 6 are clearing prices if there exists a
feasible allocation a € F such that, at bundle prices 9, a;
maximizes the utility of each bidder i € [n], and a maximizes
the seller’s revenue over all feasible allocations.

We say that prices 6 support an allocation a if the prices and
allocation satisfy the conditions given in the definition. The
following important facts about clearing prices follow from
linear programming duality (see Bikhchandani and Ostroy
(2002) as a standard reference for these results).

1. The allocation a supported by clearing prices 6 is efficient.

2. If prices 6 support some allocation a, they support every
efficient allocation.

3. Clearing prices minimize the following objective function:
W (0;0) = Y U(6;v:) + R(6).)

1€[n]

The first fact clarifies our interest in clearing prices: they
provide a certificate for efficiency. An iterative auction can
update prices and check the clearing condition by querying
the bidders, thereby solving the allocation problem without
necessarily eliciting the bidders’ complete preferences. The
second fact implies that it is possible to speak of clearing
prices without specific reference to the allocation they sup-
port. The interpretation of clearing prices as minimizers of (4)
in the third fact will be central to our Bayesian approach.*

Clearing Potential. By linear programming dual-
ity (Bikhchandani et al., 2001), we have
W(0;v) > V(a;v)

for all prices 6 and feasible allocations a, and the inequality
is tight if and only if 6 are clearing and a is efficient. In
the following, we will therefore make use of a “normalized”
version of (4):

W) = (W) - Vi)) 0.
It is useful to view (5) as a potential function that quanti-
fies how close prices 6 are to clearing prices; the potential
can reach O only if there exist clearing prices. We refer to
function (5) as the clearing potential for the valuation profile
v which will capture, in a formal sense, how likely a price
function € is to clearing the valuation profile v within our
Bayesian framework.

*We emphasize that none of the results above assert the existence
of clearing prices of the form 6(z) = ., P; ;. The objective
in (4) is implicitly defined in terms of item prices p, and for general
valuations there may be no item prices that satisfy the clearing price
condition (Gul and Stacchetti, 2000).

1822

Algorithm 1: Bayesian Auction Framework

1 Input: Prior beliefs Q°(v).

2 #° = initial prices, t = 0.

3 repeat

4 t+t+1.

Observe each bidder i’s demanded bundle b at §'~.

Compute revenue-maximizing allocation a' at ¢ 1.

Belief update: Use each bidder i’s demand b! and
Q' 1(v) to derive Q*(v).

8 | Price update: Use Q'(v) to derive new prices 6.

9 until a} = b’ for each bidder i € [n].

N S wn

3 The Bayesian Auction Framework

We now describe the Bayesian auction framework introduced
by Brero and Lahaie (2018) (see Algorithm 1). At the be-
ginning of the auction, the auctioneer has a prior belief over
bidder valuations which is modeled via the probability den-
sity function Q°(v). First, some initial prices §° are quoted
(Line 2). It is typical to let #° be “null prices” which assign
price zero to each bundle. At each round ¢, the auctioneer ob-
serves the demand b! of each bidder i at prices '~! (Line 5),
and computes a revenue maximizing allocation a® at prices
6*=1 (Line 6). The demand observations are used to update
the beliefs Q'~1(v) to Q*(v) (Line 7), and new prices 6
reflecting new beliefs are quoted (Line 8). This procedure
is iterated until the revenue maximizing allocation matches
bidders’ demand (Line 9), which indicates that the elicitation
has determined clearing prices.

In this paper, we build on the framework introduced by
Brero and Lahaie (2018) and generalize their approach to
(1) handle any kind of priors and (ii) apply it to settings
with no restrictions on the bidders’ valuations. This requires
completely new instantiations of the belief update rule and
the price update rule, which are the main contributions of our
paper, and which we describe in the following two sections.

