

On Strength Adjustment for MCTS-Based Programs

I-Chen Wu,
*
 Ti-Rong Wu,

*
 An-Jen Liu,

*
 Hung Guei, Tinghan Wei

Department of Computer Science, National Chiao Tung University, 1001 University Road, Hsinchu, Taiwan, ROC
{icwu,kds285,andyliu,ghung,ting}@aigames.nctu.edu.tw

Abstract

This paper proposes an approach to strength adjustment for

MCTS-based game-playing programs. In this approach, we

use a softmax policy with a strength index to choose

moves. Most importantly, we filter low quality moves by

excluding those that have a lower simulation count than a

pre-defined threshold ratio of the maximum simulation

count. We perform a theoretical analysis, reaching the result

that the adjusted policy is guaranteed to choose moves ex-

ceeding a lower bound in strength by using a threshold ratio.

The approach is applied to the Go program ELF OpenGo.

The experiment results show that is highly correlated to

the empirical strength; namely, given a threshold ratio 0.1,

is linearly related to the Elo rating with regression error

47.95 Elo where . Meanwhile, the covered

strength range is about 800 Elo ratings in the interval of in

 . With the ease of strength adjustment using , we

present two methods to adjust strength and predict oppo-

nents’ strengths dynamically. To our knowledge, this result

is state-of-the-art in terms of the range of strengths in Elo

rating while maintaining a controllable relationship between

the strength and a strength index.

Motivation

Artificial intelligence in computer games has made signifi-

cant progress in recent years, especially after DeepMind’s

AlphaGo (Silver et al. 2016) defeated human Go champi-

ons by a large margin in 2016. DeepMind then followed up

their success with AlphaGo Zero (Silver et al. 2017b) to

further improve the playing strength without requiring hu-

man knowledge, resulting in much stronger programs

against earlier versions of AlphaGo. Both AlphaGo and

AlphaGo Zero incorporate deep neural networks into Mon-

te Carlo tree search (MCTS) (Browne et al. 2012; Coulom

2006; Kocsis and Szepesvári 2006), which itself had been a

major breakthrough that was responsible for more than ten

years of rapid growth in computer games, particularly

computer Go, before AlphaGo was announced.

* Equal Contribution.

Copyright © 2019, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Since AlphaGo Zero, many other programs such as

FineArt (Tencent AI Lab 2018), Leela Zero (Pascutto

2018), and ELF OpenGo (Tian et al. 2018) have success-

fully reproduced the AlphaGo Zero algorithm. AlphaGo

Zero’s method was also applied to other games such as

chess and shogi, reaching strength levels much higher than

human champions and other top programs (Silver et al.

2017a).

Super-human level game playing programs capture the

imagination and fascination of society at large; for human

players, these programs pose an interesting challenge and

offer opportunities for learning (Hunicke and Chapman

2004; Demediuk et al. 2017; Paulsen and Fürnkranz 2010;

Sephton, Cowling, and Slaven 2015). However, it is also

important to fit program difficulty to appropriate levels for

human players. On the one hand, human players may lose

interest if the game program is too weak; on the other

hand, excessive difficulty tends to lead to frustration (Hu-

nicke and Chapman 2004). From our observation, in the

context of learning with programs, it is difficult to offer

feedback for human players if they are constantly on the

losing side. Thus, in order to achieve an overall better

game experience, and to improve the learning process for

players, it is imperative to balance program difficulty ac-

cordingly. The fundamental goal is to offer programs with

a wide variety of strength levels.

A simple and straightforward method to offer different

program strengths is to reduce the total thinking time, or

the total simulation count in MCTS, if MCTS is used.

However, with this method, the search tree’s relatively

smaller size leaves the program vulnerable to tactical traps.

For example, the ladder problem in Go is one of the most

elementary shapes taught to human players; for programs,

however, search is often required to handle ladders proper-

ly. It has been shown that when adjusting program strength

through reduction, simulation count and playing strength

do not form a linear relationship (Sephton, Cowling, and

Slaven 2015). In fact, once the number of simulations fall

below a certain threshold, the program playing strength

drops catastrophically.

