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Abstract

Bitcoin, a cryptocurrency built on the blockchain data struc-
ture, has generated significant academic and commercial in-
terest. Contrary to prior expectations, recent research has
shown that participants of the protocol (the so-called “min-
ers”) are not always incentivized to follow the protocol. We
study the game induced by one such attack – the pool block
withholding attack – in which mining pools (groups of min-
ers) attack other mining pools. We focus on the case of
two pools attacking each other, with potentially other mining
power in the system.
We show that this game always admits a pure Nash equilib-
rium, and its pure price of anarchy, which intuitively mea-
sures how much computational power can be wasted due to
attacks in an equilibrium, is at most 3. We conjecture, and
prove in special cases, that it is in fact at most 2. Our simu-
lations provide compelling evidence for this conjecture, and
show that players can quickly converge to the equilibrium by
following best response strategies.

1 Introduction
There has been significant interest in Bitcoin ever since it
was first proposed by the pseudonymous Satoshi Nakamoto
in 2008 (Nakamoto 2008). In recent years, popular fascina-
tion with Bitcoin has increased in tandem with its price.

Bitcoin was originally proposed as a decentralized cryp-
tocurrency that at last presented a compelling solution to the
double-spending problem. Bitcoin is built on a data structure
called the blockchain, which is a global distributed ledger
that stores relevant information on all historical transactions
in the system. Blocks that are sufficiently far back from the
leading edge of the blockchain are considered immutable.

Anyone can join or leave the Bitcoin system at any time,
so Bitcoin is secured against attacks on the ledger through
a proof of work system. Significant computational resources
must be expended in order for a new block to be generated,
through randomly guessing at nonces that, combined with
other fixed and time-stamped input, result in a hashed out-
put that satisfies certain criteria. Since there are electricity
and hardware costs associated with generating these proofs
of work (solutions), participants who generate a success-
ful solution are rewarded with a predetermined number of
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newly generated Bitcoins (fixed reward), as well as fees for
the transactions included in the block. In our work, we only
consider the fixed Bitcoin rewards or, equivalently, assume
that transaction fees per block are fixed. The process of gen-
erating new blocks is called mining and participants in this
process are called miners.

The difficulty of mining is dynamically adjusted so that a
new block is mined every ten minutes in expectation. Due to
the vast amounts of computational resources currently being
expended on Bitcoin mining, an individual miner has a very
small probability of being the first one to generate a block,
and thus may need to wait many months or years before
receiving a positive reward. Although the expected reward
from mining is still positive, the variance from mining indi-
vidually is unacceptably high. As a result, miners form min-
ing pools. Each member of a mining pool looks for proofs
of work on behalf of the pool, and the Bitcoins awarded for
a block mined by any member of the mining pool are shared
amongst all members of the pool.

In a decentralized system such as Bitcoin, it is not possible
for pool managers to know the true computational power of a
miner, so miners send pool managers partial solutions, called
shares, to allow the pool managers to estimate their compu-
tational power. The generally accepted principle is that min-
ers’ reward should be somewhat in proportion to their true
computational power expended, though there are many dif-
ferent mining pool reward structures; see Rosenfeld (2011)
for a thorough review. It is not possible for an invidividual
miner in the pool to steal a solution and claim it for him-
self, since the input for any solution includes the destination
wallet for the Bitcoin rewards for that block. Changing the
destination for the rewards would cause the hash of the orig-
inal input to no longer be a valid solution.

Some mining pools are open, i.e., they allow any miner
to join or leave the pool at will. Eyal (2015) demonstrated
that open mining pools may have an incentive to perform
pool block withholding attacks on each other. In this attack,
a pool uses some of its miners to infiltrate the other pools.
These miners perform work in the other pools, and release
shares in order to obtain a portion of the rewards generated
by these other pools, but never release a full solution. While
a pool sacrifices some of its computational power in the at-
tack, Eyal showed that the rewards obtained from the other
pools can potentially compensate for the loss and increase
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the overall reward of the pool. The analysis is performed
under the assumption that the total Bitcoin reward is fixed,
which is justified given that the difficulty of mining adjusts
over time based on how frequently blocks are mined.

Eyal argued that, in certain cases, the game induced – the
miner’s dilemma – shares similarities to the eponymous pris-
oner’s dilemma game because in an equilibrium, the pools
attack each other and all earn fewer rewards than they would
have if they had all mined honestly. In the classic prisoner’s
dilemma, the price of anarchy – the social loss due to play-
ers not cooperating in an equilibrium – can be unbounded.
Is this a trait also shared by the miner’s dilemma?

