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Abstract

Constructing of molecular structural models from Cryo-
Electron Microscopy (Cryo-EM) density volumes is the crit-
ical last step of structure determination by Cryo-EM tech-
nologies. Methods have evolved from manual construction
by structural biologists to perform 6D translation-rotation
searching, which is extremely compute-intensive. In this pa-
per, we propose a learning-based method and formulate this
problem as a vision-inspired 3D detection and pose estima-
tion task. We develop a deep learning framework for amino
acid determination in a 3D Cryo-EM density volume. We also
design a sequence-guided Monte Carlo Tree Search (MCTS)
to thread over the candidate amino acids to form the molecu-
lar structure. This framework achieves 91% coverage on our
newly proposed dataset and takes only a few minutes for a
typical structure with a thousand amino acids. Our method is
hundreds of times faster and several times more accurate than
existing automated solutions without any human intervention.

Introduction
Resolving the 3D atomic structures of macro molecules is
of fundamental importance to biological and medical re-
search. Single particle Cryo-EM has emerged as a revolu-
tionary technique that images biomolecules frozen in their
native (or native-like) states. With Cryo-EM, 2D projection
images are firstly collected and then reconstructed into a vol-
umetric data, i.e., density volume, by software tools such as
Relion (Scheres 2012) and cryoSparc (Punjani et al. 2017;
Punjani, Brubaker, and Fleet 2017; Brubaker, Punjani, and
Fleet 2015). Next, a molecular model that represents the
atomic coordinates of each amino acid, the building blocks
of protein molecules, is constructed and fitted into the 3D
density volume (Fig. 1).

Despite the steady progresses towards automatic Cryo-
EM structure determination, molecular model building re-
mains a bottleneck. This step is difficult to automate since
it relies substantially on human expertise. Structural biol-
ogy experts are needed to manually assign specific amino
acids to a density volume, with the help of 3D visualiza-
tion tools, such as Chimera (Pettersen et al. 2004) and Coot
(Emsley et al. 2010). These manual operations are also time-
consuming and inevitably error-prone. Attempts to automate
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Figure 1: The overview of resolving 3D atomic structures.

this process include Rosetta (Wang et al. 2015) (we named
as Rosetta-denovo), RosettaES (Frenz et al. 2017), Phinex
(Adams et al. 2010) and EMAN2 (Tang et al. 2007). How-
ever, their accuracy and coverage remain quite limited, often
take hundreds of hours and frequently require human inter-
vention.

We approached this task from a novel perspective, in-
spired by the great success of deep learning applications
in image recognition (Krizhevsky, Sutskever, and Hinton
2012), we choose to approach this task from a totally novel
perspective. The molecular structure determination problem,
in our view, can be considered as three sub-problems: 1)
amino acid detection in the density volumes, 2) atomic co-
ordinates assignment to determine the atomic coordinates of
each amino acid and, 3) main chain threading to resolve the
sequential order of amino acids that form each protein chain.

Leveraging the power of deep Convolutional Neural Net-
work (Srivastava, Greff, and Schmidhuber 2015), we re-
formulated the problem and developed a novel framework
for amino acid detection that learns the distribution of con-
formational densities of individual amino acids. Moreover,
we designed a sequence-guided neighbor loss in training
step to encode prior knowledge of protein sequences into
amino acid detection. We also propose an MCTS algorithm
to search and thread over the amino acids to form the full
molecular structure. Our approach to molecular structure de-
termination does not require human intervention and, when
tested on a newly proposed large-scale dataset, it runs hun-
dreds of times faster, and more accurately than existing
methods. Finally, to the best of our knowledge, there remains
no publicly available large-scale labeled dataset for the re-
search of molecular structure determination from Cryo-EM
density volumes. The dataset we collected and used in this
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study, named as the A2 dataset, includes 250K amino acid
objects in 1,713 protein chains from 218 structures. It con-
stitutes a useful resource for evaluating molecular structure
determination methods.

To summarize, our contributions are four fold:
• This is the first attempt to formulate molecular struc-

ture determination from Cryo-EM density volumes with
a deep learning approach.

• We adapt a novel 3D network architecture for amino acid
detection and internal atom coordinate estimation in den-
sity volumes, and proposed an APRoI layer and neighbor
loss for better performance.

• We design a sequence-guided MCTS algorithm for fast
and accurate main chain threading.

• We will release a large scale, richly annotated dataset of
protein density volumes, to facilitate research in this area.

