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Abstract

Bike-sharing systems, aiming at meeting the public’s need
for "last mile” transportation, are becoming popular in re-
cent years. With an accurate demand prediction model, shared
bikes, though with a limited amount, can be effectively uti-
lized whenever and wherever there are travel demands. De-
spite that some deep learning methods, especially long short-
term memory neural networks (LSTMs), can improve the
performance of traditional demand prediction methods only
based on temporal representation, such improvement is lim-
ited due to a lack of mining complex spatial-temporal re-
lations. To address this issue, we proposed a novel model
named STG2Vec to learn the representation from heteroge-
neous spatial-temporal graph. Specifically, we developed an
event-flow serializing method to encode the evolution of dy-
namic heterogeneous graph into a special language pattern
such as word sequence in a corpus. Furthermore, a dynamic
attention-based graph embedding model is introduced to ob-
tain an importance-awareness vectorized representation of
the event flow. Additionally, together with other multi-source
information such as geographical position, historical transi-
tion patterns and weather, e.g., the representation learned by
STG2Vec can be fed into the LSTMs for temporal modeling.
Experimental results from Citi-Bike electronic usage records
dataset in New York City have illustrated that the proposed
model can achieve competitive prediction performance com-
pared with its variants and other baseline models.

Introduction

Bike-Sharing systems have been widely used in urban pub-
lic transportation due to their convenience and environmen-
tal friendliness in recent years. As a representative product
of the sharing economy, it is often hailed as a good helper to
solve the “last mile” in citizen transportation. Its users can
check out a bike where they depart and return it to a sta-
tion close to their destination. However, due to the high fre-
quency and randomness of using, the system has come to be
unbalanced in bike distribution. This will result in short sup-
ply of bikes in some places and oversupply in others, thus re-
ducing user satisfaction. In general, to solve this unbalanced
bike-sharing distribution problem, it is vital to propose an
accurate demand prediction model.
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Bike-sharing demand prediction can usually be defined
as a time series prediction problem from multi-source and
heterogeneous data. Traditionally, time series prediction can
be considered as building a suitable predictive model (Yule
1927) for a series of data points indexed in time order so as
to make good use of the complex sequence dependencies.
As a representative of the statistical regression methods,
the auto-regressive moving average model (ARMA) and the
auto-regressive integrated moving average (ARIMA) model
(Box and Pierce 1968) are both well-known models for time
series prediction. As machine learning methods grow pop-
ular gradually, more researchers focused on the studies to
establish nonlinear prediction model based on a large scale
of historical data. Typical models such as the support vec-
tor regression (SVR)(Drucker et al. 1996) based on kernel
methods and the artificial neural networks (ANN) (Davoian
and Lippe 2007) with strong nonlinear function approxima-
tion ability and the k-Nearest Neighbor (K-NN) regression
(Wang and Chaib-draa 2013) based on distance metric in
feature space and some tree-based ensemble learning meth-
ods, for instance, the random forests (RF) regression (Jo-
hansson et al. 2014) and the gradient boosting regression
tree (GBRT) (Li and Bai 2016).

With the rise of deep learning methods, the recurrent neu-
ral network (RNN) (Rumelhart, Hinton, and Williams 1986)
gradually becomes the state-of-the-art method for tempo-
ral modeling. However, with longer driving sequence, some
problems such as vanishing gradient limit the prediction ac-
curacy of this model. To address these issue, the long short-
term memory units (LSTM) (Hochreiter and Schmidhuber
1997) and its variants the gated recurrent unit (GRU) (Cho
et al. 2014a) were proposed based on the original RNN
which balances memorizing and forgetting by adding multi-
ple threshold gates. Learning from cognitive neuroscience
and inspired by some successful applications in natural
language processing (Cho et al. 2014b), some researchers
(Liang et al. 2018) introduce attention mechanisms to the
encoding-decoding framework based on LSTMs to better se-
lect from input series and encode information in long-term
memory for time series prediction.