1.1 Our Results
We study the miner’s dilemma game induced between the
mining pools due to the possibility of pool block with-
holding attacks; we focus on the case of two open (attack-
able) pools, with potentially additional mining power in the
sytem. We show that every game admits a pure Nash equilib-
rium, and study its pure price of anarchy, which we define as
the total computational power of the two open pools divided
by the least total computational power they use for honest
mining in any pure Nash equilibrium.

Note that the traditional definition of the pure price of an-
archy would measure loss of player rewards — rather than
computational power — in an equilibrium. We believe that
measuring loss of computational resources is more impor-
tant, and show that our definition is in fact an upper bound
on the traditional pure price of anarchy. That is, all our upper
bounds apply to the traditional definition as well.

We show that the pure price of anarchy is at most 3, and
that this bound is not tight. We conjecture that every game in
fact admits a unique pure Nash equilibrium, the pure price
of anarchy is at most 2 (even with more than two open
pools), and the bound of 2 is realized only when there are
precisely two open pools with equal computational power
and no other solo miners or inaccessible pools. We prove
the conjecture in several special cases, and provide com-
pelling empirical evidence in the general case. Our exper-
iments also show that players converge to the (conjectured
unique) pure Nash equilibrium quickly by following itera-
tive best responses.

1.2 Related Work
The initial widespread belief underlying Bitcoin was that the
protocol only requires a majority of miners to be “honest” –
that is, follow the protocol faithfully – in order for the sys-
tem to be secure against attacks such as transaction manipu-
lations and double-spending. Moreover, it was generally as-
sumed that miners’ best strategy to maximize their expected
reward (in Bitcoins) was to follow the protocol and behave
honestly in all regards.

However, Raulo (2011) and then Rosenfeld (2011)
showed that this was not the case. For example, when mining
in pools, miners can increase their expected reward under
several commonly used pool reward schemes by switching
their mining power between different pools. Lewenberg et
al. (2015) looked at this from a cooperative game theoretic

perspective, demonstrating that for some network parame-
ters, some participants are always incentivized to switch be-
tween mining pools.

Furthermore, Eyal and Sirer (2014) showed that honest
miners must command at least two-thirds of the Bitcoin min-
ing power to ensure that the system is secure against spend-
ing attacks, such as double-spending. See the survey by Zo-
har (2017) for a partial overview of the results.

Carlsten et al. (2016) studied a game in which the fixed
Bitcoin rewards for mining a block are negligible and the
total mining reward is dominated by the transaction fees, a
scenario which will occur in the future, as fixed Bitcoin re-
wards per block mined decay over time. They showed that
in this scenario, miners can, in certain cases, obtain a greater
reward by intentionally forking a block with high transac-
tion fees to dishonestly obtain the rewards therein. They also
showed that selfish mining can be profitable for a miner with
an arbitrarily low share of the total computational power and
who is arbitrarily poorly connected in the network.

Rosenfeld (2011) discussed the so-called block withhold-
ing attack, in which a miner either delays releasing a full
proof of work (“delayed release”) or only ever releases
shares and never full proofs of work to the pool (“full with-
holding”). Schrijvers et al. (2017) studied incentive compat-
ibility of different pooled mining reward functions against
the delayed release version of the block withholding attack.
They proved or disproved incentive compatibility of com-
mon pool reward functions, and designed a new incentive
compatible reward function, aptly named “the IC reward
function.”

Eyal (2015) and Luu et al. (2015) both examined full
block withholding attacks, though their reward functions dif-
fer. Luu et al. assume that a pool divides its own (honest)
earnings among all miners in the pool, but divides the earn-
ings from infiltrating (and performing block withholding at-
tacks on) other pools only among its “loyal” miners, im-
plying that pools can distinguish which miners within their
pools are honest and which are performing block withhold-
ing attacks, but only when dividing rewards from attack-
ing other pools, and not when dividing rewards from honest
mining in their own pool. This appears to be less plausible
than the reward structure used in the work of Eyal, which
assumes that a pool divides all of its rewards – from both
honest mining and infiltrating other pools – among both its
loyal miners and the miners from other pools performing an
attack on the pool.

Our work uses the reward structure proposed by Eyal, in
which a pool divides all earnings among all miners mining
in the pool in proportion to the number of shares they sub-
mit. Eyal proved that with any number of pools, all pools
mining honestly and not attacking each other is never a pure
Nash equilibrium. Eyal also stated, without proof, that there
is always a pure Nash equilibrium in the case of two pools.1
We prove the claim in our work.