Related Work
Molecular Structure Determination Structure determi-
nation of Cryo-EM maps is the process of generating a struc-
ture model with 3D coordinates for each atom in the macro-
molecule (e.g., proteins) that fits the map (Figure 1). The
main approaches for molecular structure determination are
de novo building and homology modeling, which its ho-
mologous structures in the Protein Database. In this work,
we focus on the de novo approaches, where there are no pre-
viously solved structures of homologous proteins.

All recent molecular structure determination pipelines
still rely on interactive tools with heavy hand labor. In princi-
ple, most available approaches, of which Rosetta-denovo is
a typical example, use template matching and Monte Carlo
sampling based on a library with millions of fragments from
solved protein structures as templates for structural model-
ing. Briefly the target protein is divided into short fragments
and structures of similar sequences in the library are identi-
fied for every fragment. And then candidate structure frag-
ments are assembled by Monte Carlo simulated annealing to
optimize a fitting score. Alternatively, RosettaES then uses a
greedy conformational sampling algorithm to assemble the
main chain of protein maximally consistent with sequence
and density volume. The accuracy and coverage of these
methods are often not satisfactory, due to limitations of the
hand-crafted scoring functions and the sheer number of tem-
plate structures.

Object Detection Approaches for object detection includ-
ing Faster R-CNN, Cascade R-CNN, SNIPER, FishNet (Ren
et al. 2015; Cai and Vasconcelos 2018; Singh, Najibi, and
Davis 2018; Shuyang Sun 2018) have improved drastically
in terms of performance and efficiency. These methods fol-
low a similar framework in which the objects are extracted
from a Region of Interest (RoI) and pooled to the same
size before predicting their categories and coordinates. RoI
pooling, RoI Warping and RoIAlign (Girshick et al. 2014;
Dai, He, and Sun 2016; He et al. 2017) are popular tech-
niques for RoI extraction, all of which break the original
aspect ratio of the objects to account for their variations in
natural images filmed with different angles and distances.

However, in some scenarios like in our work, aspect ratios
of different types of amino acids should be preserved. To
tackle this problem, we proposed an Aspect-Ratio Preserved
RoI (APRoI) layer to capture the aspect ratio in amino acids.

3D object detection plays a key role in a variety
of real-world applications, such as autonomous driv-
ing (Gomez-Ojeda, Briales, and Gonzalez-Jimenez 2016),
augmented/virtual reality and identification of disease diag-
nosis. MV3D (Chen et al. 2017) focuses on very sparse data
(LiDAR point cloud) and projects 3D data into 2D multi-
view images. It is less effective in the amino acid detection
task where difficulties may come from dense objects and
the ambiguity in overlapping regions. VoxelNet (Zhou and
Tuzel 2018) groups very sparse points for encoding voxel
features to model point interactions. Frustum-PointNet (Qi
et al. 2018) extracts points within the frustum from 2D box
to form a frustum point cloud, which may generate too much
noise, especially in a dense object detection task. In this
work, we designed a pure 3D detector.

3D Pose Estimation Given well labeled 3D joint loca-
tions, 3D pose estimation aims to determine the precise joint
locations in 3D space. For instance, 3D human pose estima-
tion attempts to regress 16 key points in the human body
based on 3D joint locations of a human skeleton from 2D
images (Zhou et al. 2017; Martinez et al. 2017). However,
the existing 3D pose estimation are based on 2D images. In
this work, we introduce a pure 3D pose estimation module
to produce atomic coordinates in volumetric data.

Inspired by these breakthroughs, we designed a multi-
task 3D neural network that first detects amino acids and
then estimates the atom positions. We also took advantage of
the sequence information and introduced a sequence-guided
neighbor loss to train the network, which has not been ex-
plored before. In addition, we added a postprocessing with
superior tree searching algorithm – MCTS for main chain
threading. We believe that this is the first attempt using
MCTS to trace the boxes of amino acids guided by sequence.

Problem Definition
Given a 3D Cryo-EM density volume and its protein se-
quence as inputs, our goal is to detect all the amino acids,
estimate their pose and thread them into a protein chain in
the 3D space. The density volume, obtained from 3D recon-
struction of 2D microscope images, is represented as 3D ma-
trices with continuous density value in each voxel. The se-
quential orders of amino acids, but not their locations, are
known. Each amino acid can be represented by a class C
(20 types of standard amino acid), a 3D box and NC central
locations of atoms in the amino acid. Each 3D box is param-
eterized by two coordinates: the front left top corner and the
back right bottom corner. NC (4∼14) is the number of the
atoms in the amino acid, and it varies in different types.