1222

The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Another straightforward approach is to offer one pro-

gram for each strength level, e.g., train one network for

each difficulty. A good example of this type of strength ad-

justment is Paulsen and Fürnkranz’s (2010) work on train-

ing chess evaluation functions for different strengths.

However, this approach usually requires large amounts of

time and effort to tune and test the programs. This is espe-

cially difficult for games like Go, where strength levels

span a wide range from 30 kyu to professional 9 dan (Hol-

losi and Pahle 2018), about a 3000 Elo rating difference.

This paper reviews a strength adjustment (SA) approach

based on the softmax policy and proposes our modification

in the following section (Strength Adjustment). We apply

the method to the open source Go program ELF OpenGo

(abbr. ELF for the rest of this paper) and demonstrate that

the method can be easily used to adjust the program

strength, covering a range of over 800 Elo rating. In the

Strength Analysis section, this paper presents a hypothesis

and performs theoretical analyses to justify the empirical

strengths shown in the Strength Adjustment section. Hav-

ing demonstrated that the program strength can be adjusted

with relative ease, we introduce methods to adjust the

strength dynamically in the section of Dynamic Strength

Adjustment. Finally, we provide discussion and summarize

our contributions in the Conclusion section.

Strength Adjustment

In this section, we first review past work on strength ad-

justment, then present our modifications to the method. We

apply the modified approach to the Go program ELF and

provide empirical data.

Past Work

For strength adjustment, Sephton et al. (2015) presented a

method for MCTS-based game-playing programs using a

simple softmax policy as follows. Given strength index ,

choose moves with probability

 ⁄ , where is the

number of simulations on move in MCTS. For simplicity

of discussion in the rest of this paper, let if ,

i.e. is the maximum.

Conceptually, is the inverse of the softmax tempera-

ture. When is higher, the policy tends to choose the move

with higher simulation counts, which tends to be a higher-

quality move as is the case with MCTS. When approach-

es infinity, the moves with the highest simulation counts

are guaranteed to be chosen, and thus policy exhibits the

same behavior as the original MCTS. When , all the

moves are chosen with equal probability, i.e., moves are

chosen randomly. When approaches negative infinity, the

moves with the lowest simulation counts are chosen, i.e.

the policy tends to choose the lowest quality moves.

Thus, can serve as an index of strength. Sephton et al.

(2015) showed through experiments that is correlated to

the empirical strength, but experiment only covered six tri-

als on (from 1 to 6) for the game Lords of War, and the

differences of win rates for these values of are ranged

from 5% to 24%, equivalent to a range of 100 Elo rating.

As above, when is low, the policy tends to choose low

quality moves. However, in MCTS, many moves are not

visited during simulation, or in some cases, visited very

few times only because of the exploration bias. For this

reason, it is not a good idea to allow the policy to choose

the lowest-quality moves, which would result in a much

weaker program or unpredictable behavior.

In order to avoid choosing the very lowest-quality

moves, Sephton et al. suggested choosing the first best

moves as candidates, where is a given fixed value. How-

ever, it is still possible to choose a very low-quality move,

e.g., in the case that only one move is viable while the oth-

ers are extremely bad, the policy is still likely to choose

bad moves.

Our Approach

In our approach, we follow the softmax policy to choose

moves via the strength index . However, from our obser-

vation, it is critical to screen the candidate moves. For this

issue, our approach is to use a threshold ratio to avoid

choosing moves with small simulation counts in order to

ensure the quality of moves. Namely, given a threshold ra-

tio , we only consider the moves with

as candidates. Assuming that the move quality is correlated

to the simulation count (we discuss this in greater detail in

the Strength Analysis section), this approach ensures that

the qualities of the chosen moves are higher than the

screened moves which do not reach the threshold. At the

very least, the modified policy is less likely to choose ex-

tremely bad moves, as mentioned in the previous subsec-

tion.