1In fact, Eyal makes a specific claim and argues that its validity
can be checked “using symbolic computation tools.” We show that
his claim is incorrect, and prove a corrected version of the claim.
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2 Model
Following the work of Eyal (2015), we consider a (closed)
Bitcoin system with two open mining pools (players). There
may be additional mining power outside of these two pools,
due to either solo miners or inaccessible mining pools. We
assume that the number of open pools, the mining power of
each pool, and the total mining power in the system (includ-
ing any solo miners and inaccessible pools) are fixed.

We also assume that miners are only ever loyal to one
pool, and their loyalty does not change. When mining in
their own pool, miners honestly report shares as well as full
proofs of work. However, each mining pool might use some
(or none) of its miners to infiltrate the other pool. These min-
ers mine in the other pool, report shares, but never report full
solutions, i.e., perform a full block withholding attack.

Let m denote the total mining power in the system. For
i ∈ {1, 2}, let mi denote the mining power of pool (player)
i; thus, m ≥ m1 +m2. The values of m, m1, and m2 define
a game. In this game, the strategy of pool i is to choose xi ∈
[0,mi], which is the amount of its mining power used to
attack the other pool. In this work, we are focused only on
pure strategies, i.e., deterministic values of xi.

2.1 Reward Functions
Given a strategy profile x = (x1, x2), the rewards of pools 1
and 2 are computed as follows. Note that the effective min-
ing power contributed by pool i is mi − xi. Thus, the total
effective mining power in the system is m− x1 − x2. Since
the difficulty of the proofs of work is frequently adjusted, the
direct revenue to pool i from the Bitcoin system, denoted
Ri(x1, x2), is proportional to the fraction of the effective
mining power contributed by the pool.

R1(x1, x2) =
m1 − x1

m− x1 − x2
, R2(x1, x2) =

m2 − x2

m− x1 − x2
.

Without loss of generality, we assume that m1 + m2 −
x1 − x2 > 0. This is because if m1 + m2 − x1 − x2 = 0
(i.e., x1 = m1 and x2 = m2), then neither pool receives any
reward, and either pool can obtain a strictly higher reward
by simply retaining a non-zero amount of its computational
power to mine honestly. Specifically, (x1 = m1, x2 = m2)
cannot be a pure Nash equilibrium (formally defined below).

The net revenue of each pool comes from two sources:
1) direct revenue from the Bitcoin system (for mining hon-
estly in its own pool) and 2) revenue from infiltrating the
other pool. The net revenue is divided among all miners min-
ing in the pool in proportion to their computational power,
which includes both the honest miners from this pool and the
dishonest miners sent by the other pool (the pool is unable
to distinguish between these honest and dishonest miners).
Thus, the revenue per unit mining power paid by pools 1 and
2, respectively, are

r1(x1, x2) =
R1(x1, x2) + x1r2(x1, x2)

m1 + x2
,

r2(x1, x2) =
R2(x1, x2) + x2r1(x1, x2)

m2 + x1
.

Each pool i wants to maximize its reward function ri. Note
that the total reward to pool i is miri(x1, x2), but maximiz-
ing this is equivalent to maximizing ri(x1, x2) because mi

is fixed.
Substituting in the equations for R1(x1, x2) and

R2(x1, x2), solving the above system of equations, and per-
forming some simple algebra, we rewrite the reward func-
tions directly in terms of players’ strategies:

r1(x1, x2) =
m1m2 +m1x1 − x2

1 − x1x2

(m− x1 − x2)(m1m2 +m1x1 +m2x2)
,

r2(x1, x2) =
m1m2 +m2x2 − x2

2 − x1x2

(m− x1 − x2)(m1m2 +m1x1 +m2x2)
.

(1)

We say that a strategy profile x∗ = (x∗1, x
∗
2) is a pure Nash

equilibrium if each player’s reward function is maximized,
given the strategy of the other player, i.e., if

x∗1 = argmax
x1∈[0,m1]

r1(x1, x
∗
2), x∗2 = argmax

x2∈[0,m2]

r2(x
∗
1, x2).

Since we assumed m−x1−x2 ≥ m1+m2−x1−x2 > 0,
both reward functions are continuous and differentiable on
the entire domain. Their partial derivatives are provided in
the full version of the paper. 2

Further, x∗1 ∈ [0,m1] maximizes r1(·, x2) only if one of
the following conditions is met; a symmetric statement holds
for x∗2 ∈ [0,m2] maximizing r2(x1, ·).
a. The partial derivative vanishes, i.e., ∂x1

r1(x
∗
1, x2) = 0.

b. x∗1 = 0 and ∂x1r1(0, x2) ≤ 0.
c. x∗1 = m1 and ∂x1

r1(m1, x2) ≥ 0.