A2 Dataset
As a benchmark for molecular structure determination, we
built a large-scale Amino Acid (A2) dataset of Cryo-EM
density volumes. It contains 250,000 amino acids in 1713
simulated (by Chimera in 3 Å) electron density volumes
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Figure 2: The significant object density difference between
the proposed dataset and KITTI LiDAR detection dataset.

and is annotated with rich information of amino acids. The
amino acids are labeled with 3D boxes of 20 categories
as well as the atomic coordinates. The amino acids in the
dataset are dense, small objects that overlap each other,
which makes the amino acid detection a very challenging
task. To the best of our knowledge, the A2 dataset is the
first large-scale benchmark for learning automatic molecu-
lar structure determination.

3D Density Volume Annotation

The molecular structures and the corresponding density vol-
umes in the A2 dataset were collected from the RCSB Pro-
tein DataBase (PDB) and The Electron Microscopy Data
Bank (EMDB). Firstly, we selected the volumes with resolu-
tion below 5 angstroms (Å). The PDB and EMDB databases
contain some inconsistencies where some volumes do not
match the ground-truth structure. We manually removed
these problematic volumes. As a quality control step, we col-
lected only the chains without any missing atom or amino
acid. Ultimately, the A2 dataset contained 250,000 amino
acids in 1713 chains are kept to construct the A2 dataset.
Following random selection, we obtained a split of 1250
training and 463 validation chains.

Dataset Statistics

There are 20 categories of common amino acids and 367,929
pairs of overlapping amino acids in the dataset, which means
the dataset is highly dense and challenging for detection. As
shown in Fig. 2, the dataset has much denser 3D objects than
the KITTI dataset (Geiger, Lenz, and Urtasun 2012).

Method
The framework of A2-Net consists of two stages. Stage one
represents the deep neural network for amino acid detection
in 3D space and pose estimation, which determines the 3D
coordinates of atoms in each amino acid. Stage two uses a
Monte Carlo Tree Search strategy with tree pruning, based
on the candidate amino acid proposals obtained in stage one
to construct the main chains of amino acids, i.e., proteins.

3D Amino Acid Detection
As shown in Fig. 3, when given a density volume, our A2-
Net first obtains 3D feature volumes and generates 3D box
proposals with the region proposal network (RPN) (Ren et
al. 2015). The 3D RPN consists of three 3D convolutional
layers to generate proposals of amino acid locations. We
used 3D anchors at each 3D location to cover the region
of amino acids with various scales and aspect ratios. Next,
one branch of RPN classified whether the anchors are valid
amino acid proposals and the other branch estimates their
coordinates. With the amino acid proposals, we used a newly
designed Aspect-ratio Preserved RoI (APRoI) layer to ex-
tract the RoI in the input volume into a fixed cubic. Then
the cubic went through several 3D convolutional layers to
finally predict its amino acid category and coordinates.

Aspect-ratio Preserved RoI Layer In natural images, ob-
jects generally have completely different aspect ratios and
conventional RoI pooling resizes the regions and abandons
the original aspect ratio of the object. It can be seen as
aspect-ratio augmentation, which is usually beneficial for
the generalization ability of the deep model. However, as-
pect ratios of different amino acids should be maintained
as they actually reflect different categories. We thus pro-
posed an APRoI layer, which first crops the input at the
RoI location, and then pads it with zero to a defined size
of WT ×HT × LT . Despite its simplicity, the APRoI layer
preserved the aspect ratio of the objects and proved to be
vital for our amino acid classification.

The back-propagation passes derivatives through the
APRoI layer. Let xijk ∈ R3 be the input of the APRoI layer,
and yrijk be the layer’s output at voxel index i, j, k from the
r-th RoI. The APRoI layers back-propagate partial deriva-
tive of the loss with respect to each input xijk as Eqn 1:

∂L

∂xijk
=

∑
r

[is ≤ i < ie, js ≤ j < je, ks ≤ k < ke]
∂L

∂yrijk
,

is = max{0, ⌊
WT −Wr

2
⌋}, ie = is +min{⌈Wr⌉,WT },

js = max{0, ⌊
HT −Hr

2
⌋}, je = js +min{⌈Hr⌉, HT },

ks = max{0, ⌊
LT − Lr

2
⌋}, ke = ks +min{⌈Lr⌉, LT },

(1)

where Wr, Hr, Lr are the size of the r-th RoI. ∂L/∂yrijk
denotes the partial derivative computed by the layer on top of
the APRoI layer. Intuitively, only the previously valid loca-
tions will receive the gradients for back propagation, while
the locations with padded zeros are simply ignored.

