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Abstract

While deep learning has achieved great success in computer
vision and many other fields, currently it does not work very
well on patient genomic data with the “big p, small N’ prob-
lem (i.e., a relatively small number of samples with high-
dimensional features). In order to make deep learning work
with a small amount of training data, we have to design new
models that facilitate few-shot learning. Here we present the
Affinity Network Model (AffinityNet), a data efficient deep
learning model that can learn from a limited number of train-
ing examples and generalize well. The backbone of the Affin-
ityNet model consists of stacked k-Nearest-Neighbor (kKNN)
attention pooling layers. The kNN attention pooling layer is
a generalization of the Graph Attention Model (GAM), and
can be applied to not only graphs but also any set of ob-
jects regardless of whether a graph is given or not. As a new
deep learning module, kNN attention pooling layers can be
plugged into any neural network model just like convolu-
tional layers. As a simple special case of KNN attention pool-
ing layer, feature attention layer can directly select important
features that are useful for classification tasks. Experiments
on both synthetic data and cancer genomic data from TCGA
projects show that our AffinityNet model has better general-
ization power than conventional neural network models with
little training data.

Introduction

Patients, drugs, networks, etc., are all complex objects with
heterogeneous features or attributes. Complex object clus-
tering and classification are ubiquitous in real world applica-
tions. For instance, it is important to cluster cancer patients
into subgroups and identify disease subtypes in cancer ge-
nomics (Shen et al. 2012; Wang et al. 2014; Ma and Zhang
2017). Compared with images, which have homogeneous
structured features (i.e., pixels are arranged in a 3-D array
as raw features), complex objects usually have heteroge-
neous features with unclear structures. Deep learning mod-
els such as Convolutional Neural Networks (CNNs) widely
used in computer vision (LeCun, Bengio, and Hinton 2015;
Krizhevsky, Sutskever, and Hinton 2012) and other fields
(Bahdanau, Cho, and Bengio 2014; Sutskever, Vinyals, and
Le 2014; Silver et al. 2016; Banino et al. 2018) cannot be
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directly applied to complex objects whose features are not
ordered structurally.

One critical challenge in cancer patient clustering prob-
lem is the “big p, small N problem: we only have a rel-
atively small number of samples (i.e., patients) compared
with high-dimensional features each sample has. In other
words, we do not have an “ImageNet”’(Russakovsky et al.
2015) to train deep learning models that can learn good rep-
resentations from raw features. Moreover, unlike pixels in
images, patient features such as gene expressions are much
noisier and more heterogeneous. These features are not “nat-
urally” ordered. Thus we cannot directly use convolutional
neural networks with small filters to extract abstract local
features.

For a clustering/classification task, nodes/objects belong-
ing to the same cluster should have similar representations
that are near the cluster centroid. Based on this intuition we
developed the k-nearest-neighbor (kNN) attention pool-
ing layer, which applies the attention mechanism to learn-
ing node representations. With the kNN attention pooling
layer, each node’s representation is decided by its k-nearest
neighbors as well as itself, ensuring that similar nodes will
have similar learned representations. Similar to Graph At-
tention Model (GAM) (Velickovi¢ et al. 2017), we propose
the Affinity Network Model (AffinityNet) that consists of
stacked kNN attention pooling layers to learn the deep rep-
resentations of a set of objects. While GAM is designed to
tackle representation learning on graphs (Velickovi¢ et al.
2017; Hamilton, Ying, and Leskovec 2017b) and it does not
directly apply to data without a known graph, our Affini-
tyNet model generalizes GAM to facilitate representation
learning on any collections of objects with or without a
known graph.

In addition to learning deep representations for classifying
objects, feature selection is also important in biomedical re-
search. Though the number of features (i.e., variables or co-
variates) in genomic data is usually very high, many features
may be irrelevant to a specific task. For instance, a disease
may only have a few risk factors involving a small number
of features. In order to facilitate feature selection in a “deep
learning” way, we propose a feature attention layer, a sim-
ple special case of the kNN attention pooling layer which
can be incorporated into a neural network model and directly
learn feature weights using backpropagation.