2.2 (Pure) Price of Anarchy
In a non-cooperative game, the (pure) price of anarchy is
a measure of the ratio between the optimal social welfare
and the worst social welfare in any (pure) Nash equilib-
rium (Koutsoupias and Papadimitriou 1999; Papadimitriou
2001). In our case, it is socially desirable that more min-
ing power be used to mine honestly because the more power
expended on honest mining, the more secure against attacks
the system becomes (Zohar 2017). Hence, we define the pure
price of anarchy as follows.

PPoA =
m1 +m2

min(x∗1 ,x∗2)∈N m1 +m2 − x∗1 − x∗2
.

Here, N is the set of all pure Nash equilibria. In words,
we essentially define the social welfare in strategy profile
(x1, x2) to be the total mining power used by the two play-
ers to mine honestly (i.e., m1 +m2 − x1 − x2).

Note that the traditional definition of social welfare is
the sum of rewards to the two players. In a strategy profile
(x1, x2), this would be

m1r1(x1, x2) +m2r2(x1, x2) = R1(x1, x2) +R2(x1, x2)

=
m1 +m2 − x1 − x2

m− x1 − x2
.

2https://www.cs.toronto.edu/∼nisarg/papers/bitcoin poa.pdf
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We can now easily see that the traditional definition of pure
price of anarchy is upper bounded by our definition:

(m1 +m2)/m

min(x∗1 ,x∗2)∈N (m1 +m2 − x∗1 − x∗2)/(m− x∗1 − x∗2)

≤ m1 +m2

min(x∗1 ,x∗2)∈N m1 +m2 − x∗1 − x∗2
.

Thus, our upper bounds on the pure price of anarchy apply
to the traditional definition as well.

Similarly, another interesting definition of the social wel-
fare in strategy profile (x1, x2) is m−x1−x2, i.e., the total
power in the system used to mine honestly (as opposed to
the power used only by the two players to mine honestly). It
is easy to see that the pure price of anarchy according to this
definition is also upper bounded by our version of the pure
price of anarchy.

3 Extreme Equilibria
We begin by examining extreme strategies (x1 = 0, x1 =
m1, x2 = 0, or x2 = m2) that players might choose in a
pure Nash equilibrium, and if they do, how much computa-
tional power might be wasted in such an equilibrium. Our
first result shows that if at least one player is honest in a
pure Nash equilibrium, then at most half of the total power
is wasted in the equilibrium.
Lemma 1. If (x∗1, x

∗
2) is a pure Nash equilibrium where

x∗1 = 0 or x∗2 = 0, then x∗1 + x∗2 < m1+m2

2 . Moreover,
if x∗1 = 0, then we have

x∗2 =

m1

(
m2+
√

m2−(m+m1)m2−m
)

m−m1−m2
if m > m1 +m2,

m2

2 if m = m1 +m2.

A symmetric statement holds if x∗2 = 0.

Proof. Suppose (x∗1, x
∗
2) is a pure Nash equilibrium. As-

sume x∗1 = 0 (the case of x∗2 = 0 is symmetric). Then,
x∗2 ∈ argmaxx2∈[0,m2] r2(0, x2). First, note that

∂x2r2(0, x2) =
m2

1m2 + 2m1(m2 −m)x2 + (m1 +m2 −m)x2
2

m2(m− x2)2(m1 + x2)2

Next, it is easy to check that ∂x2
r2(0, 0) > 0 (respec-

tively, ∂x2
r2(0,m2) < 0); this requires substituting x2 = 0

(respectively, x2 = m2) and checking that the numerator of
the partial derivative is strictly positive (respectively, nega-
tive), using the facts that m1,m2 > 0 and m ≥ m1 + m2.
Hence, x∗2 = 0 or x∗2 = m2 cannot be maximizers.

The only possibility, therefore, is a solution to
∂x2r2(0, x2) = 0. By solving a quadratic equation, it can
be checked that the unique solution to this equation is

x∗2 =

m1

(
m2+
√

m2−(m+m1)m2−m
)

m−m1−m2
if m > m1 +m2,

m2

2 if m = m1 +m2.

