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Abstract

Bike sharing provides an environment-friendly way for trav-
eling and is booming all over the world. Yet, due to the high
similarity of user travel patterns, the bike imbalance prob-
lem constantly occurs, especially for dockless bike sharing
systems, causing significant impact on service quality and
company revenue. Thus, it has become a critical task for
bike sharing operators to resolve such imbalance efficiently.
In this paper, we propose a novel deep reinforcement learn-
ing framework for incentivizing users to rebalance such sys-
tems. We model the problem as a Markov decision process
and take both spatial and temporal features into consider-
ation. We develop a novel deep reinforcement learning al-
gorithm called Hierarchical Reinforcement Pricing (HRP),
which builds upon the Deep Deterministic Policy Gradient
algorithm. Different from existing methods that often ignore
spatial information and rely heavily on accurate prediction,
HRP captures both spatial and temporal dependencies using
a divide-and-conquer structure with an embedded localized
module. We conduct extensive experiments to evaluate HRP,
based on a dataset from Mobike, a major Chinese dockless
bike sharing company. Results show that HRP performs close
to the 24-timeslot look-ahead optimization, and outperforms
state-of-the-art methods in both service level and bike distri-
bution. It also transfers well when applied to unseen areas.

Introduction
Bike sharing, especially dockless bike sharing, is booming
all over the world. For example, Mobike, a Chinese bike-
sharing giant, has deployed over 7 million bikes in China
and abroad. Being an environment-friendly approach, bike
sharing provides people with a convenient way for commut-
ing by sharing public bikes among users, and solves the “last
mile” problem (Shaheen, Guzman, and Zhang 2010). Dif-
ferent from traditional docked bike sharing systems (BSS),
e.g., Hubway, where bikes can only be rented and returned
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at fixed docking stations, users can access and park sharing
bikes at any valid places. This relieves users’ concerns about
finding empty docks when they want to use bikes, or getting
into fully occupied stations when they want to return them.

However, due to similar travel patterns of most users, the
rental mode of BSS leads to bike imbalance, especially dur-
ing rush hours. For example, people mostly ride from home
to work during morning peak hours. This results in very
few bikes in residential areas, which in turn suppresses po-
tential future demand, while subway stations and commer-
cial areas are paralyzed due to the overwhelming number of
shared bikes. This problem is further exaggerated for dock-
less BSS, due to unrestrained users’ parking locations. This
imbalance can cause severe problems not only to users and
service providers, but also to cities. Therefore, it is crucial
for bike sharing providers to rebalance bikes efficiently, so
as to serve users well and to avoid congesting city sidewalks
and causing a bike mess.

Bike rebalancing faces several challenges. First, it is a
resource-constrained problem, as service providers often
pose limited budgets for rebalancing the system. Naively
spending the budget to increase the supply of bikes will not
resolve the problem and is also not cost-efficient. Moreover,
the number of bikes allowed is often capped due to regu-
lation. Second, the problem is computationally intractable
due to the large number of bikes and users. Third, the user
demand is usually highly dynamic and changes both tem-
porally and spatially. Fourth, if users are also involved in
rebalancing bikes, the rebalancing strategy needs to effi-
ciently utilize the budget and incentivize users to help, with-
out knowing users’ private costs.

There have been a considerable set of recent results on
bike rebalancing, which mainly focuses on two approaches,
i.e., the vehicle-based approach (O’Mahony and Shmoys
2015; Liu et al. 2016; Ghosh, Trick, and Varakantham 2016;
Li, Zheng, and Yang 2018; Ghosh and Varakantham 2017)
and the user-based approach (Singla et al. 2015; Chemla
et al. 2013; Fricker and Gast 2016). The vehicle-based ap-
proach utilizes multiple trucks/bike-trailers to achieve repo-
sitioning by loading or unloading bikes in different regions.
However, its rebalancing effect depends heavily on the ac-
curacy of demand prediction. Also, it can be inflexible as it
is hard to adjust the repositioning plan in real time to cater
to the fluctuating demand. Additionally, due to the mainte-
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nance and traveling costs of trucks, as well as labor costs, the
truck-based approach can deplete the limited budget rapidly.
In contrast, the user-based approach offers a more econom-
ical and flexible way to rebalance the system, by offering
users monetary incentives and alternative bike pick-up or
drop-off locations. In this way, users are motivated to pick
up or return bikes in neighboring regions rather than re-
gions suffering from bike or dock shortage. However, ex-
isting user-based approaches often do not take the spatial in-
formation, including bike distribution and user distribution,
into account in the incentivizing policy. Moreover, user re-
lated information, e.g., costs due to walking to another loca-
tion, is also often unknown.