We performed experiments on both synthetic and real can-
cer genomics data. The results demonstrated that our Affin-
ityNet model has better generalization power than conven-
tional neural network models for few-shot learning.

Related work

kNN attention pooling layer is related to graph learning
(Hamilton, Ying, and Leskovec 2017b; Kipf and Welling
2016; Velickovié et al. 2017), attention model (Vaswani et al.
2017; Velickovic¢ et al. 2017), pooling and normalization lay-
ers (loffe and Szegedy 2015). In graph learning, a graph has
anumber of nodes and edges (both nodes and edges can have
features). When available, combining node features with
graph structure can do a better job than using node features
alone. For example, Graph Convolutional Network (Kipf
and Welling 2016) incorporates graph structure (i.e., edges)
into the learning process to facilitate semi-supervised few-
shot learning. Graph Attention Model (GAM) (Veli¢kovi¢
et al. 2017) learns a representation for each node based on
the weighted pooling (i.e., attention) of its neighborhood in
the given graph, and then performs classification using the
learned representations. However, all these graph learning
algorithms require that a graph is known. Many algorithms
also require the input to be the whole graph (Veli¢kovié et
al. 2017), and thus do not scale well to large graphs. Our
proposed AffinityNet model generalizes graph learning to a
collection of objects with or without known graphs.

As the key component of AffinityNet, kNN attention
pooling layer is also related to normalization layers in deep
learning, such as batch normalization (Ioffe and Szegedy
2015), instance normalization (Jing et al. 2017), or layer nor-
malization (Ba, Kiros, and Hinton 2016). All these normal-
ization layers use batch statistics or feature statistics to nor-
malize instance features, while kNN attention pooling lay-
ers apply the attention mechanism to the learned instance
representations to ensure similar instances will have similar
representations.

kNN attention pooling layer is different from the existing
max or average pooling layers used in deep learning mod-
els, where features in a local neighborhood are pooled to
extract the signal and reduce feature dimensions. Our pro-
posed kNN attention pooling layer applies pooling on node
representations instead of individual features. KNN attention
pooling layer combines normalization, attention and pool-
ing, making it more general and powerful. It can serve as an
implicit regularizer to make the network generalize well for
semi-supervised few-shot learning.

Affinity Network Model (AffinityNet)

One key ingredient for the success of deep learning is its
ability to learn a good representation (Bengio, Courville, and
Vincent 2013) through multiple complex nonlinear transfor-
mations. For classification tasks, the learned representation
(usually the last hidden layer) is often linearly separable for
different classes. If the output layer is a fully connected layer
for classification, then the weight matrix for the last layer
can be seen as the class centroids in the transformed feature
space. While conventional deep learning models often per-
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Figure 1: AffinityNet model overview

form well when lots of training data is available, our goal is
to design new models that can learn a good feature transfor-
mation in a transparent and data efficient way. We developed
the kNN attention pooling layer, and used it to construct the
AffinityNet Model. In a typical AffinityNet model as shown
in Fig. 1, the input layer is followed by a feature attention
layer (a simple special case of kNN attention pooling layer
used for raw feature selection), and then followed by multi-
ple stacked kNN attention pooling layers (Fig. 1 only illus-
trates one kNN attention pooling layer). The output of the
last kNN attention pooling layer will be the newly learned
network representations, which can be used for classification
or regression tasks. Though it is possible to train AffinityNet
with only a few labeled examples, it is more advantageous
to use it as a semi-supervised learning framework (i.e., using
both labeled and unlabeled data during training).