In the latter case, we trivially have x∗1 + x∗2 = 0 + m2

2 <
m1+m2

2 . In the former case, showing that x∗1 + x∗2 = x∗2 <
m1+m2

2 requires simple algebra. A detailed proof is provided
in Lemma 5 in the full version of the paper.

Lemma 2. (x∗1, x
∗
2) cannot be a pure Nash equilibrium if

x∗1 = m1 or x∗2 = m2.

Proof. We show that (m1, x
∗
2) cannot be a pure Nash equi-

librium; the case of (x∗1,m2) is symmetric.
For (m1, x

∗
2) to be a pure Nash equilibrium, we need

r1(m1, x
∗
2) ≥ r1(0, x

∗
2); otherwise, player 1 would have an

incentive to deviate from the equilibrium. Note that

r1(m1, x
∗
2) =

m1(m2 − x∗2)

(m−m1 − x∗2)(m1m2 +m2
1 +m2x∗2)

,

r1(0, x
∗
2) =

m1m2

(m− x∗2) ·m2(m1 + x∗2)
.

It is easy to check that r1(m1, x
∗
2) ≥ r1(0, x

∗
2) is equivalent

to

(m2 − x∗2)(m− x∗2)(m1 + x∗2)

≥ (m−m1 − x∗2)(m1m2 +m2
1 +m2x

∗
2)

⇔ (x∗2)
3 ≥ (x∗2)

2(m−m1) + x∗2m1(m−m1 −m2)

+m2
1(m−m1 −m2).

Because m − m1 ≥ m2 ≥ x2 (thus, (x∗2)
2(m − m1) ≥

(x∗2)
3) and m1 > 0, the inequality above can hold only

if m = m1 + m2 and x∗2 ∈ {0,m2}. For x∗2 = 0, we
showed in the proof of Lemma 1 (and it is easy to check)
that x∗1 = m1 would not be the best response for player 1.
Also, we noted earlier that (m1,m2) cannot be a pure Nash
equilibrium because both players receive zero reward, and
either player could do better by using some of its power to
mine honestly. This concludes the proof.

4 Symmetric Case
We are now ready to analyze the pure price of anarchy. We
begin by examining the special case where both pools have
equal computational power (i.e., m1 = m2). In this case, we
can analytically express the unique pure Nash equilibrium
(which is symmetric), and establish an upper bound of 2 on
the pure price of anarchy.

Lemma 3. Let m1 = m2 = m
k , where k ≥ 2. Then, the

unique pure Nash equilibrium (x∗1, x
∗
2) is given by

x∗1 = x∗2 =
m

4k

(
2k − 1−

√
4k2 − 4k − 7

)
.

The pure price of anarchy is at most 2, and equal to 2 if and
only if m1 = m2 = m

2 .

Proof. Suppose (x∗1, x
∗
2) is a pure Nash equilibrium. We first

show that we cannot have x∗1 = 0 or x∗2 = 0. Suppose
x∗1 = 0. Then, Lemma 1 provides the only possible value
for x∗2. It is now easy to check that ∂x1

r1(0, x
∗
2) > 0, when

m1 = m2 = m/k. This implies that given strategy x∗2 of
pool 2, x∗1 = 0 cannot be the best response for pool 1. A
symmetric argument shows that we also cannot have x∗2 = 0.
Additionally, Lemma 2 shows that we cannot have x∗1 = m1

or x∗2 = m2 in the pure Nash equilibrium.
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Hence, (x∗1, x
∗
2) is a pure Nash equilibrium only if

∂x1r1(x
∗
1, x
∗
2) = ∂x2r2(x

∗
1, x
∗
2) = 0. Substituting m1 =

m2 = m/k, we obtain that both derivatives vanish only if(m
k

)3
− (m− x∗2)(x

∗
1 + x∗2)

2

+ 2
(m
k

)
x∗1(x

∗
1 + x∗2 −m) +

(m
k

)2
(2x∗1 + x∗2) = 0

(2)

and(m
k

)3
− (m− x∗1)(x

∗
1 + x∗2)

2

+ 2
(m
k

)
x∗2(x

∗
1 + x∗2 −m) +

(m
k

)2
(x∗1 + 2x∗2) = 0.

(3)

Subtracting Equation (3) from Equation (2), we obtain

(x∗
1 − x∗

2)

[
2
(m
k

)
(x∗

1 + x∗
2 −m) +

(m
k

)2
− (x∗

1 + x∗
2)

2

]
= 0

⇔
{
x∗
1 = x∗

2, or
2
(
m
k

)
(x∗

1 + x∗
2 −m) +

(
m
k

)2 − (x∗
1 + x∗

2)
2 = 0.