For a high threshold ratio, more low-quality moves are

filtered. When , the move with the highest simula-

tion count is always chosen, behaving the same way as the

original MCTS. In contrast, for a low threshold ratio, many

low-quality moves are not filtered. Thus, it is important to

set a reasonable threshold ratio, where the goal is to filter

most low-quality moves, while simultaneously allowing

reasonable moves to be considered.

In contrast to the previous work (Sephton, Cowling, and

Slaven 2015), our empirical results in the next subsection

show that strengths can be adjusted across a wide range

over 800 Elo rating with the threshold ratio 0.1 and the in-

terval of in . Thus, our approach is very suitable

for games that are considered to have very high depth

(Cauwet et al. 2015).

1223

Empirical Results

We apply the above approach to the Go program ELF and

present the experiment results. All the experiments are per-

formed on machines equipped with one GTX 1080Ti GPU,

one Intel Xeon E5-2683 v3 (14 cores in total), 2.6 GHz,

128 GB memory, and with Linux. All games are played

with one second per move, using one GPU and six CPU

cores. For each benchmark, 250 games are played against a

baseline, ELF with and . Note that we do

not use the original ELF, equivalent to , as the base-

line since it is much too strong for some trials, such as

when .

Table 1 (below) shows the win rates and the relative Elo

rating of the ELF versions with and with differ-

ent against the baseline. Note that the shown Elo ratings

are relative to the original ELF which is set to 0 for sim-

plicity of analysis. Since ELF follows the process of train-

ing AlphaGo Zero with 20 blocks, its real Elo rating is

supposed to be between 4000 and 5000 (Silver et al.

2017b).

 Win rate (±errors) Elo rating (±errors)

∞ 97.6% (±1.9%) 0 (-106, +289)

2 94.4% (±2.9%) -153 (-78, +133)

1.5 92.4% (±3.4%) -210 (-70, +107)

1 91.2% (±3.6%) -237 (-66, +98)

0.5 71.6% (±5.7%) -483 (-46, +52)

0 50.0% -644

-0.5 35.6% (±6.1%) -747 (-48, +44)

-1 21.6% (±5.2%) -868 (-59, +49)

-1.5 13.2% (±4.3%) -971 (-76, +58)

-2 12.4% (±4.2%) -983 (-79, +59)

-∞ 7.2% (±3.3%) -1088 (-111, +71)

Table 1. The win rates (against ELF with z=0) and Elo ratings

(relative to the original ELF) with respect to when .

Figure 1. The correlation between and Elo rating when

 .

Figure 1 shows the correlation between and the Elo

ratings. Interestingly, both are highly correlated with a low

linear regression error 47.95 Elo, in terms of the Elo rating,

when is between -2 to 2. In addition, the range of

strength is very wide, covering 1088 Elo rating for all

and 830 for the interval of in .
Furthermore, Figure 2 depicts the correlation between

and the Elo rating for different threshold ratios, 0, 0.02,

0.05, 0.1, 0.25, and 0.5. All games are also played against

the same baseline as above. From the Figure 2, the correla-

tion between Elo ratings and z is also highly correlated to

 in most cases. A higher value of usually corresponds

to higher Elo ratings.

Figure 2. Elo rating (relative to ELF) in different threshold ratios

and strength indices.

Figure 3. The number of candidates with respect to .

We observe that high values of are not appropriate.

For example, when , the Elo rating has no signif-

icant changes across different values of . An intuitive ex-

planation for this is that with a high threshold ratio, most

candidate moves are filtered, so the value of does not

matter as much. Figure 3 shows that the average number of

candidates is only 1.4 for , and 1.9 for
 . Another effect is that the adjusted strength range is

narrower, e.g., smaller than 500 Elo rating for .

On the other hand, for low threshold ratios, the Elo rat-

ing drops quickly, and the strength for different values of

show no difference, e.g. when and , and

when and .

1224

Thus, judging from both Figure 2 and Figure 3, the

threshold ratios of 0.05 and 0.1 appear to be suitable for

our needs. For simplicity of analysis, 0.1 will be used as

the threshold ratio, unless otherwise stated.