Although the LSTM-based models can achieve satisfac-
tory effect in temporal modeling, their ability to model com-
plex non-linear spatial-temporal relations is clearly insuffi-
cient (Yao et al. 2018). Particularly, bike-sharing demand



is greatly affected by external conditions. It is necessary
to make full use of multi-source heterogeneous informa-
tion in historical data. As a station-level prediction prob-
lem, it is vital to utilize the complex heterogeneous spatio-
temporal graph which describes bicycle riding relationships.
Inspired by some significant applications in unstructured
data embedding (Mikolov et al. 2013) and structured data
embedding (Zhu et al. 2013; Guo and Berkhahn 2016;
Dai, Dai, and Song 2016) through deep learning meth-
ods, we proposed a novel model named STG2Vec to learn
the representation of heterogeneous spatio-temporal graph.
Specifically, we proposed an event-flow serializing method
to represent the evolution process of interaction between the
current site and its neighbors from a heterogeneous graph
structure within a time-step as a series. Furthermore, a dy-
namic attention-based graph embedding model is proposed
to obtain an importance-awareness vectorized representation
of the event-flow.
In general, main contributions in this paper are:

e We developed an event-flow serializing method to repre-
sent the evolution process of the dynamic heterogeneous
graph as a series.

e A novel dynamic attention-based graph embedding model
named STG2Vec is proposed to learn an importance-
awareness vectorized representation from heterogeneous
spatial-temporal graph.

e To better utilize the multi-source information, we intro-
duced the CE-LSTM to combine the embedded multi-
source information with the output of proposed STG2Vec
for collaborative temporal modeling.

Related Work

With the wide application of bike-sharing in urban trans-
portation, progress have been made in related researches ac-
cordingly. Studies including data analysis and visualization
(Yan et al. 2018), have employed data of bike-sharing tra-
jectories to solve specific problems in urban management
(Bao et al. 2017; He et al. 2018) and other areas. Demand
prediction, as the most classic problem, has received the
widest attention in this field. Based on predictive granu-
larity, there are three groups of prediction models in ex-
isting researches: city-level, cluster-level, and station-level.
For the city-level and cluster-level groups, traditional meth-
ods (Chen et al. 2016) usually predict the bike demand for
a whole city or design a clustering algorithm to cluster bike
stations into groups as prediction units. Although city-level
or cluster-level does simplify the problem, it’s not as good
as station-level prediction for bike-sharing managers to help
when scheduling. However, the station-level prediction is
difficult because the bike-sharing demand pattern of a sta-
tion is highly dynamic and context-dependent.

Although station-level prediction is being challenged, it
has attracted the attention of many researchers. In station-
level hourly demand prediction tasks, some researchers fur-
therly explore the external context data such as time factors
and weather information together with feature engineering
and model lightweight processing (Hulot, Aloise, and Jena
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2018) for industrial applications. Others have made contri-
bution to temporal modeling by introducing recurrent neural
network (Chen et al. 2017) for bike-sharing demand predic-
tion. Meanwhile, other researchers are interested in utiliz-
ing the underlying correlations between stations to predict
the hourly demand at station-level with deep learning tech-
niques such as graph convolutional neural network (GCN)
together with the classic support vector regression model
(Lin et al. 2017). Although above studies have improved the
accuracy and efficiency of station-level demand prediction
models in different ways, there is no way to align tempo-
ral modeling with complex non-linear spatial-temporal rela-
tions mining.

In bike-sharing demand prediction, any stations are
not isolated. The station establishes complex connections
through riding relationships to each other which can be ex-
pressed by graph structures. In order to capture complex
non-linear spatial-temporal relations among stations, it is
necessary to establish a length-fixed representation from
graph structures. Embedding technology can usually obtain
low-dimensional and length-fixed numeric vectors represen-
tation from non-linear structures. Typically, the DeepWalk
(Perozzi, Al-Rfou, and Skiena 2014) and node2vec (Grover
and Leskovec 2016) are widely used in social network min-
ing. These method were proposed inspired by some deep
learning embedding methods which had led to significant
progress in natural language processing (Mikolov et al.
2013). These make embedding methods used for represen-
tation learning in data mining available.