The second equality is a quadratic equation in x∗1 + x∗2,
which has real roots only if

4m2

k2
≥ 4 ·

(
2m2

k
− m2

k2

)
⇔ 1

k2
≥ 1

k
,

which does not hold because k ≥ 2. Hence, we must have
x∗1 = x∗2. Setting x∗2 = x∗1 in Equation (2), we obtain

4 (x∗
1)

3 + (x∗
1)

2

(
4m

k
− 4m

)
+ x∗

1

(
3m2

k2
−

2m2

k

)
+

m3

k3
= 0.

(4)
We see Equation (4) has three solutions to x∗1:

x∗1 =
−m
2k

or x∗1 =
m

4k

(
2k − 1±

√
4k2 − 4k − 7

)
.

Note that x∗1 = −m/(2k) is clearly invalid because we
know that x∗1 > 0. Also, note that

x∗1 =
m

4k
·
(
2k − 1 +

√
4k2 − 4k − 7

)
≥ m

4k
· 4 =

m

k
,

where the first transition holds because 2k − 1 +√
4k2 − 4k − 7 is an increasing function of k for k ≥ 2

and achieves its lowest value of 4 at k = 2. This implies that
x∗1 = x∗2 = m/k, which we know cannot be a pure Nash
equilibrium (Lemma 2). Hence, the only possible equilib-
rium is given by

x∗1 = x∗2 =
m

4k

(
2k − 1−

√
4k2 − 4k − 7

)
.

It is easy to check that this is indeed a pure Nash equilibrium
of the game. Now, the pure price of anarchy is given by

m1 +m2

m1 +m2 − x∗
1 − x∗

2

=
2m
k

2m
k
− m

2k

(
2k − 1−

√
4k2 − 4k − 7

)
=

4

5− 2k +
√

4k(k − 1)− 7
.

This is a strictly decreasing function of k for k ≥ 2. Hence,
it achieves its highest value of 2 if and only if k = 2.

5 No Other Miners
Next, we examine a different special case in which the
two pools can have arbitrary computational power relative
to each other, but there is no computational power in the
system besides these two pools. That is, we assume that
m = m1 + m2. We note that this case is mainly of theo-
retical interest because we can establish the uniqueness of
pure Nash equilibrium and analytically express the equilib-
rium. In practice, with m = m1+m2 one of the pools holds
at least 50% of the computational power in the system, a
scenario under which important security guarantees of the
Bitcoin system do not hold.

Lemma 4. When m = m1 + m2, the unique pure Nash
equilibrium is given by

(x∗1, x
∗
2) =



(
0, m2

2

)
if m1 ≤ m2

4 ,(
m1

2 , 0
)

if m2 ≤ m1

4 ,(√
m1m2 (2

√
m1−

√
m2)√

m1+
√
m2

, otherwise.
√
m1m2 (2

√
m2−

√
m1)√

m1+
√
m2

)
The pure price of anarchy is at most 2, and equal to 2 if and
only if m1 = m2 = m

2 .

The proof is presented in the full version of the paper, due
to space constraints.

Eyal (2015) claimed (see Section VI of his paper) that
there is always a unique solution (x∗1, x

∗
2) to the system of

equations ∂x1
r1(x

∗
1, x
∗
2) = 0 and ∂x2

r2(x
∗
1, x
∗
2) = 0, and

that this solution is the unique pure Nash equilibrium of the
game. In our proof of Lemma 4, we show that this claim is
incorrect. Specifically, when m = m1+m2, this system has
a feasible solution if and only if m1 ≥ m2/4 and m2 ≥
m1/4. Otherwise, we obtain an equilibrium at an endpoint
(x∗1 = 0 or x∗2 = 0) with a non-vanishing partial derivative.

6 General Case
We are now ready to present our results in the general case
that applies to all miner’s dilemma games. First, we show
that a pure Nash equilibrium always exists, implying that
the pure price of anarchy is well-defined. The proof is in the
full version of the paper. For m = m1 + m2, we note that
Lemma 4 already proves the required result. For m > m1 +
m2, we show that the sufficient conditions for the existence
of a pure Nash equilibrium given by Glicksberg (1952) are
satisfied.

Theorem 1. Every two-player game of miner’s dilemma ad-
mits a pure Nash equilibrium.

We are now ready to present the main result of the paper.

Theorem 2. The pure price of anarchy of every two-player
miner’s dilemma game is strictly less than 3.