In this paper, we propose a deep reinforcement learn-
ing framework for incentivizing users to rebalance docke-
less BSS, as shown in Figure 1. Specifically, we view the
problem as interactions between a bike sharing service op-
erator and the environment, and formulate the problem as
a Markov decision process (MDP). In this MDP, a state
consists of supply, demand, arrival, and other related in-
formation, and each action corresponds to a set of mone-
tary incentives for each region, to incentivize users to walk
to nearby locations and use bikes there. The immediate re-
ward is the number of satisfied user requests. Our objec-
tive is to maximize the long-term service level, i.e., the to-
tal number of satisfied requests, which is of highest inter-
est for bike sharing service providers (Lin and Yang 2011).
Our approach falls under the topic of incentivizing strate-
gies in multi-agent systems (Xue et al. 2016; Tang 2017;
Cai et al. 2018).

To tackle our problem, we develop a novel deep reinforce-
ment learning algorithm called the hierarchical reinforce-
ment pricing (HRP) algorithm. The HRP algorithm builds
upon the Deep Deterministic Policy Gradient (DDPG) algo-
rithm (Lillicrap et al. 2015), using the general hierarchical
reinforcement learning framework (Dietterich 2000). Our
idea is to decompose the Q-value of the entire area of in-
terest into multiple sub-Q-values of smaller regions. The de-
composition enables an efficient searching for policies, as it
addresses the complexity issue due to high-dimensional in-
put space and temporal dependencies. In addition, the HRP
algorithm also takes spatial dependencies into consideration
and contains a localized module, in order to correct the bias
in Q-value function estimation, introduced by decomposi-
tion and correlations among sub-states and sub-actions. Do-
ing so reduces the input space and decreases the training
loss. We also show that the HRP algorithm improves con-
vergence and achieves a better performance compared with
existing algorithms.

The main contributions of our paper are as follows:

• We propose a novel spatial temporal bike rebalancing
framework, and model the problem as a Markov decision
process (MDP) that aims at maximizing the service level.

• We propose the hierarchical reinforcement pricing (HRP)
algorithm that decides how to pay different users at each
time, to incentivize them to help rebalance the system.

• We conduct extensive experiments using Mobike’s
dataset. Results show that HRP drastically outperforms

Figure 1: An overview of the deep reinforcement learning
framework for rebalancing dockless bikesharing systems.

state-of-the-art methods. We also validate the optimality
of HRP by comparing with our proposed offline-optimal
algorithm. We further demonstrate HRP’s generalization
ability over different areas.