4 Belief Update Rule

In this section, we describe our belief modeling and updating
rule, based on Gaussian approximations of the belief dis-
tributions (which proved effective in our experiments). We
emphasize, however, that the belief update component of the
framework is modular and could accommodate other meth-
ods like expectation-propagation or non-Gaussian models. A
complete description of the rule is provided in Algorithm 2.

The auctioneer first models the belief distribution via the
probability density function Q(v) = []'; Q;(v;). As the
rounds progress, each bidder bids on a finite number of bun-
dles (at most one new bundle per round). Let B; be the set of
bundles that bidder 7 has bid on up to the current round. We
model); as

Qi(vi) = [Qi(wi(b:)).

b;€eB;

(6)

Note that Q;(-) assigns equal probability to any two valua-
tions that assign the same values to bundles in B;. We model

Algorithm 2: Belief Update Rule

1 Input: Beliefs Q'~!(v), demand b of each bidder
i € [n].

2 foreach i € [n] do
3 | ifbl # () then
4 if b! ¢ B, then
6 Qi (wi(bh)) = Q(v°(})).
7 end
) Q! (v () ~
D(B(vi (b)) — 6" (b))) - Qi (wi(])).-
9 foreach b; € B; \ {b!} do
10 | Qivi(bi)) = QF (vi(bi)).-
11 end
12 else
13 foreach b; € B; do
. Qi(u(0) =~ .
(B0 (bi) — vilbi))) - Q" (vi(ba))-
15 end
16 end
17 end
18 Output: Updated beliefs Q*(v).

the density over each b; € B, using a Gaussian:
Qi(vi(bi)) = N (ki (bs), 0i(bs)), @)

where NV (11, o) denotes the density function of the Gaussian
distribution with mean p and standard deviation o. By keep-
ing track of separate, independent values for different bundles
bid on, the auctioneer is effectively modeling each bidder’s
preferences using a multi-minded valuation. However, as this
is just a model, this does not imply that the bidders’ true
valuations are multi-minded over a fixed set of bundles.

We now describe how the auctioneer updates Q' (v) to
Q*(v) given the bids observed at round ¢t. We assume the
auctioneer maintains a Gaussian distribution with density
Q(°(x)) = N (u°(x),0%(x)) over the value a generic bid-
der may have for every bundle x € X. To update beliefs
about bidder valuations given their bids, the auctioneer needs
a probabilistic model of buyer bidding. According to myopic
best-response bidding, at each round ¢, bidder ¢ would report
a utility-maximizing bundle b} € X at current prices 6°. In
other words, the buyer would bid on b! with probability 1 if
the bundle maximizes her utility at price #t, and 0 otherwise
(ties can be broken arbitrarily). This kind of bidding model is
incompatible with Gaussian modeling because it contradicts
full support: all bundle values v;(b%) < 6(b%) must have prob-
ability O in the posterior. To account for this, we relax the
sharp myopic best-response model to probit best-response, a
common random utility model under which the probability
of bidding on a bundle is proportional to its utility (Train,
2009). Specifically, we set the probability that bidder ¢ bids
on bt at prices 0§ ! proportional to

(B (vi(b)) — 6" (b}))), ®)

1823

where ® is the cumulative density function of the standard
Gaussian distribution and S > 0 is a scalar parameter that
controls the extent to which ® approximates myopic best-
response bidding. As 8 — oo, probability mass concentrates
on the highest-utility bundle.

Given a bid on bundle bﬁ # () in round ¢, the auctioneer
first records the bundle in B; if not already present (Line 5)
and sets Q" (v;(bt)) to Q(v°(bt)) (Line 6). The belief dis-
tribution over value v; (b’) is updated to

Qi (vi(b5)) N (i (07), 5 (b))
®(B(vi(b) — 0" (b)) - Q5 (vi (b))
®(B(vi (b)) — 6 (b])) - N (g~ (01), 071 (b))

(Line 8). To approximate the right-most term with a Gaus-
sian, we use simple moment matching, setting the mean and
variance of the updated Gaussian to the mean and variance of
the right-hand term, which can be analytically evaluated for
the product of the Gaussian cumulative density function ®
and probability density function N (see for instance Williams
and Rasmussen (2006)). This is a common online Bayesian
updating scheme known as assumed density filtering, a spe-
cial case of expectation-propagation (Opper and Winther,
1998; Minka, 2001).