Strength Analysis

The above empirical results show that the strengths are

highly correlated to . In fact, between and a

threshold ratio of 0.1, and the strength show a near linear

relationship with regression error 47.95 Elo. However, the

strength or Elo rating should be fixed when approaches

 or . Thus, intuitively, the curve of the Elo rating

strength according to the value should be shaped similar

to a logistic function. Applying logistic regression (Hosmer

Jr, Lemeshow, and Sturdivant 2013), the curve is close to a

logistic function with error 26.00 Elo (,

).

This section investigates this conjecture of logistic re-

gression from a theoretical perspective. First, we review

the generalized Bradley-Terry model. Second, we present a

hypothesis on move strength. Then, from theoretical analy-

sis, we show that the derived strengths are close to the em-

pirical strengths. We calculate the regression error between

the derived and the empirical strengths to justify the hy-

pothesis.

Generalized Bradley-Terry Model

The Bradley-Terry model has been the foundation of vari-

ous ranking systems, including the Elo rating system. The

model is used to estimate the strengths of players and pre-

dict the win rates among these players. Note that moves

mentioned in the Past Work Subsection can be viewed as

players here. Namely, each player is associated with a

positive value representing the strength of , and the

probability that wins over is . Obviously,

the higher is, the higher the winning rate (implying a

stronger player). The Elo rating of individual is
 (Coulom 2008). For simplicity of discussion

in this paper, we also define the rating , whose

corresponding Elo rating is .

The Bradley-Terry model has also been generalized to

handle competitions involving more than two players

(Coulom 2007; Hunter 2004). Namely, the probability that

 wins among players, 1, …, , is formulated as ∑

 .

Another generalization is to allow competitions among

teams, instead of players. The strength and its correspond-

ing rating of a team of players is estimated as

 ∏

 and ∑

 (1)

In this paper, we also define the average strength and

rating of a team of players to be

 (∏

)

 and (

)∑

 (2)

This is useful when is not fixed. In addition, consider a

team that can choose one and only one player to participate

and choose player with probability , where ∑

 .

Thus, the strength and rating of the team are

 ∏

 and ∑

 (3)

respectively, for the reason as illustrated below. For exam-

ple, let ∑

 . We can consider the team com-

posed of ∑

 players, among which the number of play-

ers is . Thus, the average strength and rating of the

team are the same as and in formula (3), respectively.

Hypothesis

As mentioned above, moves with higher simulation counts

 in MCTS normally tend to have higher quality. Follow-

ing this notion, we present a hypothesis for further theoret-

ical analysis. Assume that given a position the strength of

move is proportional to
 . Here, denotes a conjec-

tured strength index for moves to be selected in MCTS in

the previous sections. Namely, let
 . Here, is

a constant coefficient with respect to the same game posi-

tion, i.e. different positions may have different relative

strengths, and therefore will have a different value of .

The rating of move is . For

the simplicity of analysis, we use in the following analy-

sis without loss of generality. If the Elo rating is preferred,

 can be obtained by a simple conversion, as described

above.

Let and denote the overall strength and rating

following the above method for strength adjustment, which

chooses among all moves using the softmax policy

 ⁄ . From the above Bradley-Terry model

for team strength, we can derive that

 ∏

 and (4)

 ∑

 ∑

 ∑

 (5)

In the above formula, the first item in (5) is fixed for this

position, and therefore it can be removed to obtain relative

ratings, say, relative to the rating where (which al-

ways choose the move with the maximum simulation

counts) as follows.

 ∑

1225

 ∑

 (6)

where is the ratio . Since all moves with the ratio

less than are filtered out, . In addition, since

 is the maximum among , and are there-

fore all non-positive. Thus, we obtain

 (7)

An important implication in formula (7) is that the rela-

tive ratings of the chosen moves are at worst .

Assume . The relative ratings of all chosen

moves are at worst , no worse than

move 1 by . Since is a constant under this hypothe-

sis, this implies that the strength of any chosen move is at

worst a fixed value. This ensures the quality of all chosen

moves.