As the main components of AffinityNet are stacked kNN
attention pooling layers, we describe it in detail in the fol-
lowing section.

kNN attention pooling layer

A good classification model should have the ability to learn
a feature transformation such that objects belonging to the
same class have similar representations which are near the
class centroid in the transformed feature space.

As an object’s k-nearest neighbors should have similar
feature representations, we propose the kNN attention pool-
ing layer to incorporate neighborhood information using
attention-based pooling (Eq. 1):

hi=f( Y a(hihy) hy)
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In Eq. 1, h; and h; are input feature representations
and transformed feature representations for object i, respec-
tively. A/ (7) represents the neighborhood of object 4. If a
graph is given, we can use the given graph to determine the
neighborhood. If the given graph is very large with a high
degree, in order to reduce the computational cost, we can
randomly sample k (k is a fixed small number) neighbors for
computing Eq. 1 (Hamilton, Ying, and Leskovec 2017a). In
the kNN attention pooling layer, k is a hyperparameter that
determines how many neighbors are used for calculating the
representation of a node. f(+) is a nonlinear transformation,
for example, an affine layer with weight W and bias b fol-
lowed by ReLU() nonlinear activation:

f(h) = max(Wh + b, 0) )

a;; = a(h;, h;) in Eq. 1 is the normalized attention from

object i to object j. a(-, -) is the attention kernel that will be
discussed in the next section.

Attention kernels Intuitively, if two objects are similar,
their feature representations should be near each other. Ob-
jects belonging to the same class should be clustered to-
gether in the learned feature space. In order to achieve this,
kNN attention pooling layer uses weighted pooling to “at-
tract” similar objects together in the transformed feature
space. Attention kernels essentially calculate the similarities
among objects to facilitate weighted pooling.

There are many choices of attention kernels. For example:

e Cosine similarity:

h; - h;
Qij = T 3
T [l Iyl
e Inner product (Vaswani et al. 2017):
e Perceptron affine kernel (Velickovi¢ et al. 2017):
aij =w' - (hy|[hy) Q)

e Inverse distance with weighted Lo norm (w is the feature
weight):

(6)

In order to calculate a weighted average of new represen-
tations, we can use the Softmax function to normalize the at-
tention (other normalization is also feasible). Therefore the
normalized attention kernel is:

ai; = —|lw ©h; — w © hy]|?

e

2 jeni) €

If the graph is not given, in order to determine N (7), we
can use attention kernel to calculate an affinity/similarity
graph (i.e., the similarities among all the objects), and then
use this affinity graph to decide the neighborhood N (). As
an additional regularizer, we can use one type of affinity ker-
nels to calculate the affinity graph and another to compute
the normalized attention.

a;; = a(h;, hy) = @)
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Layer-specific dynamic affinity graph The kNN atten-
tion pooling layer can be applied to a collection of objects
regardless of whether a graph (e.g., links among objects) is
given or not. If a graph is given, we can directly use the
graph to determine the neighborhood in Eq. 1 and Eq. 7,
which is the same as in Graph Attention Model (Velickovi¢
et al. 2017). If the degree of the graph is too high, and
some nodes have very large neighborhoods, then we can se-
lect only k nearest neighbors for calculating the attention
when the computational cost is a big concern. Regardless of
whether a graph is given or not, we can always calculate an
affinity graph G,, based on node features using some simi-
larity metric including the aforementioned attention kernels.
As our AffinityNet model contains multiple kNN pooling
layers stacked together, we can calculate a layer-specific dy-
namic affinity graph using the learned node feature repre-
sentations from each layer during training.

Also, we can use the graph calculated using features from
the previous layer to determine the k-nearest-neighborhood
for the next layer. This can be seen as an implicit regular-
izer preventing the learned representation from drifting away
from the previous layer too much in a single layer operation.
Mathematically, for layer [, we can calculate a layer-specific
dynamic affinity graph G using Eq. 8.