If b = (), then we update the value of every bundle b; € B;
with an analogous formula (Line 14), except that the probit
term is replaced with

(5<9t 1(i) — vi(bi))) 9

to reflect the fact that declining to bid indicates that v;(b;) <
6*=1(b;) for each bundle b; € B;.

X

(
(

5 Price Update Rule

In this section, we describe our price update rule. A complete
description of the rule is provided in Algorithm 3. The key
challenge we address in this section is how to derive ask
prices from beliefs over bidders’ valuations. We transform
this problem into finding the mode of a suitably-defined
probability distribution over prices, and we then develop a
practical approach to computing the mode via Monte Carlo
Expectation Maximization.

We seek a probability density function P(6) over prices
whose maxima are equal to those prices that will most likely
be clearing under Q(v). As a first attempt, consider an in-
duced density function over clearing prices as given by

P(6) /I{W(Q;v) =0} Q(v)dv

v

(10)

with P(0,v) o< 1{W (#;v) = 0} Q(v) as the associated
joint density function. Recall that W (6; v) = 0 if and only
if prices 6 are clearing for valuations v. Thus, under func-
tion (10), prices 6 get assigned all the probability density of
the configurations v for which they represent clearing prices.

Although this approach is natural from a conceptual stand-
point, it may lead to problems when the Bayesian auction
uses specific price structures (e.g., item prices) that cannot
clear any valuation in the support of Q(v). It is then useful to
introduce price distributions such that, for each price function

6, P(0,v) > 0 for all possible configurations v. To obtain a
suitable price density function we approximate P(6) with

P\ (0) x /e_’\W(e;”) Qv) dv. (11)

The approximation is motivated by the following proposition.

Proposition 1. Assume that Q(v) allows us to define a prob-
ability density function over prices via Equation (10). Then,
for every price function 6,

Jlim_P5(6) = P(6). (12)

Proof. We prove the convergence of Py\(0) to P(6) by
separately showing the convergence of the numerator

[, e X Qu)du to [, 1{W(8;v) = 0}Q(v)dv and
of the normalizing constant [, [e~ *W) Q(v) dvdf to
f, [, 1{W(6;v) = 0} Q(v) dvd6. We will only show the

convergence of the numerator, as the convergence of the
normalizing constant follows from very similar reasoning.

Given that W (6; v) > 0 for any @ and W (6;v) = 0 only
if 6 is clearing for v, we have that, for each v, 0,

lim e WO Q) = 1{W (;v) = 0} Q(v). (13)

To achig:ve convergence in the integral form,h we note that,
as e "W (%) varies between 0 and 1, e AW (%) Q(v) is
bounded by the integrable probability density function Q(v).
This allows us to obtain convergence in the integral form via
Lebesgue’s Dominated Convergence Theorem. 0

We can now interpret Py (6) as the marginal probability den-
sity function of

Py(v,8) oc e W00 Q(y). (14)

The standard technique for optimizing density functions
like (11), where latent variables are marginalized out, is Ex-
pectation Maximization (EM). The EM algorithm applied to
P, takes the following form:

e E step: At each step 7, we compute

EPX(’U‘GTfl) |:10g PA(Ua 9):| y
where

e—AW(G;v) Q(U)
/ e—AW(Q;v’) Q(v/) v’

v

Pr(v]0) = (15)

e M step: Compute new prices
07 € argmaxEp, (y)97-1) {bg Py (v, 9)]
0

In general, it may be infeasible to derive closed formulas
for the expectation defined in the E step. To overcome this
issue, we use the Monte Carlo version of the EM algorithm
introduced by Wei and Tanner (1990). For the E step, we pro-
vide a sampling method that correctly samples from P (v|6),
the conditional probability density function of valuations ob-
tained from (14). For the M step, we use linear programming
to optimize the objective, given valuation samples.