Related Work
Rebalancing Approaches. With the recent development of
BSS, researchers have started to study operational issues
leveraging big data (Liu et al. 2017; Yang et al. 2016;
Chen et al. 2016; Li et al. 2015), among which rebalancing is
one of the most important focuses. Rebalancing approaches
can be classified into three categories. The first category
adopts the truck-based approach which employs multiple
trucks. These methods can reposition bikes either in a static
(Liu et al. 2016) or dynamic (Ghosh, Trick, and Varakan-
tham 2016) way, for docked BSS. The second category fo-
cuses on the use of bike-trailers (O’Mahony and Shmoys
2015; Ghosh and Varakantham 2017; Li, Zheng, and Yang
2018). The third category focuses on the user-based rebal-
ancing approach (Singla et al. 2015; Chemla et al. 2013;
Fricker and Gast 2016).
Reinforcement Learning. Deep Deterministic Policy Gra-
dient algorithm (DDPG) (Lillicrap et al. 2015) builds upon
the Deterministic Policy Gradient algorithm (Silver et al.
2014), using deep neural networks to approximate the
action-value function for improving convergence. However,
conventional reinforcement learning methods cannot scale
up to problems with high-dimensional input spaces. Hierar-
chical reinforcement learning (Dayan and Hinton 1993) de-
composes a large problem into several smaller sub-problems
learned by sub-agents, which is suitable for large-scale prob-
lems. Each sub-agent only focuses on learning sub-Q-values
for its sub-MDP. Thus, the sub-agent can neglect part of the
state which is irrelevant to its current decision (Andre and
Russell 2002; Van Seijen et al. 2017) to enable faster learn-
ing.

Problem Definition
In this section, we introduce and formalize the user-based
bike rebalancing problem, i.e., by offering users monetary
incentives to motivate them to help rebalance the system.

Consider an area spatially divided into n regions, i.e.,
{r1, r2, ..., rn}. We discretize a day into T timeslots with
equal length, denoted by T = {1, 2, ..., T}. Let Si(t) de-
note the supply in region ri at the beginning of timeslot
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t ∈ T , i.e., the number of available bikes. We also denote
S(t) = (Si(t),∀ i) as the vector of supply. The total user
demand and bike arrival of region ri during the timeslot t is
denoted by Di(t) and Ai(t) respectively. We similarly de-
note D(t) = (Di(t),∀ i) and A(t) = (Ai(t),∀ i) as the
vector of demand and the vector of arrival, respectively. Let
dij(t) denote the number of users intending to ride from re-
gion ri to region rj during the timeslot t.
Pricing Algorithm. At each timeslot t, for a user who can-
not find an available bike in his current region ri, a pricing
algorithm A suggests him alternate bikes in ri’s neighbor-
ing regions, denoted by N(ri). Meanwhile,A also offers the
user a price incentive pij(t) (in the order of user arrivals), to
motivate him to walk to neighboring region rj ∈ N(ri) to
pick up a bike bhj , where bhj denotes the h-th bike in rj . A
has a total rebalancing budget B. When the budget is com-
pletely depleted, A can no longer make further provision.
User Model. For each user uk in region ri, if there are avail-
able bikes in the current region, he takes the nearest one.
Otherwise, there is a walking cost if he walks from ri to a
neighboring region rj to pick up bikes. We denote the cost
by ck(i, j, x), where x is the walking distance from his loca-
tion to the bike. We assume that it has the following form:

ck(i, j, x) =

⎧⎨⎩
0 i equals to j

αx2 rj is a neighboring region of ri
+∞ else

. (1)

This particular form of ck(i, j, x) is motivated by a survey
conducted in (Singla et al. 2015), where it is shown that user
cost has a convex structure. Note that this cost is private to
each user and the cost function is unknown to the service
provider. For a user who cannot find an available bike in
his current region ri, if he receives an offer (pij(t), bhj) and
accepts it, he obtains a utility pij(t)−ck(i, j, x). Thus, a user
will choose and pick up the bike bhj where he can obtain the
maximum utility, and collect the price incentive pij(t). If no
offer leads to a nonnegative utility, the user will not accept
any of them, resulting in an unsatisfied request.
Bike Dynamics. Let xijl(t) denote the number of users in ri
riding to rl by taking a bike in rj at timeslot t. The dynamics
of supply in each region ri can be expressed as:

Si(t+1) = Si(t)−
n∑

j=1

n∑
l=1

xjil(t)+
n∑

m=1

n∑
j=1

xmji(t). (2)

The second and third terms in Eq. (2) denote the numbers of
departing and arriving bikes in region ri. Note that there is a
travel time for bikes travel among regions.
Objective. Our goal is to develop an optimal pricing algo-
rithm A to incentivize users in congested regions to pick up
bikes in neighboring regions, so as to maximize the service
level, i.e., the total number of satisfied requests, subject to
the rebalancing budget B.