GY =XG.+(1-NnGY + (1 -nGIY) ®)
In Eq. 8, G, is the given graph if available. When not
available, we can simply set A = 0(0 < A < 1). Gg) and

Ggf Y are the node-feature-derived affinity graphs for the
current layer [ and the previous layer [ — 1, respectively. We
can combine GSf -
1.

If the input of the AffinityNet model consists of N ob-
jects, then we will learn dynamic affinity graphs for these
N objects during training. After training, the final learned
affinity graph from the last layer can also be used for spec-
tral clustering (affinity graphs calculated using higher-level
features may be more informative for separating different
classes). In this sense, we also call our framework affinity
network learning.

and Gg ) with a parameter 7,0 < n <

Semi-supervised few-shot
few-shot learning (Ravi and Larochelle 2017
Kingma et al. 2014; Kipf and Welling 2016;
Rasmus et al. 2015) only allows using very few la-
beled instances to train a model and requires the model
to generalize well. It is especially useful for cancer pa-
tient clustering problems, where we usually have only
several hundred patients in a study. If we can obtain a few
labeled training examples (for example, human experts
can manually assign labels for some patients), we can use
the AffinityNet model for semi-supervised learning. The
input of the AffinityNet model is the patient-feature matrix
consisting of all patients, and the output of the model is the
newly learned patient representations as well as class labels.
We only backpropagate the classification error for those
labeled patients. Different from conventional neural net-
work models where each instance is independently trained

learning Semi-supervised



without batch normalization (Ioffe and Szegedy 2015),
AffinityNet can utilize unlabeled instances for calculating
kNN attention-based representations in the whole sample
pool. In a sense, the kNN attention pooling layer performs
both nonlinear transformation and “clustering” (attracting
similar instances together in the learned feature space)
during training. Even though the labels of most patients
are unknown, their feature representations can be used for
learning a global affinity graph, which is useful to cluster or
classify all patients in the cohort.

Our AffinityNet model can also be used for data distilla-
tion (Radosavovic et al. 2017). We can train a few examples
with true labels, and use our learned model to generate some
noisy labels for unlabeled data. Then we can train our model
with both clean and noisy labels and repeat this process it-
eratively. When dealing with very large graphs, we can feed
a small batch of instances (i.e., a partial graph) at a time to
the AffinityNet model to reduce the computational burden.
Though each batch may contain different instances, the KNN
pooling layer can still work well with the attention mecha-
nism. Our PyTorch implementation of AffinityNet can even
handle the extreme case where only one instance is fed into
the model at a time, in which case the AffinityNet model op-
erates as a conventional deep learning model to only learn
a nonlinear transformation without kNN attention pooling
operation.

Feature Attention Layer

Deep neural networks can learn good hierarchical local fea-
ture extractors (such as convolutional filters or inception
modules (Szegedy et al. 2017)) automatically through gra-
dient descent. Local feature operations such as convolutions
require features to be ordered structurally. For images or
videos, pixels near each other naturally form a neighbor-
hood. However, in other applications, features are not or-
dered and the structural relations among features are un-
known. Therefore we cannot directly learn a local feature
extractor. Instead, we have to learn a feature selector that
can select important individual features.

In addition, there can be many redundant, noisy, or ir-
relevant features, and the Euclidean distance between ob-
jects using all the features may be dominated by the irrel-
evant ones (Bellet, Habrard, and Sebban 2013). However,
with proper feature weighting, we can separate objects from
different classes well. This motivates us to develop a fea-
ture attention layer as a simple special case of kNN attention
pooling layer.