Algorithm 3: Price Update Rule

1t Input: Current beliefs Q(v).

2 #° = initial prices, 7 = 0.

3 repeat

4 T+ 71741

5 foreach k € [(] do

6 repeat

7 Set resample =0.

8 Draw v*) from Q(v).

9 Set resample = 1 with probability
1— efAVAV(HT_l;U(k)).

10 until resample = 0.

11 end

12 Compute §7 € argming Y W(;0™).

i3 until [[07 — 07| /[|677Y| < e.
QOutput: Prices 67.

[y
-

Monte Carlo EM. Our Monte Carlo EM algorithm works
as follows: At each step T,

e Draw samples vV, ..., v from Py (v|#™~1) (Lines 5-11).

e Compute new prices

1
4 - (k)
" € arg;nax 7 keg . log Py (v'\"™, 0)

1 .
- (k)Y _ (k)
€ arg;nax 7 E log Q(v'™) — AW (0;v'%)

kell)
€ argminZW(@;v(k))
O ke

(Line 12). Note that each 67 can be derived via linear pro-
gramming. Indeed, using equation (5), we have that the min-

imizers of 3, 0 W (0;v)) correspond to the minimizers

of
ST N U;0) + er(0) (16)
kell] i€n]

which can be derived via the following linear program (LP):

Z kaMw 17)

kell] ie[n]

minimize
0,mix>0,m>0

st i > oM (b)) — 0(b;) Vi€ n] ke l,b € B,
> Z 0(a;) VYae F.

i€[n]

Note that, at any optimal solution for LP (17), each variable
i, equals the indirect utility (2) of bidder ¢ in sample k at
prices 6, while 7 equals the seller’s indirect revenue (3). Un-
der item prices, 6 can be parametrized via m variables p; > 0,
and the last set of constraints reduces to 7 > > (.1 p;. Fur-
thermore, as discussed in Section 4, the size of each B; cannot
be larger than the number of rounds. However, note that both
the number of constraints and the number of variables 7;j, are

proportional to the number of samples ¢. In our experimental
evaluation we confirm that it is possible to choose the sample
size ¢ to achieve both a good expectation approximation and
a tractable LP size.

Sampling Valuations from Posterior (Lines 5-9). To
sample from the posterior Py (v | §), we use the following
generative model of bidder valuations. This generative model
is an extension of the one provided by Brero and Lahaie
(2018), itself inspired by Sollich (2002).

Definition 2. [Generative Model] The generative model over
bidder valuations, given prices 0, is defined by the following
procedure:

e Draw v'®) from Q(v) (Line 8).
e Resample with probability 1 — e~ AW (00" (Line 9). >

The following proposition confirms that the generative
model correctly generates samples from (15).

Proposition 2. The samples generated by our generative
model have probability defined via the density function

Pyen(v) x e~ AW (6:v) Q(v), (18)
which corresponds to Py (v | 6).
Proof. We denote the probability of resampling as
r=1- /e‘kW(g;”) Qv) dv. (19)
The probability that v will be drawn after h attempts is
P(v,h) = e~ AW (60) Q(v)r". (20)
Thus, we have that
Pyen(v) = Z P(v,h) x e~ AW (6:0) Q) (21)
h=0
O

The A relaxation of the price density function has interest-
ing computational implications in our sampling procedure.
The larger the A (i.e., the better the approximation of Equa-
tion (10)), the larger the probability of resampling. Thus,
using smaller A will speed up the sampling process at a cost
of lower accuracy. From this perspective, A can serve as an
annealing parameter that should be increased as the optimal

3Note that, to determine whether to resample v® one needs
to compute the optimal social welfare V (a*; v®)) via W (6; v™*))
(see Equation (5)), which may require a computationally costly op-
timization. This is not the case in our implementation as each vk

i
is a multi-minded valuation over a small set of bundles B;. Alter-

natively, one can use the “unnormalized” W (6; v*)) as a proxy
for W(G; v), as in the generative model proposed by Brero and
Lahaie (2018) for single-minded bidders. When the optimal social
welfare is not varying too much across different samples, this trick
provides a good approximation of our generative model. Further-
more, it also did not prevent Brero and Lahaie (2018) from obtaining
very competitive results.