Hierarchical Reinforcement Pricing Algorithm
In this section, we present our hierarchical reinforcement
pricing (HRP) algorithm that incentivizes users to rebalance
the system efficiently.

MDP Formulation
Our problem is an online learning problem, where an agent
interacts with the environment. Therefore, it can be mod-
eled as a Markov decision process (MDP) defined by a 5-
tuple (S,A, Pr,R, γ), where S and A denote the set of
states and actions, Pr the transition matrix, R the imme-
diate reward and γ the discount factor. In our problem, at
each timestep t, the state st = (S(t),D(t − 1),A(t −
1),E(t−1), RB(t),U(t)). Here, S(t) is the current supply
for each region while RB(t) is the current remaining budget.
D(t−1), A(t−1) and E(t−1) are the demand, arrival and
the expense in the last timestep for each region. U(t) repre-
sents the un-service rate for each region for a fixed number
of past timesteps. The bike sharing service operator takes
an action at = (p1t, ..., pnt), and receives an immediate
reward R(st, at) which is the number of satisfied requests
in the whole area R at timestep t. Specifically, pit repre-
sents the price for region ri at timestep t.1 Pr(st+1|st, at)
represents the transition probability from state st to state
st+1 under action at. The policy function πθ(st) with the
parameter θ, maps the current state to a deterministic ac-
tion. The overall objective is to find an optimal policy to
maximize the overall discounted rewards from state s0 fol-
lowing πθ, denoted by Jπθ

= E[
∑∞

k=0 γ
kR(ak, sk)|πθ, s0],

where γ ∈ [0, 1] denotes the discount factor. The Q-value
of state st and action at under policy πθ is denoted by
Qπθ (st, at) = E[

∑∞
k=t γ

k−tR(sk, ak)|πθ, st, at]. Note that
Jπθ

is a discounted version of the targeting service level ob-
jective, and will serve as a close approximation when γ is
close to 1. Indeed, our experimental results show that with
γ = 0.99, our algorithm performs very close to the offline
optimal of the service level objective, demonstrating the ef-
fectiveness of this approach.

The HRP Algorithm
One of the key challenges in our problem, is that it has a con-
tinuous and high-dimensional action space that increases ex-
ponentially with the number of regions and suffers from the
“curse of dimensionality”. To tackle this problem, we pro-
pose the HRP algorithm, which is shown in Algorithm 1.
Inspired by hierarchical reinforcement learning and DDPG,
the HRP algorithm, which captures both temporal and spa-
tial dependencies, is able to address the convergence issue
of existing algorithms and improve performance.

Specifically, we decompose the Q-value of the whole
area into the sub-Q-value of each region. Then, the Q-
value can be estimated by the additive combination of es-
timators of sub-Q-values according to

∑n
j=1 Q

j
µj
(sjt, pjt),

where sjt, pjt denote the sub-state and sub-action of region
rj at timestep t, and µj corresponds to the parameter of
the estimator. For each timestep, the current state depends
on previous states as people pick up and return bikes dy-
namically. To capture the sequential relationships exhibit
in states, one idea is to train each sub-agent using Long

1To reduce the complexity of the MDP, we employ the policy
that the monetary incentives a user in region ri receives for picking
up bikes in neighboring regions are the same. Thus, we use pit in
place of pij(tk) for ease of notations.
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Algorithm 1 The Hierarchical Reinforcement Pricing (HRP) algorithm.