Let h; € RP? be the feature vector of object i, and w € R”
be the feature attention (i.e., weight), satisfying

p
W:(wlana"'7wp)a ijzlawjzo (9)
=1

Instead of the commonly used affine transformation fol-
lowed by ReLU() nonlinearity as in Eq. 2, the feature at-
tention layer performs element-wise multiplication (Eq. 10,
©® is element-wise multiplication operator) with the weight
constraint (Eq. 9). This is the only difference between the
feature attention layer and the kNN attention pooling layer.
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f(h;)) =w®h; (10)

dij = ||h; — hyl| (11

dij = || f(h;) = f(hy)|| = [[w © h; —w O hy|[* (12)

Before transformation, the learned distance between ob-
ject ¢ and j is d;; (Eq. 11), which can be skewed by noisy
apd irrelevant features. After transformation, the distance
d, j (Eq. 12) can be more informative for classification tasks.
Note the kNN attention pooling (Eq. 1) is still used after
the feature transformation (Eq. 10). The main difference be-
tween the feature attention layer and the kNN pooling layer
is that the feature attention layer uses element-wise multi-
plication (Eq. 10) instead of affine layer followed by ReLU()
(Eq. 2) as nonlinear transformation. Just like skip connec-
tions in ResNet (He et al. 2016) that can help gradient flow,
the feature attention layer can help select important individ-
ual features much easier than the fully connected layer, and
can increase the generalization power of a neural network
model in certain cases with very few training examples.

In addition, for fully connected affine layer without
weight constraints, the weight can be negative and un-
bounded. Even if we set non-negativity constraints to the
weight, the transformed features are linear combinations of
the input features. We cannot directly determine the impor-
tance of individual features. By contrast, the feature atten-
tion layer only has parameter w (Eq. 9), which directly cor-
responds to the learned feature weight. Because of the con-
straint on w (Eq. 9), the feature attention layer also learns a
weighted Euclidean metric during training.

Experiments
Simulations

We sampled 1000 points from each of the four 2-
dimensional Gaussian distributions with the same covari-
ance matrix ¥ = diag(1,1) and four different mean (u =
(0,0),(0,5),(5,0),(5,5), respectively) as the true signal.
We then appended the true signal with 40-dimensional Gaus-
sian noise with mean ¢ = (2.5,2.5,---,2.5) and covari-
ance ¥ = diag(10, 10, - - - ,10). Thus each point has 42 di-
mensions, with the first two containing the true signal, and
the rest being random noise. With four different colors cor-
responding to the true cluster assignments (generated from
four distributions), we plotted the true signal (i.e., the first
two dimensions) in Fig. 2a and the “corrupted” signal (i.e.,
42-dimensional vector) using PCA in Fig. 2b. While the true
signal forms four “natural” clusters (Fig. 2a), the corrupted
signal is dominated by the added irrelevant features and the
clusters are no longer obvious.

We constructed two models to predict class labels:

“NeuralNet”: a neural network model with an input layer
(42-dimensional), a hidden layer (100 hidden units) and an
output layer (4 units corresponding to four classes);

“AffinityNet”: same as ‘“NeuralNet” model except adding
one feature attention layer followed by kNN attention pool-
ing after the input layer.



(a) 4000 points belonging to (b) After adding 40-dimen-
four “natural” clusters sional Gaussian noise

Figure 2: Plots of the true signal and the “corrupted” signal

We randomly selected 1% of data (40 out of 4000 points)
for training two models and compared accuracies on the test
set. Surprisingly, by only training 1% of the data, our model
with feature attention layer can successfully select the true
signal features and achieve 98.2% accuracy on the test set.
By contrast, a plain neural network model only achieved
46.9% accuracy on the test set. Fig. 3a and Fig. 3b show
the training loss and accuracy curves (the red curves are for
training set and the green ones for test set) for “AffinityNet”
and “NeuralNet”, respectively. Even though both models
achieve 100% training accuracy within a few iterations, the
“AffinityNet” model generalizes better than the plain neural
network model (there is a big gap between training and test
accuracy curves for “NeuralNet” model when training data
is small).