Loss for amino acid detection To predict the 3D box
size, we follow previous work (Qi et al. 2018) and use a
mixture of both regression and classification formulations
instead of directly regressing the 3D box size. Firstly, we
specifically pre-define 20 template size with (wc, hc, lc).
Our model classifies each input into one type and then re-
gresses the residual of the box sizes of the type with highest
probability. While for box center regression, we parametrize
a 3D ground truth box as (xg, yg, zg, wg, hg, lg), where
(xg, yg, zg) represents the coordinates of the front left top
corner of the box and (wg, hg, lg) represents width, height
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Figure 3: The architecture of A2-Net. Given the density volume and the amino acid sequential orders, the localization network
(locNet) and recognition network (recNet) locate and classify 20 types of amino acids in it. The atomic coordinates estimation
network regresses the atomic coordinates. With the proposed amino acid, a MCTS algorithm is used for main chain threading.

and length. We define the residual vector as u ∈ R3, which
contains the 3 regression targets corresponding to center lo-
cation ∆x,∆y and ∆z, and define the residual vector as
v ∈ R3 containing 3 dimensions (∆w,∆h, ∆l). The resid-
uals are computed as: ∆x = (xg − xa)/wa,∆y = (yg −
ya)/ha, ∆z = (zg − za)/la,∆w = log((wg − wc)/wa),
∆h = log((hg − hc)/ha),∆l = log((lg − lc)/la).

The proposed loss function is defined as:

Loss =
1

Ncls

Ncls∑
i

Lneighbor(pi, p
∗
i )+

β
1

Nreg

Nreg∑
j

p∗j (Lc−reg(uj ,u∗
j ) + Ls−reg(vj , v∗j )),

(2)

where pi, p∗i are respectively the predicted probability of an-
chor i and its label, uj , u

∗
j are the box center regression out-

put and ground truth for anchor j, vj , v∗j are the box size
residual regression output and ground truth. Lneighbor is
the classification loss reweighted by the guiding sequence,
which will be introduced in the next section. Lc−reg, Ls−reg

are the center coordinates and residual box size regression
loss (smooth L1 loss), respectively. The two terms are nor-
malized by Ncls and Nres. β is the balancing parameter.

Neighbor Loss Since the sequential orders of the amino
acids is provided in this task, the geometric constraints (dis-

tance, the overlapping region and sequential order) between
amino acids should be integrated to regularize the detection
results, as shown in (Gao et al. 2018). In most cases, the dis-
tance between an amino acid and one of its two neighbors,
should be smaller than the distance between its two neigh-
bors. To take advantage of this information, we introduced
a novel neighbor loss. For each proposal, we checked both
criteria: 1) it is a positive anchor, and 2) its distance to either
neighbor of the associated ground truth, is smaller than the
distance between the two neighbors. The qualified anchor
will be assigned a higher weight as they are “better” samples
in the view of the sequence. The additional weight (1−pi)

λ

follows the spirit of focal loss (Lin et al. 2017), which down-
weights the sample well classified by the model. We define
the neighbor loss as:

Lneighbor(pi) = −((1− pi)
λmi + 1)log(pi), (3)

where mi ∈ {0, 1}, and mi = 1 when object i is one of the
mined positive neighbor objects.

3D Amino Acid Pose Estimation
After we obtained the proposal for an amino acid, we further
estimated its pose by locating its forming atoms in 3D space.
The Stacked hourglass Network (Newell, Yang, and Deng
2016) is widely used to handle the human pose estimation
task. In this work, a 3D stacked hourglass network, named
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as poseNet, is proposed to regress 3D coordinates of each
atom in amino acids. The network stacks multiple (H) hour-
glass structures sequentially. Each hourglass has Rb residual
blocks and provides feature volumes with different semantic
resolutions. Importantly, auxiliary losses were applied to the
intermediate feature volumes for learning robust features.