1825

solution is approached. However, while a larger A increases
the probability of finding clearing prices under density func-
tion Q(v), it does not necessarily lead to better clearing per-
formances in our auctions. Indeed, Q(v) is affected by the
auctioneer’s prior beliefs which may not be accurate. In par-
ticular, when the observed bids are unlikely under Q(v), it
can be useful to decrease A\ from round to round. In our ex-
perimental evaluations, we will simply use A = 1 and scale
valuations between 0 and 10 as (implicitly) done by Brero
and Lahaie (2018). This also keeps our computation practical.
We defer a detailed analysis of this parameter to future work.

6 Empirical Evaluation

We evaluate our Bayesian auction via two kinds of exper-
iments. In the first set of experiments we consider single-
minded settings where we compare our auction design against
the one proposed by Brero and Lahaie (2018). These exper-
iments are meant to determine how many samples at each
step of our Monte Carlo algorithm we need to draw to match
their results. In the second set of experiments we consider
multi-minded settings. Here, we will compare our auction
design against non-Bayesian baselines.

6.1 Experiment Set-up

Settings. We evaluate our Bayesian auction on instances
with 12 items and 10 bidders. These instances are sampled
from four distributions provided by the Combinatorial Auc-
tion Test Suite (CATS): paths, regions, arbitrary, and schedul-
ing (Leyton-Brown, Pearson, and Shoham, 2000). Each in-
stance is generated as follows. First, we generate an input
file with 1000 bids over 12 items. Then we use these bids to
generate a set of bidders. To generate multi-minded bidders,
CATS assigns a dummy item to bids: bids sharing the same
dummy item belong to the same bidder. To generate single-
minded bidders we simply ignore the dummy items. In each
CATS file, we partition the bidders into a training set and a
test set. The training set is used to generate the prior Gaussian
density functions Q(v°(z)) = N (u°(z),c"(z)) over bun-
dle values v°(x) which are used to initialize the auctioneer
beliefs in our auction. Specifically, we fit a linear regression
model using a Gaussian process with a linear covariance
function which predicts the value for a bundle as the sum
of the predicted value of its items. The fit is performed us-
ing the publicly available GPML Matlab code (Williams and
Rasmussen, 2006). Each bid of each bidder in the training
set is considered as an observation. We generate the actual
auction instance by sampling 10 bidders uniformly at random
from the test set. We repeat this process 300 times for each
distribution to create 300 auction instances which we use for
the evaluation of our auction designs.

Upper Limit on Rounds. As mentioned in Section 2, the
implementation of our Bayesian auction is based on item
prices given by 0(x) = >, P;¥;, where p; > 0. Item
prices may not be expressive enough to support an efficient
allocation in CATS instances (Gul and Stacchetti, 2000). We
therefore set a limit of 100 rounds for each elicitation run and
record reaching this limit as a failure to clear the market. Note

20212223 2% 2% ,8,7 8

202122 2%,%2% %2758

202122 2%,%2% %2758

Paths Regions Arbitrary Scheduling
o oo . M P
L4 []
S 05 e *
Q
O
0
40
L]
% . ° .
S 20 .
@] ° °
[hg . ® .
0

202122 2%,%2% %2758

Figure 1: Average number of cleared instances and rounds under different number of samples ¢ in our Monte Carlo Expectation
Maximization Algorithm. The horizontal lines indicate the baseline performance of Bayes®™ (Brero and Lahaie, 2018).

that, under this limit, some instances will only be cleared by
some of the auctions that we test. To avoid biases, we always
compare the number of rounds on the instances cleared by
all auctions we consider.°