In the specific problem, what is established by the rid-
ing relationship among stations is a structurally unstable dy-
namic heterogeneous graph structure. Although the above
methods can learn the embedded representation of the graph
structure, they are insufficient when extending to the dy-
namic graph modeling. Naively applying existing embed-
ding algorithms to each snapshot of dynamic graphs in-
dependently usually leads to unsatisfactory performance in
terms of stability, flexibility and efficiency. The study on dy-
namic graphs embedding proposed a DynGEM model based
on deep autoencoders (Goyal et al. 2018) which inspires a
new idea for dynamic graph representation learning, but it
still has room to improve when capturing dependencies be-
tween each snapshots of dynamic graphs.

Preliminaries

In this section, we will introduce some notations and
the definition of bike-sharing demand prediction. Bike-
sharing demand prediction, as a time series prediction prob-
lem, can be defined as a station-level check-out/in predic-
tion issue. Given a set of historical trips records: Ty =
(Tr,,Tryy- - Tryy ), where each trip T, = (Lo, Ld, To, Td)-
Specifically, where L, denotes the start station, consists of
latitude L,.lat and longitude L,.lon; where L, denotes the
destination station, consists of latitude L,.lat and longitude
Lg.lon; 7, and 7,4 are the time corresponding to check-out
and check-in in each bike-sharing historical trip. Further-
more, to better describe the problem, we summarize some
notations used in our task definition in Tablel.



la M arl
. |
UL e

1. A /1
VA \
| 11

i

J
T(fweﬂ,[:Z H f;ime,l:Z) ngraph,S, J2=T

X g fmms,s, =1
00 00 00
[STGZVec [ STG2Vec H |

] STG2Vec H

Global

Figure 1: Graphical illustration of learning collaborative representation from nulti-source and heterogeneous spatial-temporal
data. This figure is composed of three parts. The top part displays the process of learning historical transition patterns. The
bottom part shows the Attn-Graph structure can be produced at the global level from the original graph which responds to the
riding relationship between the central site and its neighbors at the current time interval extracted at the local level. Meanwhile,
in the middle part of this figure, together with multi-source information from weather, time, geographical position and historical
transition patterns, the representation learned by STG2Vec can be fed into the LSTMs for temporal modeling.

Table 1: Notations and Description In Task-level

Notation Description
S; The %" station

Og, t Check out of station .S; in time ¢

Is, + Check in of station S; in time ¢
ftrans,s; t Feature of transition in ST-index

Jweat Meteorology feature in time ¢

frime,t Feature of time in time ¢
foraph,s; t Embedding of graph in ST-index

Given a set of historical trips which contains geographic
and temporal information, we can predict the Og, 741 and
Is, 741 of each station .S; in next time interval by ex-
tracting feature of transition, meteorology, time and em-
bedding of graph from each historical time intervals. Typ-
ically, time series prediction usually uses a historical se-
quence of values as the input data. Given jointly feature
X7 in time ¢ and station S; which can be concatenated
by ftrans,Si,h Fwea,t, ftime,t and fgraph,Si,tv the context
features at historical time intervals and stations can be de-
fined as X* = (X?,X3§,...,X%), where X; € X' and
th = (ftrans,Si,t; Fwea,t7 ftime,ta fgraph,Si,t)- Meanwhile,
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historical values of check-out and check-in in each bike-
sharing station y* = (yi,y%,...,y%) are also given. Gen-
erally, we learn a nonlinear mapping function by using the
historical context features X and its corresponding target
value y* to obtain the predicted value - 1 for check-out/in
respectively with the following formulation:

Vi =Z (X)) (1)
where mapping % (+) is the nonliner mapping function we
take for making prediction.

Methodology

In this section, the STG2Vec model for heterogeneous
spatial-temporal graph embedding and the CE-LSTM for
collaborative temporal modeling we proposed will be in-
troduced in details. In general, together with multi-source
information from weather, time, geographical position and
historical transition patterns, the representation learned by
STG2Vec can be fed into the LSTMs for temporal mod-
eling by the CE-LSTM. Specifically, we will provide de-
tails for our proposed core model: STG2Vec in components
of event-flow serialize method and dynamic attention-based
graph embedding model respectively.
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Figure 2: Graphical illustration of learning representation of attention-based heterogeneous spatial-temporal graph. The figure
is composed of two parts. The top displays the process of event-flow serialize, and the bottom structure of STG2Vec. Event-flow
serialize is the process of encoding the dynamic heterogeneous graph into a special language pattern such as sequence of words
in a corpus. The STG2Vec takes dynamic attention-based graph embedding by event-flow series with the spatial-temporal index.