Strikingly, the good generalization of our model partly re-
lies on the success of the feature attention layer picking up
the true signals from the noise. Fig. 3c and Fig. 3d shows the
learned weights by AffinityNet and NeuralNet for the 42-
dimensional input features, with the red dots corresponding
to the true signals and blue dots noise. The weights of the
true signal are much higher than those noise in AffinityNet,
while “NeuralNet” did not select the true signal very well.

Tumor disease type classification

Harmonized kidney and uterus cancer gene expression
datasets were downloaded from Genomic Data Commons
Data Portal (https://portal.gdc.cancer.gov) (Grossman et al.
2016). We preprocessed the data and selected top 1000 most
variant gene expression features as the model input. Kidney
cancer has 654 samples with three disease types, and uterus
cancer has 475 samples with two disease types. Both kidney
cancer and uterus cancer have highly unbalanced classes. We
are trying to classify each tumor sample into its disease type
for uterus and kidney cancer separately using the gene ex-
pression profiles.

We compared our model (“AffinityNet”) with five other
methods: “NeuralNet” (conventional deep learning model),
“SVM”, “Naive Bayes”, “Random Forest”, and “Nearest
Neighbors” (kNN). Our model (“AffinityNet”) consists of
a feature attention layer, a kNN attention pooling layer (100
hidden units), and a fully connected layer. For kNN atten-
tion pooling layer, we use “cosine similarity” kernel and
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Figure 3: Training loss and accuracy and learned feature
weights

set the number of nearest neighbors & = 2 (kidney cancer)
and £ = 3 (uterus cancer). (We have tried other choices of
k and the results are similar.) “NeuralNet” is a two-layer
fully connected neural network with the hidden layer hav-
ing 100 hidden units. For both “AffinityNet” and ‘“Neural-
Net”, we use ReLU() nonlinear activation in the hidden layer.
Since the input dimension is 1000 (i.e., top 1000 most vari-
ant gene expressions), the total number of the parameters of
“NeuralNet” is 100,403 for kidney cancer with three classes
(i.e., disease types), and 100,202 for uterus cancer with two
classes. Our model “AffinityNet” has 101,403 parameters
and 101,202 parameters for kidney and uterus cancer, re-
spectively. Note our model only has 1000 more parameters
than “NeuralNet” to facilitate fair comparisons. We do not
use more layers in the neural network models because there
are only several hundred samples to train, and larger mod-
els are more likely to overfit. We used the implementation
from scikit-learn (http://scikit-learn.org) for “Naive Bayes”,
“SVM”, “Nearest Neighbors”, and “Random Forest” with
default settings.

We progressively increased the training portion from 1%
to 50% (i.e., 1%, 10%, 20%, 30%, 40%, and 50%), and re-
ported the adjusted mutual information (AMI) on the test
set (Table 1 and Table 2). AMI is an adjustment of the Mu-
tual Information (MI) score to account for chance, which is
suitable to measure the performance of clustering and classi-
fication with multiple unbalanced classes (AUC is a similar
metric but is mainly suitable for binary classification).

We ran experiments 20 times with different random seeds
to generate different training and test sets. For each run, the


https://portal.gdc.cancer.gov
http://scikit-learn.org

Table 1: Adjusted Mutual Information on the test set for kid-
ney cancer

Table 2: Adjusted Mutual Information on the test set for
uterus cancer

Train portion

Train portion

Method 0.01 0.1 0.2 0.3 0.4 0.5 Method 0.01 0.1 0.2 0.3 0.4 0.5
AffinityNet 084 087 086 085 085 0.85 AffinityNet 0.62 0.66 0.76 0.84 0.85 0.84
NeuralNet 0.70 0.76 0.77 0.78 0.78 0.80 NeuralNet 041 052 059 061 063 0.68

SVM 0.70 0.77 0.78 0.79 0.80 0.81 SVM 043 054 060 062 065 0.70
Naive Bayes 025 059 071 076 0.78 0.80 Naive Bayes 0.00 028 0.62 058 055 0.58
Random Forest 0.36 0.61 0.67 0.68 0.71 0.72 Random Forest 0.03 0.06 0.10 0.12 0.18 0.14
training and test set for all six methods are identical. We = ‘
reported the mean AMI scores for the top ten runs (results ‘ I

depending on the few selected training examples and other
randomness) for all methods in Table 1 and Table. 2.