Non-Bayesian Baselines. We compare our auction design
against non-Bayesian baselines that are essentially clock
auctions that increment prices according to excess demand,
closely related to clock auctions used in practice like the
CCA, except that prices are not forced to be monotone. Be-
cause the Bayesian auctions are non-monotone, we consider
non-monotone clock auctions a fairer (and stronger) compari-
son. The baseline clock auctions are parametrized by a single
scalar positive step-size which determines the intensity of the
price updates. We refer to these auctions as subgradient auc-
tions (SG-Auctions), as they can be viewed as subgradient
descent methods for computing clearing prices.

To optimize these subgradient auctions we run them 100
times on each setting, each time using a different step-size
parameter spanning the interval from zero to the maximum
bidder value. When then consider the following baselines:

(’Alternatively, one could allow for more than 100 rounds on
each instance where item clearing prices are found by any of the
tested auctions. However, relaxing the cap on the number of rounds
can lead to outliers with a very high number of rounds which can
drastically affect our results.

e Subgradient Auction Distribution (SG-Auction?): the sub-
gradient auction using the step-size parameter that leads to
the best performance on average over the auction instances
generated from any given distribution.

e Subgradient Auction Instance (SG-Auction?): the subgra-
dient auction using the step-size parameter that leads to
the best performance on each individual auction instance.

Note that these baselines are designed to be extremely com-
petitive compared to our Bayesian auctions. In particular, in
SG-Auction?, the auctioneer is allowed to run 100 different
subgradient auctions on each instance and choose the one
that cleared with the lowest number of rounds.

6.2 Results for Single-Minded Settings
N

We now compare our Bayesian auction, denoted BayesCEN,
against the one proposed by Brero and Lahaie (2018) (which
is limited to single-minded settings), denoted BayesS™, and
against the non-Bayesian baselines.

We first consider different versions of our auction design
where we vary the number of samples ¢ used at each step of
the Monte Carlo EM algorithm. As shown in Figure 1, our
general Bayesian auction is competitive with Bayes™ (Brero
and Lahaie, 2018) starting from ¢ = 24 (note that this is true
for all distributions even though they model very different
domains). This low number of samples allows us to solve the
linear program presented in (17) in a few milliseconds. For
the remainder of this paper, we will use £ = 27.

Paths Regions Arbitrary Scheduling
Clearing] Rounds |Clearing] Rounds |Clearing] Rounds [Clearing] Rounds
SG-Auction” 84% 119.5(1.0)| 89% |24.8(1.2)] 65% [35.1(1.8)] 94% |21.0(1.2)
SG-Auction” 88% [8.6(04)| 95% |1590.7)| 75% |(21.3(1.0)| 97% |11.9 (0.6)
BayesCFN 88% [52(04)| 96% |4.6(0.3)| 77% |4.5(03)| 98% | 6.3(0.3)
Bayes™ (Brero and Lahaie, 2018)|| 88% [4.9(02)| 96% [4.3(02)] 77% [4.2(03)] 98% |6.1(0.3)

Table 1: Comparison of different auction designs in settings with single-minded bidders. Clearing results are averaged over 300
auction instances. Rounds results are averaged over those instances that were cleared by all four auctions (which always included
more than 100 instances for each distribution). Standard errors are reported in parentheses.

1826

Paths Regions Arbitrary Scheduling
Clearing] Rounds [Clearing] Rounds [Clearing] Rounds [Clearing] Rounds
SG-Auction®|| 46% [22.0 (1.44)] 75% [28.8 (1.4)] 34% [36.2(2.6)] 51% [31.2(2.2)
SG-Auction' || 49% | 9.3(0.6) | 81% [19.0(0.9) 42% [27.42.1)] 59% [21.2(1.4)
BayesON 47% | 11.5(1.3)| 83% [83(0.6)| 47% |9.7(0.6)| 57% |18.8(1.4)

Table 2: Comparison of different auction designs in settings with multi-minded bidders. Clearing results are averaged over 300
auction instances. Rounds results are averaged over instances that were cleared by all three auctions (which always included
more than 100 instances for each distribution). Standard errors are reported in parentheses.