For an amino acid with N atoms, poseNet produces H
estimated heatmaps with N channels. The Mean Squared
Error loss is adopted:

Lpose =

H∑
h

N∑
n

∥ y∗h(n)− yh(n) ∥22, (4)

where y∗h denotes the predicted heatmap by the h-th stack,
n denotes the n-th atom, and yh is the ground-truth heatmap
with the N × 8 locations labeled as 1. For each atom, the 23
neighborhood locations are labeled as 1.

Monte Carlo Tree Search for Threading
Main Chain Threading Problem Given the predicted
amino acid proposals and the ground truth sequential order,
our next task is to select the same number of proposals as
in the sequence and thread them over to form the complete
protein chain. With NB predicted proposal set B from the
A2-Net, and a sequence S∗ of length T (NB > T ), our next
task is to select T boxes in sequence to form the complete
protein chain. The categories and sequential orders of S are
given by S∗, and the proposals are selected from B. Each
proposal is St = (xt, yt, zt, wt, ht, lt, Pt), Pt is the proba-
bility of different categories predicted by A2-Net.

Monte Carlo Tree Search MCTS is a tree search algo-
rithm in which a node is evaluated by performing random
actions from the decision space until an outcome can be de-
termined (Silver et al. 2016; Shen et al. 2018). Searching by
MCTS is done by iteratively building a search tree where
the nodes denotes different states, and the edges are the ac-
tions leading to one state from another. A node is recursively
added to the tree during each iteration. Based on the reward
of the new node, the reward values of all parent nodes are
updated. A single iteration of the MCTS building process
consists of four steps: 1) selection: a node to be expanded
is selected; 2) expansion: the node is expanded by simulat-
ing the associated action; 3) simulation: the tracing is simu-
lated following a random path until the terminal amino acid
is reached; 4) back propagation: the result propagates back
through the tree.

Building KNN-Graph Directly performing the MCTS al-
gorithm to all the proposals may be time consuming, so we
first built a graph based on K nearest neighbors, where each
node denotes a proposal and an edge connects two nodes if
they are among the K nearest neighbors, thus called KNN
graph. Next, we determined the root node of the tree by find-
ing L proposals in B which match the first L amino acids in
the sequence. Finally, we obtained several candidate frag-
ments as the starting points. For each starting point, we ran
the MCTS algorithm to obtain the optimal path. The optimal
path was obtained by a control policy π to maximize the to-
tal reward R, which is the sum of all the values Vt in every
following step t. The reward function R thus is written as:

R =

T∑
t=1

Vt,

Vt = t ∗ (Pdetection(St) + Pcompatible(St, St+1)),

(5)

where Vt is the sum of the detection score Pdetection and
the compatible score Pcompatibility at action t, and weighted
by the time t which encourages the searching path to be
long. Pdetection and Pcompatibility ensure that the selected
boxes are reliable and compatible. Pdetection(t) is the detec-
tion probability of St, and Pcompatibility = dist(St, St+1),
where dist(·) is the IoU between two boxes. An optimal pol-
icy π outputs an optimal action sequence, which is defined
as a path with maximum reward from the root to a leaf. We
seek a path that maximizes the reward function in Eqn. (5).

After the root was created, Monte Carlo simulations se-
lected actions and followed the sequence S to create a new
node. After a number of simulations, the tree was well pop-
ulated, and the optimal path was selected. Each depth of the
tree is the time step, with root at t = 1 and leaves at t = T .

Next Action At time t + 1, we need to select a pro-
posal St+1 close enough to St while keeping the category
same as S∗

t+1. Since there may be a few proposals for se-
lection, we may face an exploration-exploitation dilemma,
where the algorithm may fall into a local optimum. To bal-
ance this dilemma, we follow (Devlin et al. 2016) to use the
Upper Confidence Bound for Trees (UCT) (Kocsis and
Szepesvári 2006) method to optimize the action selection.

The UCT method is designed for better action selection
strategy. At step t, the next action at+1 is:

at+1 = argmax
a

(
Va

na
+ C

√
2 lnNa

na
), (6)

where Va is the reward at action a. Na is the number of sim-
ulations that the node has been visited, and na is the number
of simulations that the node has been followed.