For both cancer types, our model clearly outperformed all
other models, especially when the training portion is small.
For example, when trained on only 1% of the data, our
model achieved AMI=0.84 for kidney cancer and AMI=0.62
for uterus cancer (Table 1 and Table 2), while other meth-
ods performed badly with few training examples. This sug-
gests our model is highly data efficient. One reason for this
is that kNN attention pooling layer is in a sense perform-
ing “clustering” during training, and it is less likely to over-
fit a small number of training examples. The input of KNN
attention pooling layers can contain not only labeled train-
ing examples but also unlabeled examples. It performs semi-
supervised learning with a few labeled examples as a guide
for finding “clusters” among all the data points. “NeuralNet”
and other methods do not perform well with few labeled
training examples because they tend to overfit the training
set and cannot generalize well with a small training set. In
these experiments, ‘“NeuralNet” model does not outperform
“SVM” because the dataset is quite small and the power
of deep learning is manifested only when large amounts of
data is available. For kidney cancer, unlike other methods,
our model did not improve with more training data, partly
because there are a few very hard cases in kidney cancer
dataset, while all other cases are almost linearly separable.
Our model can easily pick up the linearly separable clusters
with only a few training examples, but it is hard to separate
very hard cases even when more training data is available.
Besides, we analyzed the top genes with the highest learned
weights selected by the feature attention layer for kidney
cancer. Surprisingly, we found literature evidence support-
ing that seven out of the top ten genes are relevant to kidney
cancer.

Semi-supervised clustering

Cancer patient clustering and disease subtype discovery
are very challenging because of the small sample size and
lack of enough training examples with groundtruth labels.
If we can obtain label information for a few samples, we
can use “AffinityNet” for semi-supervised clustering (We-
ston et al. 2012). While other methods such as SVM do
not produce explicit feature representations, both “Affini-
tyNet” and “NeuralNet” can learn a new feature representa-
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Figure 4: Adjusted Mutual Information achieved by semi-
supervised clustering using “NeuralNet” and “AffinityNet”
for kidney cancer

tion through multiple nonlinear transformations. For a clas-
sification model, the new feature representation is usually
fed into a linear classifier. We can train our model with a
few labeled examples, use the learned model to generate the
transformed feature representations for all data points, and
then perform clustering using the transformed features.

For “AffinityNet”, we can use all the data points during
training with kNN attention pooling, but only backpropa-
gate on labeled training examples. We get the learned new
representations for all the data points once the training pro-
cess is finished. For conventional neural network models,
since each data point is independently trained, we only use
labeled examples during training. After training, we have to
use the learned model to generate new feature representa-
tions for all the data points. In order to evaluate the qual-
ity of the learned feature representations with a few training
examples, we performed clustering using these transformed
features and using the original features, and compared them
with groundtruth class labels.

We compared the performance using “AffinityNet” and
“NeuralNet” on kidney data set as it has more samples. We
randomly selected 1% of data for training, and ran experi-
ments 30 times. After training, we performed spectral clus-
tering on the learned patient-feature matrices. Fig. 4 shows
the adjusted mutual information scores for all the 30 runs
using “AffinityNet” and “NeuralNet”. We also performed
spectral clustering on the original patient-feature matrix as
a baseline method (AMI = 0.71, blue dotted line in the fig-
ure). Our model outperformed the “NeuralNetwork™ model
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Figure 5: Concordance index achieved by “AffinityNet” and
baseline Cox model for kidney cancer

(p = 0.008, Wilcoxon signed rank test) and the baseline
(the “Neural Network™ model is slightly below the baseline
because it probably had overfitted the training examples).
While both “NeuralNet” and “AffinityNet” have approxi-
mately the same number of model parameters, only “Affin-
ityNet” can learn a good feature transformation by facilitat-
ing semi-supervised few-shot learning with feature attention
and kNN attention pooling layers.