As we can see from Table 1, both Bayesian designs domi-
nate the non-Bayesian baselines in terms of cleared instances
while also being significantly better in terms of number of
rounds.

6.3 Results for Multi-Minded Settings

We now evaluate our BayesCEN auction in settings where bid-
ders are multi-minded. As we can observe from Table 2, our
Bayesian auction outperforms both baselines in terms of clear-
ing and rounds (on average, over the different distributions).
In Figure 2, we present the distributions of results for the auc-
tion rounds using box plots. Note that our Bayesian auction
always significantly outperforms SG-Auction®, and it out-
performs SG-Auction! for three out of the four distributions.
Furthermore, note that, while SG-Auction' and SG-Auction”
present very heterogeneous behavior across different distri-
butions, our Bayesian design is much more consistent, with a
third quartile that is always below 25 rounds.

7 Conclusion

In this paper, we have presented a Bayesian iterative CA
for general classes of bidder valuations. Our framework al-
lows the auctioneer to make use of any prior information
and any model of bidder values to propose new ask prices
at each round of the auction. At the core of our auction is a
practical Monte Carlo EM algorithm to compute the most

Paths Regions
100
0 T
Té |
|
3 50 + T
S
ol =+ == % L T %
Arbitrar Schedulin
100 y 9
| e
| | -
I I |
3 ! : | T
5 50 ! :
o -
D: Q B i
e =
SG-D SG-I Bayes

SG-D SG-I Bayes

Figure 2: Auction rounds under multi-minded bidders. The
box plot provides the first, second and third quartiles; the
whiskers are at the 10th and 90th percentile.

1827

likely clearing prices based on the bidders’ revealed infor-
mation. Our auction design is competitive against the design
proposed by Brero and Lahaie (2018) over single-minded
valuations, for which the latter was specially designed. For
general valuations, our auction design (without any special
parameter tuning) outperforms a very powerful subgradient
auction design with carefully tuned price increments.

Our work gives rise to multiple promising research di-
rections that can leverage and build on our framework. The
most immediate next step is to investigate different valuation
models within the belief update component. In this paper,
we considered Gaussian models to better compare against
prior work, but the analytic convenience of these models is no
longer needed; for instance, it may be the case that different
kinds of models work best for the different CATS distribu-
tions, and such insights could give guidance for real-world
modeling. Another intriguing direction is to handle incentives
within the framework itself, rather than rely on a separate
phase with VCG or core pricing. Future work could investi-
gate whether the auction’s modeling component can gather
enough information to also compute (likely) VCG payments.

Acknowledgments

Part of this research was supported by the SNSF (Swiss
National Science Foundation) under grant #156836.

References

Ausubel, L. M., and Baranov, O. 2017. A Practical Guide
to the Combinatorial Clock Auction. The Economic Journal
127(605).

Ausubel, L. M.; Cramton, P.; Milgrom, P.; et al. 2006. The
Clock-proxy Auction: A Practical Combinatorial Auction
Design. In Cramton, P.; Shoham, Y.; and Steinberg, R., eds.,
Combinatorial Auctions. MIT Press. chapter 5.

Bichler, M.; Hao, Z.; and Adomavicius, G. 2017. Coalition-
Based Pricing in Ascending Combinatorial Auctions. Infor-
mation Systems Research 28(1):159-179.

Bikhchandani, S., and Ostroy, J. M. 2002. The Package
Assignment Model. Journal of Economic theory 107(2):377-
406.

Bikhchandani, S.; de Vries, S.; Schummer, J.; and Vohra,
R. V. 2001. Linear Programming and Vickrey Auctions. IMA
Volumes in Mathematics and its Applications 127:75-116.
Blum, A.; Jackson, J.; Sandholm, T.; and Zinkevich, M. 2004.
Preference Elicitation and Query Learning. Journal of Ma-
chine Learning Research 5:649-667.