Tree Pruning by Peptide Bond Recognition Network
Since protein structure is highly twisted, a pair of amino
acids that are close to each other in 3D space might be
far apart in primary in the sequence. Experienced biolo-
gists distinguish whether two amino acids are connected or
not, by examining whether there is a peptide bond between
them. We also designed a Peptide Bond Recognition Net-
work (PBNet) to predict whether there is a peptide bond be-
tween two proposals. With PBNet, we can efficiently remove
50% edges in the KNN graph on average, which largely im-
proves the search speed. PBNet has only three convolutional
layers with batch normalization and max pooling, followed
by three fully connected layers. The network is trained by
softmax loss.

Experiments
Implementation Details
Our network architecture can be divided into three parts: lo-
calization network (locNet), recognition network (recNet)
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3zif(B)  
Objects: 903
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Figure 4: An example of amino acid detection result by A2-Net. There are 903 amino acids in the volume (PDB id:3zif, B
chain), the mAP is 0.8129 with the probability threshold 0.5. For better visualization, we use boxes with a fixed length to
represent the center of the ground truth box and spheres with a fixed radius to represent the center of predicted box. 20 colors
represent 20 types of amino acid. (a). Transparent density volume within the ground truth and prediction. (b). The ground truth
and prediction on the whole volume. (c). The result of a local area with some bad cases labeled.

and pose estimation network (poseNet). In locNet, the back-
bone network is a fully convolutional network with 12
3D convolutional layers including 4 residual blocks. Since
amino acids have a very small volume, we only have one
max pooling layer. We followed previous work (Ren et al.
2015) to design an anchor mechanism to cover various scales
and aspect ratios of amino acids. We use 7 aspect ratios and
3 scales, yielding k = 21 anchors at each position on the last
conv feature maps of the backbone network. We applied a
3 × 3 × 3 convolutional layer to the conv feature volumes,
followed by two sibling 1×1×1 convolution layers for clas-
sification and bounding box regression, respectively. Each
anchor was assigned a binary label depending on whether
it has an Intercession-over-Union (IoU) with a ground truth
amino acid larger than a threshold 0.8. The recNet also has
4 residual blocks, and three fully connected layers while the
poseNet has 4-stacked hourglass. All the convolutional lay-
ers adopt the 3× 3× 3 kernel size. The A2-Net was trained
in three stages. We first trained the locNet and poseNet indi-
vidually for 100 epochs, and then fixed them while training
the recNet for 400 epochs. Finally, we jointly optimize the
whole A2-Net with sequence-guided neighbor loss for an-
other 400 epochs. We used Adam (Kingma and Ba 2015)
optimizer to train the model, starting by a learning rate of
0.0001, a momentum of 0.9 and a weight decay of 0.0001.
We fine-tune our models with BatchNorm. We found that
BatchNorm may reduce over-fitting. For each density vol-
ume, we randomly cropped a 64 × 64 × 64 cube and send
it into the network. Limited by the GPU memory, we set the
batch size to be 1.

Table 1: The results of detection and threading comparing
with other 3D object detection methods.

Methods mAP Coverage

MV3D(BV+FV) 0.118 0.15
Frustum-Pointnet-v1 0.407 0.45
Frustum-Pointnet-v2 0.425 0.48
3D-VGG+RoIpool8 0.360 0.32
3D-VGG+RoIpool8(w/o maxpool) 0.423 0.41
3D-ResNet+RoIpool8 0.416 0.44
3D-ResNet+RoIpool8(Raw volume) 0.610 0.55
A2-Net (APRoI8) 0.711 0.67
A2-Net w/o Neighbor Loss 0.865 0.72
A2-Net 0.891 0.91

Results on the A2 dataset
Amino Acid Detection We first evaluated the effective-
ness of APRoI layer and sequence-guided neighbor loss
training. We adopted the commonly used mean Average Pre-
cision (mAP) for evaluation of detection. The quantitative
amino acid detection results are reported in Table. 1.

We first directly applied 3D VGG with RoI pooling for
amino acid detection, which only achieves 0.36 mAP, while
3D ResNet-10 (He et al. 2016) achieves 0.416 mAP. The
last conv feature volumes were used for 3D region proposal.
By analyzing the intermediate output, we found that the net-
work seemed to be dominated by the 3D region proposal
task, which made the last conv feature volumes to be only
sensitive to the existence of the amino acid. There was little
category-specific information left in the feature volumes. So
we directly performed RoI pooling on the raw input cube and
trained the recNet, which achieved 0.610 mAP. This verified
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Table 2: The results of threading by DFS-based methods and
the proposed MCTS+PBNet.