Now, let us consider following the above SA method to

play a game , containing a sequence of moves or

positions to move. Let and denote the

strength and rating of the move made at the th position (i.e.

on the th turn), which can be formulated as follows.

 ∏

 and (8)

 ∑

 ∑

 (9)

where

,

,

 and

 are respectively the strength,

rating, policy and simulation count of moves at the th

position in the game, and is the coefficient with respect

to the position.

Furthermore, let and denote the averaged

strength and rating as follows.

 (∏

)

 and (10)

 (

)∑

 (

)∑ (∑

)

 ∑

 (

)∑ ∑

 (11)

Note that we evaluate the averaged strength and rating

as Formula (1), instead of the aggregated values in (2),

simply because the number of moves in a game is not fixed.

In the above formula, the first item is fixed, and there-

fore can be omitted when calculating ratings relative to the

one with , similarly, as follows.

 (

)∑ ∑

 (

)

 (12)

where

. Moreover, let the relative rating be

normalized to be independent of the value as follows.

 (

)∑ ∑

 (

)

 [∑
 (

)

] (13)

For stochastic analysis, we extend by collecting some

sets of games, each of which is collected from the games

under a designated threshold ratio in the above empirical

experiments. We exclude extreme cases to minimize the

effect of noise for our analysis. For example, the cases of

 and are not included.

For simplicity of analysis, let us illustrate the case for

 , denoting the set of games with threshold ratio 0.1,

which contains about 2000 games. The expected relative

rating under the set is

[
]

[[∑

 (

)

]]

[∑

 (

)

] (14)

Figure 4 (below) depicts the solid curve of

calculated from the set according to formula (14). The

left y axis indicates the value of
 . The curve re-

sembles a logistic function. Now, let denote the

expected rating, and be the value , under the set of

games, . Thus, we have

 (15)

Figure 4. The curve of
 and the empirical data.

Then, we can derive that

 and (16)

 (17)

Since the values and are supposed

to approximate the strength in the empirical experiments,

they can be replaced by the empirical strengths at

and , whose relative Elo ratings are 0 and -1088 as

shown in Table 1. Thus, the value is derived to be

1226

6.243 according to the above formula. The right y axis in

Figure 4 follows the y axis in Figure 1. The regression er-

ror to the empirical strengths for between -2 and 2 is

about 40.45 Elo, and the regression error to a logistic re-

gression curve is about 10.51 Elo (,).

These low errors justify the hypothesis.

Data set

 4.385 5.369 6.243 6.244 3.292

Table 2. The conjectured strength indices estimated in different

data sets.

In our experiments, we also derived the value for oth-

er sets of games, as shown in Table 2. From the table,

 is almost the same as , while , and

 are lower. For and , our conjecture is

that the noise incurred from having a low threshold ratio

are high as the following illustration. In the case of

 , since the average number of simulation counts

for the best move is about 259.4 with the one second time

limit, it is highly likely to include the moves with very low

simulation counts (the threshold is about
). Since many of these simulations may be generated

simply because of the exploration bias, these simulations

may introduce noise and therefore affect the verification of

our hypothesis.

As for , we observe that the average number of

candidates is 1.4 from Figure 3. Since the number is rela-

tively low, in many cases, the policy chooses only from a

single candidate move. Therefore, the distribution is insuf-

ficient to justify our hypothesis. As an example, the most

extreme case is where the threshold ratio is 1, and only the

moves with the highest simulation counts are chosen, as in

the original MCTS. The value of in this case does not af-

fect the policy at all, since there is only one choice.

Dynamic Strength Adjustment

As stated in the previous sections, this paper presents a

flexible strength adjustment method simply by altering the

value with an appropriate , say 0.1. Moreover, the

strength ratings are approximately linear with respect to

in the interval [-2, 2]. This allows us to fit the programs

strength to its opponents’ dynamically, provided the oppo-

nents’ strengths are within [-983, -153], corresponding to

the range of in [-2, 2]. This section introduces two types

of dynamic strength adjustment, inter-game and intra-

game strength adjustment. For the former, strengths are ad-

justed based on previous game results, while for the latter

strengths are adjusted within each game. We present two

methods of dynamic strength adjustment (DSA) here only

to showcase how we can predict opponent strengths and

adjust accordingly with relative ease; the presented meth-

ods are by no means a comprehensive review of all availa-

ble methods.