Mutil-Source Information Representation

Bike-sharing demand in station-level is affected by multiple
complex factors, such as its geographical position and his-
torical transition patterns, meteorology, time and correlation
between its neighbors.

Firstly, we extracted the feature of transition firqns s, ¢ in
ST-index with statistical indicators such as total, mean, vari-
ance, median, mode, minimum, and maximum in each time
interval. Secondly, we defined time features for each time in
station S; as ftime,+: rush or normal time of the day, day of
the week, week of the month, month of the season. Mean-
while, as a kind of transportation, bike-sharing demand is
affected by meteorology significantly. Thirdly, we define the
meteorology feature in time ¢ as fy,eq,¢» Which contains air
temperature, dew point temperature, relative humidity, wind
speed, wind direction, visibility and weather condition type.
In addition, the bike-sharing traffic of nearby stations can
affect each other. Finally, to utilize this correlation between
stations, we take embedding of the graph in ST-index by the
STG2Vec we proposed.

Specifically, most attributes of meteorology and time fea-
tures are categorical variables with sparse one-hot encod-
ing. In order to achieve a dense representation of joint infor-
mation, we transform the time-weather attributes with time-
index into a low-dimensional vector by neural networks sim-
ilar to sentence embedding (Le and Mikolov 2014).
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Event-Flow Serialize

The event of bike-sharing checking may occur at any time,
which makes the graph structure changing dynamically. The
goal of language modeling is to estimate the likelihood of
a specific sequence of words appearing in a corpus (Per-
ozzi, Al-Rfou, and Skiena 2014). Event-flow serialize is
the process to encode the evolution of dynamic heteroge-
neous graph into a special language pattern such as word
sequence in a corpus. Firstly, we divided a time interval (1h)
by minutes. For instance, time interval t = (¢1,ta,...,%;),
where [ € [1, L]. Secondly, we traversed each unicom undi-
rected sub-graph in Depth-First Search (DFS) and corre-
sponding Depth-First Spanning Tree (DFST) can be ob-
tained reseparately. For instance, in ¢ and S;, the DFST:
T(Gf;i) generated by G can be traversed in Pre-order into

a node set VE;":Z'. It should be noted that each node can
be represented as a vector which consists of four parts:
real-time net inflow, outflow, longitude and latitude. For
instance, the node vector can be symbolized as nil
(Is; t,, Os; 1,5 lon.S;, lat.S;) Meanwhile, we took hierar-
chical quantization encoding with inflow and outflow in each
node to build a corpus with a reasonable frequency distribu-
tion. Then, the event-flow series in ¢ and .S; can be repre-
sentedas VE;" = (VE;",..,VE;",...,VE;"). The offline

corpus was established with VEtS * in different ST-Index and



a new set of nodes can be find in the corpus by a hierarchi-
cal search which consists of longth, location and quantitative
level matching. Finally, the propose of event-flow serialize is
to finish the information extraction of the evolution process
of dynamic graph that is latent and spatially sensitive.

Dynamic Attention-based Graph Embedding

Graphical illustration of STG2Vec is given in Figure 2. In
STG2Vec, outlined in Algoithm 1, the position information
in t is mapped to a unique vector as the spatial-temporal in-
dex (ST-Index), represented by a column in matrix H and
each set of nodes in corresponding graph within event-flow
series can be seen as a special word is also mapped to a
unique vector, represented by a column in matrix G. The
ST-Index and the contextual special words are concatenated
to predict the next word in fixed-length surroundings sam-
pled from a sliding window over a event-flow series. Specif-
ically, given a general spatial-temporal graph contextual se-
ries VE;', .., VE",..,VE", the objective of STG2Vec
is to maximize the average log probability