Require: Randomly initialize weights θ, µ for the actor network πθ(s) and the critic network Qµ(s, a).
Initialize target actor network π′ and target critic network Q′ with weights θ′ ← θ, µ′ ← µ
Initialize experience replay buffer B by filling with samples collected from the warm-up phase
for episode = 1, ...,M do

Initialize a random process N to explore the action space, e.g. Gaussian noise, and receive initial state s1
for step t = 1, ..., T do

◃ Explore and sample
Select and execute action at = πθ(st) +Nt (Nt sampled from N ), observe reward Rt and next state st+1

Store transition (st, at, Rt, st+1) in experience replay buffer B //update experience replay buffer B
Sample a random minibatch of N transitions (si, ai, Ri, si+1) from B
◃ Get current state-action pair’s Q-value
Compute the decomposed Q-values Qj

µj
(sji, pji) for each region rj

Compute the bias-correction term fj(sji, NS(si, rj), pji) for each region rj by the localized module
Compute current state-action pair’s Q-value Qµ(si, ai) according to Eq. (3)
◃ Get next state-action pair’s Q-value
Get action for next state by actor network: a′i+1 = π′

θ′(si+1)

Compute the decomposed Q-values Qj
µ′
j
(sj(i+1), p

′
j(i+1)) for each region rj

Compute the bias-correction term fj(sj(i+1), NS(si+1, rj), p
′
j(i+1)) for each region rj by the localized module

Compute next state-action pair’s Q-value Q′
µ′(si+1, a

′
i+1) according to Eq. (3)

◃ Update
Set yi = Ri + γQ′

µ′(si+1, a
′
i+1)

Update the critic by minimizing the loss according to Eq. (5)
Update the actor using the sampled policy gradient according to Eq. (4)
Update the target networks: θ′ ← τθ + (1− τ)θ′, µ′ ← τµ+ (1− τ)µ′

end for
end for

Short-Term Memory (LSTM) (Hochreiter and Schmidhuber
1997) unit, which can capture complex sequential dependen-
cies. However, LSTM maintains a complex architecture and
needs to train a substantial number of parameters. Note that
a key challenge in hierarchical reinforcement learning is to
estimate accurate sub Q-values, which leads to an accurate
overall Q-value estimation. Thus, we adopt the Gated Recur-
rent Unit (GRU) model (Cho et al. 2014), a simplified vari-
ant of LSTM. Such a structure is more condensed and has
fewer parameters, which enables a higher sample efficiency
and avoids overfitting.

However, applying a direct decomposition can lead to
a large bias due to the dependence of each region and its
neighbors. In our case, users may pick up bikes in neighbor-
ing regions besides their current regions, resulting in the fact
that actions in different regions are coupled. Therefore, we
need to take this domain spatial feature into consideration.
We tackle the bias of Qµ(st, at) and

∑n
j=1 Q

j
µj
(sjt, pjt)

by embedding the localized module to incorporate the spa-
tial information. For each region rj , the localized module
(represented by fj) takes not only the state sjt and action
pjt, but also the states of its neighboring regions denoted by
NS(st, rj) as inputs. In particular, fj is approximated by a
neural network consisting of two fully-connected layers for
bias correction. Thus, we estimate Qµ(st, at) by:

n∑
j=1

Qj
µj
(sjt, pjt) + fj(sjt, NS(st, rj), pjt). (3)

The network architecture we propose to accelerate the
search process in a large state space and a large action space
is shown in Figure 2. Formally speaking, the key compo-
nents of the HRP algorithm are described below:
The Actor: The actor network represents the policy πθ pa-
rameterized by θ. It maximizes Jπθ

using stochastic gradient
ascent. In particular, the gradient of Jπθ

over θ is given by:

∇θJπθ
= Es∼ρπθ

[∇θπθ(s)∇aQµ(s, a)|a=πθ(s)], (4)

where ρπθ
denotes the distribution of states.

The Critic: The critic network takes the state st and action
at as input, and outputs the action value. Specifically, the
critic approximates the action-value function Qπθ (s, a) by
minimizing the following loss (Lillicrap et al. 2015):

L(Qπθ ) = Est∼ρπ,at∼π[(Qµ(st, at)− yt)
2], (5)

where yt = R(st, at) + γQ
′

µ′ (st+1, π
′
θ′(st+1)).