Inter-game Strength Adjustment

Inter-game strength adjustment is relatively easy. Namely,

the strength index of a game is adjusted based on the

previous game results and the index remains unchanged

within the game.

In this section, a simple adjustment method is presented

and demonstrated to predict the opponent’s strength. The

prediction can then be used to set accordingly. The

strength index is decreased for every win and increased

for every loss, both by a small amount . The initial value

of is set to 0. The value is initialized to and de-

creased by a discount factor for each game, capped by a

lower bound .

In our experiments for the method, is , ap-

proximately equivalent to 100 in Elo rating based on the

linear regression in Figure 1, then decreased by a factor of

 for each game, with , equivalent to

8 in Elo rating. In the experiment, 100 games are played

against each of the five opponents whose strength indices

are for a total of 500 games. The exper-

iment is repeated five times and the following experiment

results are based on the average values of the five times.

Figure 5. Strength index estimation for inter-game SA.

Opponent

w/o DSA

WR

5.6%

(±2.9%)

8.8%

(±3.6%)
50.0%

78.4%

(±5.2%)

87.6%

(±4.2%)

Inter-game

WR

43.4%

(±4.4%)

46.6%

(±4.5%)

52.0%

(±4.5%)

50.0%

(±4.5%)

54.8%

(±4.5%)

Avg. 1.93 0.88 -0.04 -1.06 -1.73

Table 3. Win rate (WR) and average dynamic strength index

(Avg. z) against different opponents using inter-game SA.

In Figure 5 each of the five lines indicates the predicted

 for each opponent. The result shows that our method can

approximately predict opponents’ strengths and clearly dis-

tinguish five opponents. Table 3 also shows that the aver-

1227

aged win rate for each opponent is within 43-54% and the

averaged predicted is very close the opponent’s.

Intra-game Strength Adjustment

Intra-game strength adjustment is relatively challenging,

given that the algorithm only has one game to predict the

opponent’s approximate level of play. Players often play

inconsistently within the same game, mixing good and bad

moves. On the one hand, adjusting by large amounts leads

to high variance of program strength. On the other hand, if

strengths are adjusted by a small amount, the effects may

not be sufficiently obvious.

Our method is as follows. In principle, we still attempt

to maintain all moves so that the overall win rate is around

50%. For each move, we first estimate the current win rate

 , by using the MCTS win rate of the move with the most

simulation counts. The index is decreased when
 and increased when , both by . The pro-

gram chooses moves based on the softmax policy proposed

earlier.

However, for stability, is set to be relatively small

when is within a range (50% , 50%), where is a

user defined value, say 10%. Namely,

 {

 | |

| |

 | |

(18)

(19)

In addition, decreases linearly from an initial value, say

0.1, to 0 after a number of moves, say 150 moves. The

purpose is to cool down the amplitude of changes as games

progress, since the program should have an idea of its op-

ponent’s strength by that stage in the game. This cool

down mechanism is important because without it, the pro-

gram will make unreasonable concessions when it is in the

lead, or ramp up in strength indefinitely when it is behind.

In the experiment, the above method is used to play

against the five opponents with strength indices
 . For each opponent, consider two cas-

es of , 0.2 and 0.1, where for each case, 100 games are

played.

Table 4 presents the experiment results. The results

show that the average values over 100 games are close to

the opponents’ strength indices , especially when

 . Note that the predicted for each game is the

value at the end of the game. The standard deviation is

high as expected.

The results in Table 4 also show that while all the win

rates except for are not around 50%, when com-

pared to the baseline win rates without DSA (as shown in

the second row), the overall win rates are closer to 50%.