L—k

1 Si Si Sz‘

7 > logp(VE |VES ,...VE ) )
t=k

The prediction task is typically done via a multiclass classi-
fier, such as softmax. There, we have

eyVEtSi k
) —

- Z] eYi

Each of y; is un-normalized log-probability for each output
intermediate graph j, computed as

y=b+URVE | ., VE) ;G)

ti—k> itk

VE;

[

p(VE L VES:

titk

3

“

where U, b are the softmax parameters. h is constructed by a
concatenation of intermediate graph vectors extracted from
G and the ST-Index vector extracted from H. In addition, we
take stochastic gradient decent (SGD) to train the STG2Vec
and the gradient obtained by backpropagation can be used to
update parameters in our model.

Furthermore, to obtain an importance-awareness vector-
ized representation of the event-flow, we use the attention
mechanism to take importance-based sampling for the se-
quence of nodes encoded by the event-flow serialize and
train STG2Vec again with the new input of sampled nodes
series. In addition, after training of STG2vec, the fixed-
length vector representation formed by each node corre-
sponding to different ST-Index can constitute an embedding
space. Then we use the ST-Index as the key, and the cor-
responding vector represents the value to construct a hash
map. Specifically, for an instance, each node in the set of
node VEtSli can obtained the corresponding fixed-length
vector representation by the hash map and these represen-
tations can form a set of embedded representation VEmfl'i.
Furthermore, we can get normalized attention weights by
measuring the similarity of the length-fixed vector corre-
sponding to each node one by one. Finally, the attention-

~ S,, .
based graph V' E, can be produced by importance-based
sampling from VES
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Algorithm 1 STG2Vec (G, H,w, d, 7, L)

Require:
G: Event-flow series matrix, H: ST-Index matrix, w:
window size, d: embedding size, 7: training epochs, L:
event-flow series length
Ensure:
fograph,s.t € R?: Embedding of graph in ST-index
1: while iter =1 < 7 do

2 Initialization: Sample © and ¢ from G, H

3: for VE ) € ©do

4 VE} « (VE',..,.VE, . ., VE)

5 for VE;" € VE; do

6: ozfl"' — C’alAttheights(VEtsli)
~Si ) )

7 VE «+ VE, + a; -VE

8 end for

9 end for

10

PV-DM(O, ®, w, d) (Le and Mikolov 2014)
11: end while

Collaborative Temporal Modeling

To better utilize the external data and capture with com-
plex non-linear spatial-temporal relations, we proposed the
CE-LSTM. Together with multi-source information from
weather, time, geographical position and historical transition
patterns, the representation learned by STG2Vec can be fed
into the LSTMs for collaborative temporal modeling.

Firstly, we define the jointly representation by concatenat-
ing in each time interval and station as

XZ = (ftrans,Si,ta Fwea,tv ftime,ta fgraph,Si.,t) (5)

Then, X' = (X, X3, ..., X%) is fed into LSTM networks.
Furthermore, we can learn the nonliner mapping function by
these formulation (Hochreiter and Schmidhuber 1997) of the
calculating process in LSTM cells as follows:

it = o (Wai X} + Wih'™ 4+ W™ b)) (6)
fr= (W XP 4+ Wiph! ™ 4 W™+ bp)  (7)
= frt pittanh(Woe X7 + Wieh™1 +0.)  (8)
o' = o(Wao X} + Wioh!™ + Weoet ™ +b,)  (9)

h' = o' tanh(c") (10)

where o (-) represents the activation function of sigmoid and
W matrices with double subscript the connection weights
between the two cells. In addition, ¢ represents input gate
state, f¢ forget gate state, ¢! cell state, o' output gate and h'
the hidden layer output in current time-step. Finally, we can
take the last element of output vector h*~! as the predicted
value. It can be represented as:

gi,t — ht—l (ll)
the final output value can be contacted to a vector:
Yo = @52 7T (12)



Experiments

In this section, we will make a data description firstly. Then
the baseline methods for comparison, evaluation metric and
parameter settings will be introduced as well. Furthermore,
to evaluate the performance of the proposed model, we con-
ducted experiments on a realworld dataset, compared with
several baseline models.