Experiments
Dataset
We make use of a Mobike dataset consisting of users’ tra-
jectories from August 1st to September 1st in 2016, in the
city of Shanghai. Each data record contains the following
information: order ID, bike ID, user ID, start time, start lo-
cation (specified by longitude and latitude), end time, end
location, and trace, with a total number of 102, 361 orders.
Figure 3 shows the thermodynamic diagram of the dataset,
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Figure 2: The actor-critic framework of the HRP algorithm.

(a) Demand in 8 a.m.-9 a.m. (b) Demand in 6 p.m.-7 p.m.

Figure 3: The temporal and spatial imbalance problem.

where different colors of circles represent different demand
levels with the radius representing the number of demand.
As shown, there exists a significant temporal and spatial im-
balance.

Experimental Setup
According to Mobike’s trajectory dataset, we obtain spatial
and temporal information of users’ requests and arrivals. We
observe that the demand curve of different weekdays follows
a very similar pattern according to the dataset, where the dis-
tribution during a day is bimodal with peaks corresponding
to morning and evening rush hours. Thus, we aggregate all
weekday demands to recover the total demand of a day. Each
day consists of 24 timeslots, and each timeslot is 1 hour. We
serve user requests every minute, where user requests are
directly drawn from data while their starting locations (lon-
gitude and latitude) follow uniform distribution in their start-

ing regions. To determine the initial distribution of bikes at
the beginning of the day, we follow a common and practi-
cal way that most bike sharing operators (e.g. Mobike, Ofo)
employ to redistribute bikes. The number of initial bikes in
region ri is set as the product of the total supply and the ratio
of the total demand in ri and the total demand for the whole
area. Then, locations of initial bikes of each region are ran-
domly drawn from data (from the locations of bikes in the
corresponding region). Users respond to the system accord-
ing to the defined user model, where the parameter α of the
cost function as in Eq. (1) is selected so that the cost ranges
in [0 RMB, 5 RMB]. This is chosen according to a survey
conducted by (Singla et al. 2015), which shows that the cost
ranges from 0 to 2 euros, and we converted it by the purchas-
ing power of users. According to Mobike, the total number
of orders in China is about 20 million, with the total sup-
ply, i.e., number of bikes, in China to be 3.65 million. Since
we cannot obtain the total supply directly from data, we set
the total supply as O × 3.65

20 (O is the number of orders in
our system). As the initial supply affects the inherent imbal-
ance degree in Mobike’s system, we vary this number in our
experiments to evaluate this effect. We use the first-order ap-
proximation to compute the number of the unobserved lost
demand (O’Mahony and Shmoys 2015).

Configurations of the HRP Algorithm For the state rep-
resentation, we choose the fixed number of past timesteps of
U(t) to be 8. The comparison is fair as hyperparamters are
the same for comparing reinforcement learning algorithms,
following the configuration of (Lillicrap et al. 2015). We
train the algorithm for 100 episodes in each setting, where
each episode consists of 24N steps (N denotes the number
of days). After that, 20 episodes are used for testing.

1397



Evaluation Metric

We propose a metric called decreased un-service ratio for
performance evaluation. This choice can better character-
ize the improvement of the pricing algorithm over the orig-
inal system (without monetary incentives) in the un-served
events, compared with the service level (Singla et al. 2015).

Definition 1. (Decreased un-service ratio) The decreased
un-service number of an algorithm A is the difference be-
tween the number of un-service events (UN ) under Mo-
bike and that of A, i.e., DUN(A) = UN(Mobike) −
UN(A). 2 The decreased un-service ratio of A is defined
as DUR(A) = DUN(A)

UN(Mobike) × 100%.

Baselines

We compare HRP with the following baseline algorithms:

• Randomized pricing algorithm (Random): assigns mone-
tary incentives randomly under the budget constraint.

• OPT-FIX (Goldberg, Hartline, and Wright 2001): an of-
fline algorithm to maximize the acceptance rate with full
a-priori user cost information.

• DBP-UCB (Singla et al. 2015): a state-of-the-art method
for user-based rebalancing which applied a multi-armed
bandit framework.

• DDPG (Lillicrap et al. 2015)

• HRA (Van Seijen et al. 2017): a reinforcement learning al-
gorithm which directly employed reward decomposition.