Combine with Cox model for survival analysis

For many cancer genomics studies, cancer subtype informa-
tion is not known, but patient survival information is avail-
able. We replaced the last layer (i.e., linear classifier) in
the model (as shown in Fig. 1) with a regression layer fol-
lowing the Cox proportional hazards model (Mobadersany
et al. 2018; Fox 2002). We used backpropagation to learn
model parameters that maximize partial likelihood in the
Cox model.

We performed experiments on kidney cancer dataset that
has more than 600 samples. We progressively increased the
training portion from 10% to 40%. We used 30% of data as
validation and the remaining as the test set. As a baseline
method, we used age, gender and known disease types as
covariates to fit a Cox model. We ran experiments 20 times
with random seeds, and reported the concordance index on
the test set for both our model and the baseline Cox model
(Fig. 5).

In Fig. 5, the light blue boxplots on the left side corre-
spond to the results from the baseline method (i.e., the Cox
model on age, gender and disease types), while the light
green ones correspond to that from our model. The reported
p-value between our model and the baseline method for
training 10% data was calculated using the Wilcoxon signed
rank test. Our model outperformed the baseline model by
a significant margin (Table. 3 shows the mean concordance
index in different settings).

Discussion and Conclusion

Deep learning has achieved great success in computer vi-
sion, natural language processing, and speech recognition,
where features (e.g., pixels, words, and audio signals) are
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Table 3: Mean concordance scores for kidney cancer

Train portion

Method 0.1 0.2 0.3 0.4
Baseline Cox Model 0.601 0.602 0.616 0.618
AffinityNet 0.694 0.710 0.723 0.729

well structured and a large amount of training data is avail-
able. However, in biomedical research, the training sample
size is usually small while the feature dimension is very
high, where deep learning models tend to overfit the train-
ing data but fail to generalize. To alleviate this problem
in the patient clustering/classification related tasks, we pro-
pose the AffinityNet model that contains stacked feature at-
tention and kNN attention pooling layers to facilitate semi-
supervised few-shot learning.

Regardless of whether a graph is given or not, kNN at-
tention pooling layer can use attention kernels to calculate
dynamic affinity graphs during training. The affinity graphs
are used for selecting k-nearest neighbors for attention-
based pooling. KNN attention pooling layers essentially add
a “clustering” operation (“forcing” similar objects to have
similar representations through attention-based pooling) af-
ter the nonlinear feature transformations, which can serve as
an implicit regularizer for classification-related tasks. kNN
attention pooling layers can be plugged into a deep learning
model as a basic building block just like convolutional lay-
ers. With multi-view data, we can first use a few kNN atten-
tion pooling layers to process each view separately to learn
a high-level representation for each view, and then combine
all the views with their high-level feature representations (by
concatenating them together or adding them up) and apply
kNN attention pooling again to the combined view. Feature
attention layer is a simple special case of kNN attention
pooling layer. It is useful for selecting important individual
input features automatically with a normalized non-negative
weight learned for each feature.

Building upon stacked feature attention and kNN pool-
ing layers, our AffinityNet model is more effective for semi-
supervised few-shot learning than conventional deep learn-
ing models. We have conducted extensive experiments using
AffinityNet on two cancer genomics datasets and achieved
satisfactory results.

AffinityNet alleviates the problem of lack of a sufficient
amount of labeled training data by utilizing unlabeled data
with kNN attention pooling, and can be used to analyze a
large bulk of cancer genomics data for patient clustering and
disease subtype discovery. Future work may focus on de-
signing deep learning modules that can incorporate biologi-
cal knowledge for various tasks.
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