Methods Coverage RMSD

DFSo 0.65 3.5
DFSd 0.68 3.1
DFSd+PBNet 0.89 2.6
MCTS 0.72 2.9
MCTS+PBNet 0.91 2.0

Ground Truth
Top1

Top3
Top2

Figure 5: An example of threading results by MCTS+PBNet.

our assumption that the category-specific information may
be discarded in the feature map of the locNet model.

We then replaced the RoI pooling with APRoI layer,
which further improved mAP to 0.711. This indicates the
importance of preserving the aspect ratio for detection in
this task. We also found that the output size of APRoI layer
is important, as mAP improved when we changed the tar-
get size from 83 to 163, the mAP has a large improvement.
Finally, we used the sequence-guided neighbor loss train-
ing strategy and further improved the mAP to 0.891. Fig. 4
shows a qualitative result of detection. Although the gain of
mAP from neighbor loss was only marginal, the sequence
coverage percentage of the threading result improved sub-
stantially.

Main Chain Threading We mainly compared the pro-
posed MCTS algorithm with a Depth First Search (DFS)
method. DFSo and DFSd represent using IoU and distance
as the selection criterion, respectively. The proposed MCTS
algorithm outperformed the DFS based methods. The PB-
Net can be applied to both DFS and MCTS algorithms, as
it is used to prune the trees by examining the existence of
peptide bonds. It can be seen in Table. 2 shows that both
threading algorithms are largely improved with PBNet. PB-
Net achieved 89.8% accuracy for peptide bond recognition.
In Fig. 5 shows some qualitative results of threading.

Table. 3 demonstrates that Rosetta-denovo is very time-
consuming. We ran Rosetta-denovo in a cluster with 200
computational nodes for 2 rounds. The CPU time was calcu-
lated by summing up all the tasks. It took Rosetta-denovo
hundreds of hours to finish one round of computation,
whereas our approach took only a few minutes and outper-
formed Rosetta-denovo by a huge margin.

Comparison with other 3D Detection Methods We
adapted MV3D and Frustum-PointNet to the amino acid de-
tection task. For MV3D, we cropped and projected the vol-

Table 3: Threading accuracy and efficiency compared with
Rosetta-denovo. R1 and R2 denotes round 1 and 2.

Method 5gw5 (E) 528 4v19 (w) 166
Coverage Time Coverage Time

Rosetta (R1) 0.20 133 h 0.39 90 h
Rosetta (R2) 0.24 260 h 0.62 261 h
Ours (MCTS) 0.88 11.3 m 0.91 6.8 m

Table 4: The AP of different methods for 3D car detection
on KITTI dataset w/ or w/o A2 Dataset.

Methods w/ A2 Easy Moderate Hard

MV3D 65.53 58.97 59.14
MV3D

√
68.56 60.35 60.99

F-pointnet-v1 83.26 69.28 62.56
F-pointnet-v1

√
84.89 71.97 64.07

F-pointnet-v2 83.76 70.92 63.65
F-pointnet-v2

√
85.11 72.13 64.24

umes into the bird’s eye view and the front view (FV) and
then trained MV3D. For Frustum-PointNet, we selected the
voxels with density value is higher than the mean of the vol-
umes as the points set. In the training step, we projected the
3D ground-truth boxes into their FV as the input. In the test-
ing step, we projected the 3D boxes which were predicted
by locNet into their FV as the input. Table. 1 shows that our
method outperformed them by a large margin.

Generic Features for 3D Detection We pre-trained
MV3D and Frustum-PointNet on the A2 dataset, and fine-
tuned them on KITTI dataset for 3D car bounding box re-
gression. Table. 4 summarizes the 3D car detection perfor-
mance on the KITTI dataset. The A2 dataset pre-trained
model yielded an additional increase in performance, reveal-
ing that the A2 dataset can provide generic features for 3D
object detection task.

Conclusions
In this work, we reformulate the challenging molecular
structure determination problem and propose a learning-
based framework. The newly designed A2-Net predicts ac-
curate amino acid proposals with our APRoI layer and the
neighbor loss training strategy. With the predictions and
the sequence, we propose a MCTS algorithm for efficient
threading. Using the peptide bond recognition network, tree
branches between candidate pairs of proposals without a real
peptide bond can be easily removed, which simultaneously
improves the searching efficiency and the sequence cover-
age. Our novel method is hundreds of times faster and more
accurate than the previous method, and will play a vital role
in molecular structure determination.
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