Proof. Define t = m−m1 −m2. Lemmas 3 and 4 give us
the desired result when m1 = m2 or when t = 0. Hence,
we assume m1 6= m2 and t > 0. In fact, without loss of
generality, we assume m1 < m2. We want to show that for
any pure Nash equilibrium (x∗1, x

∗
2), x

∗
1+x∗2 < (2/3)·(m1+

m2).
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We have already established this for extreme equilibria
when x∗1 ∈ {0,m1} or x∗2 ∈ {0,m2} (Lemmas 1 and 2).
Hence, we restrict our attention to equilibria that satisfy
∂xi

ri(x
∗
1, x
∗
2) = 0 for i ∈ {1, 2}. In this case, we have

∂x1
r1(x

∗
1, x
∗
2) + ∂x2

r2(x
∗
1, x
∗
2) = 0 ⇔

m1(2m2 − x∗1 − 2x∗2)− (2t− x∗1 − x∗2)(x
∗
1 + x∗2)

−m2(2x
∗
1 + x∗2) = 0. (5)

We can now express x∗2 in terms of x∗1 and t:

x∗
2 = m1 + t+

m2

2
− x∗

1

±
1

2

√
4m2

1 + (m2 + 2t)2 + 4m2x∗
1 − 4m1(m2 − 2t+ x∗

1).

It is easy to check that the negative root is the only feasible
solution. Recall that our goal is to show an upper bound on
x∗1 + x∗2. Because we have x∗2 in terms of x∗1 and t, we can
express x∗1 + x∗2 in terms of x∗1 and t. Define

f(x1, t) = m1 + t+
m2

2

±
1

2

√
4m2

1 + (m2 + 2t)2 + 4m2x1 − 4m1(m2 − 2t+ x1).

Our goal is to show that f(x∗1, t) < (2/3)(m1 + m2). Let
us maximize f(x1, t). First, we see that

∂tf(x1, t) < 0⇔ −4m2(2m1 − x1)− 4m1x1 < 0,

which is true for all feasible x1 and t. Hence, we obtain that
for all x1 and t > 0, f(x1, t) < f(x1, 0). It thus remains to
show that f(x∗1, 0) ≤ (2/3)(m1 +m2). Note that

f(x1, 0) = m1 +
m2

2

−
1

2

√
4m2

1 − 4m1m2 +m2
2 − 4m1x1 + 4m2x1.

Next, observe that

∂x1f(x1, 0) =
m1 −m2√

(m2 − 2m1)2 + 4(m2 −m1)x1

< 0,

where the last inequality follows because we assumed m1 <
m2. Hence, we obtain that

f(x∗1, t) < f(x∗1, 0) ≤ f(0, 0)

= m1 +
m2

2
− 1

2
· |m2 − 2m1|

= min(2m1,m2)

≤ 1

3
(2m1) +

2

3
(m2)

=
2

3
(m1 +m2), (6)

as desired.

While we only prove existence of a pure Nash equilibrium
and establish a weak upper bound of 3 on the pure price
of anarchy, we conjecture that the following stronger result
should hold.
Conjecture 1. In every two-player miner’s dilemma game,
there exists a unique pure Nash equilibrium, the pure price
of anarchy is at most 2, and it is equal to 2 if and only if
m1 = m2 = m/2.

We note that in the extreme cases where m1 � m2 ≈ m
or m2 � m1 ≈ m, the pure price of anarchy also reaches
arbitrarily close to 2. But because we require m1,m2 > 0,
it never achieves the bound of 2.

We have proved this conjecture in two special cases: the
symmetric case, i.e., m1 = m2 (Section 4), and the case of
no other miners, i.e., m = m1+m2 (Section 5). One promis-
ing direction for establishing the uniqueness of pure Nash
equilibrium in the general case is to leverage the result by
Rosen (1965), and show that the sufficient conditions they
provide are satisfied in our game. For establishing a tighter
upper bound of 2, we note that it may be possible to tighten
the analysis in the proof of Theorem 2. Specifically, the up-
per bound we establish on f(x∗1, 0) in Equation (6) is in fact
an upper bound on f(x1, 0) for every x1. Noting that x∗1 is
in fact the strategy of pool 1 in a pure Nash equilibrium, we
may be able to leverage additional structure of x∗1, and prove
a tighter upper bound on f(x∗1, 0).

7 Experiments
In this section, we experimentally analyze the miner’s
dilemma game with two as well as three players, and pro-
vide compelling empirical evidence towards Conjecture 1.
Additionally, we show that players following best response
dynamics quickly converge to the pure Nash equilibrium.