• Offline-optimal: a pricing algorithm which maximizes the
service level under the budget constraint with known user
costs in advance, serving as an upper bound for any on-
line pricing algorithms. To reduce the complexity of the
formulation, we assume a trip finishes in the same times-
lot (1 hour) it begins. 3 In our comparison with the offline-
optimal, due to computational complexity, we assume that
the costs of users walking from one region to another are
the same for each timeslot t, defined as ck(i, j, x) = cij(t)
if rj is the neighboring region of ri, where cij(t) is
drawn independently from the empirical distribution of
user costs for picking up bikes in rj instead of their cur-
rent regions ri defined as Eq. (1) from timeslot t of the
dataset. Then, the problem can be formulated as the fol-

2Note that UN(Mobike) is computed by simulating Mobike’s
original system.

3Otherwise, one has to set the timeslot as 1 minute, resulting
in an integer linear program with too large complexity. Please note
that the model and simulation do not rely on the assumption.

lowing integer linear program: 4

max
∑
t∈T

∑
i,j,l∈[1,n]

xijl(t) (6)

s.t. xijl(t) ∈ Z+, ∀i, j, l, t (7)∑
j∈[1,n]

xijl(t) ≤ dil(t), ∀i, l, t (8)

∑
i,l∈[1,n]

xijl(t) ≤ Sj(t), ∀j, t (9)

∑
t∈T

∑
i,j,l∈[1,n]

xijl(t)cij(t) ≤ B (10)

Si(t+ 1) = Si(t)−
∑

j,l∈[1,n]

xjil(t) +
∑

l,j∈[1,n]

xlji(t), ∀i, t.

(11)

Constraints (8) guarantee that for any timeslot, the num-
ber of users in ri heading for rl is no larger than the de-
mand from ri to rl. Constraints (9) mean that the number
of bikes picked up in rj does not exceed the bike supply
in this region. Constraint (10) ensures that the money the
service provider spends is limited by B. Constraints (11)
are for the dynamics of the supply of bikes.

Performance Comparison
We first compare HRP and reinforcement learning baselines
to analyze the converging issue. Next, we compare HRP
with varying budget and supply to evaluate its effectiveness
in a day. Then, we analyze the long-term performance. Fi-
nally, we compare HRP with the offline-optimal scheme and
evaluate its generalization ability.

Training Loss Figure 4(a) shows the training loss under
HRP, HRA, and DDPG. As expected, DDPG diverges due
to high-dimensional input spaces. Notably, HRA diverges
with an even larger training loss. This is due to the imprac-
tical assumption of independence among sub-MDPs, which
results in a biased estimator for the Q-value function. HRP
outperforms the two and is able to converge. 5

Effect of Varying Budget Constraints Figure 4(b) shows
the decreased un-service ratio of each algorithm under dif-
ferent budget constraints. DDPG performs similarly at dif-
ferent budget levels as it fails to learn to efficiently use the
budget in such a large input space. HRA performs better
than DDPG due to the decomposition. HRP decreases the
un-service ratio by 43% − 63%, and outperforms other al-
gorithms under all budget levels. The reason that OPT-FIX
and DBP-UCB underperform HRP is that they do not con-
sider spatial information, and focus solely on optimizing the
acceptance rate.

Achieving Better Bike Distribution To also analyze the
rebalancing effect over a day, we measure how the distribu-
tion of bikes at the end of the day diverges from its value at
the beginning of the day, using the Kullback-Leibler (KL)

4We solve the program with Gurobi.
5The running time of HRP until convergence is less than 6 min-

utes on an NVIDIA GTX Titan-X 12GB graphics card.
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Figure 4: Comparison of training loss and varying budget.