This shows that intra-game DSA can predict opponents’

strengths and even out the games. The reason why the win

rates are not balanced around 50%, despite the predicted

value to be more or less accurate, is that the early moves in

a game influence the outcome significantly, but the pro-

gram has yet to observe its opponents’ strengths sufficient-

ly at that point.

Opponent z = 2 z = 1 z = 0 z = -1 z = -2

w/o DSA 5.6% 8.8% 50.0% 78.4% 87.6%

WR. 29.0% 38.0% 43.0% 64.0% 71.0%

Avg. z 1.85 0.92 -0.10 -1.39 -1.57

Std. z 1.82 1.81 1.41 1.73 1.56

WR. 15.0% 32.0% 49.0% 73.0% 72.0%

Avg. z 1.02 0.75 -0.21 -0.66 -0.96

Std. z 0.94 0.90 0.81 0.84 0.85

Table 4. Win rate (WR), average z (Avg. z) and standard devia-

tion of z (Std. z) against different opponents using intra-game SA.

Conclusion

In this paper, our major contributions are:

1. We propose an approach to strength adjustment for

MCTS-based game-playing programs. In this ap-

proach, we follow a softmax policy (Sephton, Cowl-

ing, and Slaven 2015) with a strength index to

choose moves. Most importantly, this approach uses a

threshold ratio to filter out low-quality moves
whose simulation counts in MCTS are .

2. We apply the approach to the Go program ELF, and

demonstrate that we can easily adjust the strength. The

empirical results show the strength covers a range of

about 830 Elo ratings with a low linear regression er-

ror of 47.95 Elo, with respect to in the range [-2, 2].

To our knowledge, this result is state-of-the-art in

terms of the range of strengths in Elo rating while

maintaining a controllable relationship between the

strength and a strength index. Another advantage is

that the program is still able to play diverse moves de-

spite its adjusted, weaker strength.

3. We present an in-depth strength analysis for the above

empirical results. First, we make the hypothesis that

given a position, the strength of move is proportional

to
 . From this hypothesis, the strength ratings of

chosen moves are shown to be at worst a fixed value,

 , lower than the best move. This justifies

that the move quality is under control, avoiding excep-

tionally bad moves. In addition, the analysis also

shows that the derived strengths are also close to the

empirical strengths with regression error 40.45 Elo,

and to a logistic function with regression error 10.51

Elo.

4. With the ease of strength adjustment using , we in-

troduce two methods to adjust strength dynamically,

including inter-game and intra-game strength adjust-

ment. The experiment results show that these methods

1228

are able to predict the opponents’ expected strengths,

though the variances can be high.

In practice, we have applied our method to ELF OpenGo

and three versions of the Go program CGI (Wu et al.

2018), which can cover a strength range over 3000 Elo rat-

ings from beginners to ELF, which is much stronger than

human champions. Our estimation is that ELF roughly co-

vers the range of Elo ratings [3300, 4300] and the other

three covers [2600, 3700], [1800, 2800] and [900, 2000].

The four versions have been tested on online Go websites

against human players. Namely, the last two versions were

tested to play against amateur players on a Go playing

online site Tygem (Tongyang Online 2018), while the first

two were used to play against professionals in HaiFong Go

Association (HaiFong Go Association 2018).

As mentioned in the introduction, the AlphaZero algo-

rithm has also been successfully applied to other games

such as chess and shogi, reaching a strength level much

higher than human champions and other top programs (Sil-

ver et al. 2017a). With our approach, we expect to be able

to provide a wide range of strength levels for each of these

games. We expect our approach to not only impact the Go

community, but also the games community at large.

References

Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.; Cowl-
ing, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.; Samothrakis, S.;
and Colton, S. 2012. A Survey of Monte Carlo Tree Search
Methods. IEEE Transactions on Computational Intelligence and
AI in Games 4(1):1–43.

Cauwet, M.-L.; Teytaud, O.; Cazenave, T.; Saffidine, A.; Liang,
H.-M.; Yen, S.-J.; Lin, H.-H.; and Wu, I-C. 2015. Depth, Balanc-
ing, and Limits of the Elo Model. In 2015 IEEE Conference on
Computational Intelligence and Games (CIG), 376–382. IEEE.