Let p ∈ {2, 3} denote the number of pools. For pool i, let
xi,j denote the amount of computational power pool i uses
to attack pool j. We refer to the xi,j’s as the attack rates.
Thus,

∑
j xi,j ≤ mi.

We begin by analyzing the best response dynamics.
We set m = 100, and sample 100 integral values of
{mi : i ∈ [p]} (i.e., 100 different games) uniformly at ran-
dom subject to the constraint that

∑p
i=1 mi ≤ m. In each

game, we simulate iterative best responses starting from
honest mining. That is, we begin with x0

i,j = 0 for all
i, j. In iteration k, the players optimize their attack rates
one by one. That is,

{
xk
i,j : j 6= i

}
are optimized given{

xk
i′,j : i

′ < i, j 6= i′
}
∪
{
xk−1
i′,j : i′ > i, j 6= i′

}
.

After each iteration, we measure how far the current strat-
egy profile is from the pure Nash equilibrium

{
x∗i,j : i 6= j

}
;

specifically, we define the error at the end of iteration k to be∑
i 6=j |xk

i,j − x∗i,j |. For the two-pools case, we were able to
numerically find the (unique) pure Nash equilibrium using
Mathematica. For the three-pools case, we were not able to
do so, and used the strategy profile at the end of iteration 100
as a proxy for the pure Nash equilibrium. We remark that
after a few iterations, the change in the attack rates drops
significantly. All computations were done in Mathematica
using a precision of 250 digits in base 10.

Figures 1a and 1b show log-plots of the error with the
number of iterations in the two-pools and three-pools cases,
respectively. As we can see, the error decreases exponen-
tially with iterations. In particular, the error drops to less
than 10−10 in less than 10 iterations for the two-pools case
and in less than 20 iterations for the three-pools case.

Next, we focus on the pure price of anarchy in the case
of two and three pools. Again, in the case of two pools, we
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Figure 1: Error rates of best response dynamics and pure price of anarchy in miner’s dilemma games.

solve the pure Nash equilibrium numerically using Math-
ematica, while in the case of three pools, we run the best
response dynamics until the change is at most 10−10 (i.e.,
until iteration k such that

∑
i 6=j |xk

i,j−xk−1
i,j | ≤ 10−10), and

use the final strategy profile as proxy for the pure Nash equi-
librium. All computations are done with 250 digits (in base
10) of precision in Mathematica. In all our experiments, we
set m = 100.

Figures 1c and 1d show the PPoA with two pools in the
symmetric case (m1 = m2 ∈ [1, 50]) and in the case of no
other miners (m1 ∈ [1, 99],m2 = m − m1), respectively.
Note that in these cases, Lemmas 3 and 4 already provide
an analytic expression for the PPoA, which is precisely the
quantity plotted in these figures.

Figure 1e shows the PPoA with three pools in the sym-
metric case where m1 = m2 = m3 ∈ [1, 33]. While the
trend is similar to the case of two pools, the PPoA is never
higher than 1.5. We explain this phenomenon analytically in
the full version of the paper.

Figure 1f shows the PPoA with three pools in the no other
miners case where m = m1 +m2 +m3, and m1 = m2 ∈
[1, 49]. We fixed m1 = m2 to keep a single free parameter.
Here, while PPoA reaches close to 2 in the two edge cases
similarly to the two pools case, it only reaches 1.5 in the
symmetric case where m1 = m2 = m3 = m/3. In fact, it
seems that there is an (almost) flat region in the graph, which
would be very interesting to explain analytically.

8 Discussion
Our work leaves a number of immediate open questions. Set-
tling our Conjecture 1 (establishing uniqueness of pure Nash
equilibrium and proving an upper bound of 2 on the pure
price of anarchy) is the first important step. The next step

would be to generalize our analysis to the case of more than
two pools.

More broadly, game-theoretic analysis of Bitcoin system
is still in its infancy, and there are a number of interesting
research agendas including analysis of other types of reward
functions (in which a pool does not simply divide the reward
among miners in proportion to the number of shares submit-
ted) (Schrijvers et al. 2017; Rosenfeld 2011), other types of
attacks (e.g., closed pools can also attack open pools), and
even other proof systems (e.g., proof of stake).

The ultimate goal in this direction would be to take a
mechanism design viewpoint, and design a cryptocurrency
system which is either immune to game-theoretic attacks, or
which guarantees that desirable equilibria are achieved when
the players strategize.
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