Data Description and Settings

To evaluate our model, we collected two datasets, i.e., Citi-
Bike Dataset and MesoWest Dataset from NYC and the de-
tails of them are shown in Table 2. For bike data, the stations
with number of trip records less than 1,000 in our time span
are filtered out. This is a common practice used in similar
works (Yao et al. 2018). Because in the real-world applica-
tions, it’s not very meaningful to predict such a low-demand
station. In our experiment, we set an hour as the length of
the time interval and split datasets in station-level. In addi-
tion, there are 12,281 hours is available and 9,825 samples
selected randomly are used for training and the remaining
2,456 samples are used for testing. Furthermore, when test-
ing the prediction result, we use the previous 12 time inter-
vals (i.e., 12 hours) to predict the bike-sharing demand in the
next time interval for each station.

e Citi-Bike Dataset': We collect the trip data of Citi-Bike
system in NYC, from 2017/1/1-2018/5/31 (UTC) as our
dataset. The data includes: origin station (station ID, sta-
tion name, station latitude and longitude), destination sta-
tion (station ID, station name, station latitude and longi-
tude), start time (when a bike is checked out), stop time
(when a bike is checked in).

e MesoWest Dataset’: MesoWest is an ongoing cooper-
ative project to provide access to current and archive
weather observations across the United States. The data
are recorded by a station located near to Central Park
containing air temperature, dew point temperature, rela-
tive humidity, wind speed, wind direction, visibility and
weather condition type.

Table 2: Details of Bike-sharing and Meteorology Datasets

Time Span (UTC) 2017/1/1-2018/5/31
Data Sources Category Attribute
Stations(In) 44
T Stations(Out) 47
Citi-Bike Bikes 1,345
Records 402,340
TEMP / °F [5.00,93.92]
DEWP /°F [-14.08,77.00]
HR [11.91%,100%]
Meteorology WSP / mph [0.00,26.46]
WD [0°,360°]
VISIB / miles [0,10]
Weather Sunny, etc.

Uhttps://www.citibikenyc.com
*https://mesowest.utah.edu
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Evaluation Metric

Two commonly used metrics: the Root Mean Squared Errors
(RMSE) and Mean Absolute Errors (MAE) are adopted to
evaluate the performance of all compared models as follows:

N
1 ~i i
RMSE = N;(yt—ym (13)
1 & :
MAE = N;wz — il (14)

where 7! is prediction, y! is real value and N is the number
of testing samples.

Comparing Methods

For fairness, we use the same contex features and loss fun-
tion for all models. We carefully tuned each model respec-
tively and tested for five times to reduce random errors and
the final averaged results are showed in Table 3. The baseline
models compared with our proposed method are as follows.

e Temporal: We only take the context feature of transition
ftrans,s;,+ in ST-index with statistical indicators and con-
duct temporal modeling with LSTMs.

e Weather: It utilizes the joint information of time-weather
represented in low-dimensional embedded vector.

e Graph: This considers the correlation between stations
learned by the STG2Vec without attention mechanism.

e Attn-Graph: This variant contains the importance-
awareness vectorized representation learned by STG2Vec.

e CE-LSTM: Together with temporal and weather infor-
mation, the importance-awareness vectorized representa-
tion learned by STG2Vec is also employed for temporal
modeling with LSTMs.

Parameters Setting

There are some parameters in STG2Vec, i.e., embedding
dimension d, sampling window size w and epochs 7. Tak-
ing into account efficiency and performance, the setting is:
d=3w=10,7 50. In addition, we transform time-
weather attributes into three-dimensional vector by sentence
embedding with default setting in Gensim (3.4.0). Further-
more, we take a single-layered LSTM with size of hidden
units: h = 64, batchsize b = 256 and time steps S = 12
which confirmed by grid search and showed in Figure3 par-
tially. The first 80% of training samples were selected for
training the remaining for parameters tuning.