HRP HRA DBP-UCB DDPG OPT-FIX
0.548 0.560 0.562 0.586 0.598

Table 1: KL divergence of user-based algorithms.

divergence measure (Kullback and Leibler 1951). We sim-
ulate Mobike’s original system (without monetary incen-
tives), and obtain its KL divergence level to be 0.554. As
seen in Table 1, OPT-FIX obtains a bike distribution that
is most different from the initial bike distribution. The rea-
son can be that OPT-FIX is too aggressive in maximizing
the acceptance rate, which can worsen the bike distribution.
HRP outperforms all existing algorithms with a KL diver-
gence value of 0.548, even smaller than Mobike’s value.
This demonstrates that HRP is able to improve the bike dis-
tribution at the end of a day.

Effect of Varying Supply Besides varying the budget, it is
also worth studying how HRP performs under different sup-
ply levels to evaluate its robustness. The results are shown
in Figure 5(a). Intuitively, the problem is more challenging
when supply is limited, which can lead to a large un-service
rate. Random and DBP-UCB both perform poorly while the
performance of OPT-FIX, DDPG, and HRA are almost the
same. HRP performs significantly better than others, and
achieves a 47% − 60% decrement in the un-service ratio,
demonstrating its robustness against different total supply.

Long-Term Performance Apart from analyzing one
day’s effect, we also evaluate the long-term performance by
varying the number of days. We compare HRP with two
most competitive algorithms, HRA and OPT-FIX, from 1
day to 5 days using decreased un-service number. As shown
in Figure 5(b), HRP outperforms other algorithms. The per-
formance gap also gets larger as the number of days in-
creases. This is because HRP can achieve a better bike dis-
tribution as discussed in the previous section, and it learns to
maximize the long-term reward. Readers please refer to the
supplemental material for our detailed analysis of the result.

Optimality We now provide comparison results with the
offline-optimal scheme. To avoid computation and memory
overhead, we conduct the comparison on a smaller area con-
sisting of 3× 3 regions with highest request density to eval-
uate how well HRP can perform in a most congesting area.
We compare both HRP and HRA with the offline-optimal,
by adjusting different values of timeslots V . The V -timeslot
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Figure 5: Comparison of varying supply and number of days.
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Figure 6: Optimality and generalization comparison.

optimization means that for every V timeslots, we optimize
the offline program with V horizons. Intuitively, a larger V
leads to better performance. In this evaluation, the results
are averaged over 400 independent runs of each algorithm.
Figure 6a demonstrates that the performance of HRP is very
close to that of 24-timeslot optimization, while HRA only
performs close to 4-timeslot optimization.

Generalization Now, we investigate whether HRP can
transfer well, i.e., trained with certain areas but still performs
well when applied to new ones. As the dataset only consists
of trajectories in Shanghai, we divide the whole area into
smaller areas where each consists of 3 × 3 regions to gen-
erate more areas. We train HRP and HRA in a certain area
and then test them on other areas. Figure 6b shows the cu-
mulative density function (CDF) of HRP and HRA on the
decreased un-service ratio over all areas. HRP can achieve
a 40% − 80% un-service ratio decrement over 80% areas
in testing. This demonstrates that HRP generalizes well to
new areas that it has never seen before. Note that the curve
of HRP is strictly to the right of HRA, showing that HRP
generalizes better than HRA.

Conclusion
We propose a deep reinforcement learning framework for
incentivizing users to rebalance dockless bike sharing sys-
tems. We propose a novel deep reinforcement learning algo-
rithm called hierarchical reinforcement pricing (HRP). HRP
maintains a divide-and-conquer structure that can handle
complex temporal dependencies. It is also embedded with
a localized module to better estimate the Q-value, which can
capture spatial dependencies. We conduct extensive experi-
ments for HRP based on real dataset from Mobike, a major
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Chinese dockless bike sharing company. Results show that
HRP outperforms state-of-the-art methods.

As for future work, one interesting extension is to deploy
our algorithm in a real-world bike sharing system. To adapt
to shifting environments across the year, one can first update
the simulator with latest collected data, and then train HRP
with the updated simulator offline every a fixed number of
days. After training, one can adopt the new policy online. It
is also promising to consider more factors in the user feed-
back model, e.g. travel distance and the time of day.
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