Brero, G., and Lahaie, S. 2018. A Bayesian Clearing Mecha-
nism for Combinatorial Auctions. In Proceedings of the 32nd
AAAI Conference of Artificial Intelligence, 941-948.

Brero, G.; Lubin, B.; and Seuken, S. 2017. Probably Ap-
proximately Efficient Combinatorial Auctions via Machine
Learning. In Proceedings of the 31st AAAI Conference of
Artificial Intelligence, 397-405.

Brero, G.; Lubin, B.; and Seuken, S. 2018. Combinatorial
Auctions via Machine Learning-based Preference Elicitation.
In Proceedings of the 27th International Joint Conference on
Artificial Intelligence, 128—136.

Cramton, P. 2013. Spectrum Auction Design. Review of
Industrial Organization 42(2):161-190.

Goetzendorf, A.; Bichler, M.; Shabalin, P.; and Day, R. W.
2015. Compact Bid Languages and Core Pricing in Large
Multi-item Auctions. Management Science 61(7):1684—
1703.

Gul, F,, and Stacchetti, E. 2000. The English Auction with
Differentiated Commodities. Journal of Economic theory
92(1):66-95.

Kwasnica, A. M.; Ledyard, J. O.; Porter, D.; and DeMartini,
C. 2005. A New and Improved Design for Multiobject
Iterative Auctions. Management Science 51(3):419-434.

Lahaie, S., and Parkes, D. C. 2004. Applying Learning
Algorithms to Preference Elicitation. In Proceedings of the
Sth ACM Conference on Electronic Commerce, 180—188.

Leyton-Brown, K.; Pearson, M.; and Shoham, Y. 2000. To-
wards a Universal Test Suite for Combinatorial Auction Al-
gorithms. In Proceedings of the 2nd ACM Conference on
Electronic Commerce, 66=76. ACM.

Milgrom, P., and Segal, I. 2013. Designing the US Incentive
Auction.

Minka, T. P. 2001. A Family of Algorithms for Approxi-
mate Bayesian Inference. Ph.D. Dissertation, Massachusetts
Institute of Technology.

Nguyen, T.-D., and Sandholm, T. 2014. Optimizing Prices
in Descending Clock Auctions. In Proceedings of the 15th
ACM Conference on Economics and Computation, 93—110.
ACM.

Nguyen, T.-D., and Sandholm, T. 2016. Multi-Option De-
scending Clock Auction. In Proceedings of the 2016 Interna-
tional Conference on Autonomous Agents and Multiagent Sys-
tems, 1461-1462. International Foundation for Autonomous
Agents and Multiagent Systems.

Opper, M., and Winther, O. 1998. A Bayesian Approach
to Online Learning. Online Learning in Neural Networks
363-378.

Parkes, D. C. 1999. iBundle: an Efficient Ascending Price
Bundle Auction. In Proceedings of the 1st ACM Conference
on Electronic Commerce, 148-157. ACM.

Sandholm, T. 2013. Very-Large-Scale Generalized Combi-
natorial Multi-Attribute Auctions: Lessons from Conducting
$60 Billion of Sourcing. In Vulkan, N.; Roth, A. E.; and
Neeman, Z., eds., The Handbook of Market Design. Oxford
University Press. chapter 1.

1828

Sollich, P. 2002. Bayesian Methods for Support Vector Ma-
chines: Evidence and Predictive Class Probabilities. Machine
learning 46(1-3):21-52.

Train, K. E. 2009. Discrete Choice Methods with Simulation.
Cambridge University Press.

Wei, G. C., and Tanner, M. A. 1990. A Monte Carlo Im-
plementation of the EM Algorithm and the Poor Man’s Data
Augmentation Algorithms. Journal of the American Statisti-
cal Association 85(411):699-704.

Williams, C. K., and Rasmussen, C. E. 2006. Gaussian
Processes for Machine Learning. The MIT Press.