Coulom, R. 2006. Efficient Selectivity and Backup Operators in
Monte-Carlo Tree Search. In International Conference on Com-
puters and Games, 72–83. Springer.

Coulom, R. 2007. Computing Elo Ratings of Move Patterns in the
Game of Go. ICGA Journal 30(4):198–208.

Coulom, R. 2008. Whole-History Rating: A Bayesian Rating Sys-
tem for Players of Time-Varying Strength. In International Con-
ference on Computers and Games, 113–124. Springer.

Demediuk, S.; Tamassia, M.; Raffe, W. L.; Zambetta, F.; Li, X.;
and Mueller, F. 2017. Monte Carlo Tree Search Based Algo-
rithms for Dynamic Difficulty Adjustment. In 2017 IEEE Confer-
ence on Computational Intelligence and Games (CIG), 53–59.
IEEE.

HaiFong Go Association. 2018. The Homepage of HaiFong Go
Association. Retrieved from http://www.haifong.org/.

Hollosi, A., and Pahle, M. 2018. Sensei’s Library. Retrieved from
https://senseis.xmp.net/?RankWorldwideComparison.

Hosmer Jr, D. W.; Lemeshow, S.; and Sturdivant, R. X. 2013.
Applied Logistic Regression, volume 398. John Wiley & Sons.

Hunicke, R., and Chapman, V. 2004. AI for Dynamic Difficulty
Adjustment in Games. In Proceedings of the Challenges in Game

AI Workshop, Nineteenth National Conference on Artificial Intel-
ligence, 91–96. San Jose, California: AAAI Press.

Hunter, D. R. 2004. MM Algorithms for Generalized Bradley-
Terry Models. The Annals of Statistics 32(1):384–406.

Kocsis, L., and Szepesvári, C. 2006. Bandit Based Monte-Carlo
Planning. In European Conference on Machine Learning, 282-
293. Springer.

Pascutto, G.-C. 2018. Leela-zero GitHub Repository. Retrieved
from https://github.com/gcp/leela-zero.

Paulsen, P., and Fürnkranz, J. 2010. A Moderately Successful At-
tempt to Train Chess Evaluation Functions of Different Strengths.
In Proceedings of the ICML-10 Workshop on Machine Learning
and Games, Haifa, Israel.

Sephton, N.; Cowling, P. I.; and Slaven, N. H. 2015. An Experi-
mental Study of Action Selection Mechanisms to Create an Enter-
taining Opponent. In 2015 IEEE Conference on Computational
Intelligence and Games (CIG), 122–129. IEEE.

Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.; Van
Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Pan-
neershelvam, V.; Lanctot, M.; et al. 2016. Mastering the Game of
Go with Deep Neural Networks and Tree Search. Nature
529(7587):484–489.

Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.;
Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T.; et al.
2017a. Mastering Chess and Shogi by Self-Play with a General
Reinforcement Learning Algorithm. arXiv preprint
arXiv:1712.01815.

Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang,
A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; et al.
2017b. Mastering the Game of Go Without Human Knowledge.
Nature 550(7676):354.

Tencent AI Lab. 2018. Fine Art Wikipedia. Retrieved from
https://en.wikipedia.org/wiki/Fine_Art_(software).

Tian, Y.; Ma, J.; Gong, Q.; Sengupta, S.; Chen, Z.; and Zitnick, C.
L. 2018. ELF OpenGo GitHub Repository. Retrieved from
https://github.com/pytorch/ELF.

Tongyang Online. 2018. The Homepage of Tygem. Retrieved
from http://www.tygemgo.com/.

Wu, T.-R.; Wu, I-C.; Chen, G.-W.; Wei, T.-h.; Wu, H.-C.; Lai,
T.-Y.; and Lan, L.-C. 2018. Multi-Labelled Value Networks for
Computer Go. IEEE Transactions on Games, 10(4):378–389.

1229