Table 3: Comparison with Different Variants and Baseline Methods

Overall Performance of Bike-sharing Demand Prediction

Model Check In Check Out
RMSE { MAE RMSE { MAE
HA 1.7325 0.9105 1.6400 0.8561
Lasso 1.6488 1.0054 1.5685 0.9549
KNN 1.4803 0.8435 1.3765 0.7707
RF 1.5660 0.9433 1.4780 0.8742
GBRT 1.4978 0.8984 1.4035 0.8277
RNN 1.4345 0.8571 1.3267 0.7790
GRU 1.4239 0.8427 1.3313 0.7713
Temporal 1.4960 0.8869 1.3731 0.8156
Temporal + Weather 1.4884 0.8800 1.3723 0.8090
Temporal + Graph 1.4265 0.8517 1.3223 0.7702
Temporal + Attn-Graph 1.4195 0.8431 1.3173 0.7705
Temporal + Weather + Graph 1.4189 0.8428 1.3204 0.7739
Spectral Embedding 1.4449 0.8601 1.3393 0.7807
DeepWalk 1.4337 0.8444 1.3356 0.7876
DNGR 1.4327 0.8511 1.3327 0.7802

| CE-LSTM [ 1.4138 [ 0.8402 [ 1.3115 [ 0.7684 ]

Performance Comparison

Table 3 shows the average performance of the proposed
method compared to other baseline competitors. As we can
see, the HA perform poorly because only values of previ-
ous demands in the the same time of the day are used. Gen-
erally, with the collaborative representation learned from
multi-source and heterogeneous spatial-temporal data, even
the Lasso with /;-norm regularization can improves the ac-
curacy of the prediction. Usually, the collaborative repre-
sentations corresponding to similar predicted target values
are similar, it makes the K-NN regression training based on
distance metrics can achieve considerable performance. Be-
sides, GBRT and RF are tree-based methods widely used in
time series prediction. The GBRT model, with the charac-
teristics of low deviation and high variance with respect to
RF, performs better in specific experiments. For deep learn-
ing methods which can capture the dependency of correlated
relationship within time steps, the CE-LSTM achieved state-
of-the-art performance comparing to RNN, GRU and others.
We can see that the LSTMs is more conducive to take tempo-
ral modeling with collaborative representations learned from
multi-source and heterogeneous spatio-temporal data.

Furthermore, we verified the performance of different
variants and showed results in Table 3. We can see that
LSTMs has a poor performance by only taking the context
feature of transition. Meanwhile, the introduction of spatio-
temporal graph into temporal representation can make a
greater contribution to the improvement of predictive perfor-
mance than weather information. In addition, the experimen-
tal results prove that the dynamic attention-based graph em-
bedding can outperform graph embedding without attention
mechanism significantly. Ultimately, the CE-LSTM, mod-
eling by temporal representation, attention-based dynamic
graph embedding and weather information, achieved the
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best performance. We can draw the conclusion that learning
importance-aware vectorization representation by STG2Vec
makes it possible to successfully mine the correlations be-
tween stations and to further enrich the connotation of col-
laborative representation in demand prediction tasks.

Additionally, we use Spectral Embedding, DeepWalk
(Perozzi, Al-Rfou, and Skiena 2014) and DNGR (Cao, Lu,
and Xu 2016) to learn statical graph embedding for each
time step and the representation of nodes can be obtained
with the same dimensions d respectively. We only replace
the dynamic graph node representation learned by STG2Vec
with the node vector obtained by the above statical graph
embedding methods in CE-LSTM for performance com-
parison. Experimental results showed that considering only
statical spatial dependence makes a limited improvement if
there is a lack of mining the information contained in the
evolution of the dynamic graph.

Conclusion

This paper proposed a novel model named STG2Vec
to learn the representation from heterogeneous spatial-
temporal graph. Specifically, an event-flow serialize method
and a dynamic attention-based graph embedding model are
proposed for obtaining an importance-awareness vectorized
representation from heterogeneous spatial-temporal graph.
Additionally, together with multi-source information from
weather, time, geographical position and historical transi-
tion patterns, the representation learned by STG2Vec can be
fed into the LSTMs for temporal modeling for bike-sharing
demand predcition. The experimental results show that the
proposed method achieved competitive performance com-
paring to baseline models. For future work, we will further
optimize the connection method between representations for
adapting to more external information introduction.
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