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Abstract

Developing effective and efficient recommendation meth-
ods is very challenging for modern e-commerce platforms.
Generally speaking, two essential modules named “Click-
Through Rate Prediction” (CTR) and “Conversion Rate Pre-
diction” (CVR) are included, where CVR module is a crucial
factor that affects the final purchasing volume directly. How-
ever, it is indeed very challenging due to its sparseness na-
ture. In this paper, we tackle this problem by proposing multi-
Level Deep Cascade Trees (ldcTree), which is a novel deci-
sion tree ensemble approach. It leverages deep cascade struc-
tures by stacking Gradient Boosting Decision Trees (GBDT)
to effectively learn feature representation. In addition, we
propose to utilize the cross-entropy in each tree of the preced-
ing GBDT as the input feature representation for next level
GBDT, which has a clear explanation, i.e., a traversal from
root to leaf nodes in the next level GBDT corresponds to
the combination of certain traversals in the preceding GBDT.
The deep cascade structure and the combination rule enable
the proposed ldcTree to have a stronger distributed feature
representation ability. Moreover, inspired by ensemble learn-
ing, we propose an Ensemble ldcTree (E-ldcTree) to encour-
age the model’s diversity and enhance the representation abil-
ity further. Finally, we propose an improved Feature learning
method based on EldcTree (F-EldcTree) for taking adequate
use of weak and strong correlation features identified by pre-
trained GBDT models. Experimental results on off-line data
set and online deployment demonstrate the effectiveness of
the proposed methods.

Introduction
With the explosive growth of information available online,
Recommender System (RS), as a useful information filter-
ing tool, is used for estimating users’ preferences on items
they have not seen and guides them to discover products
or services they might be interested in from massive possi-
ble options. In general, recommender systems are classified
into the following three categories based on the forms of
recommendations (Balabanović and Shoham 1997): Collab-
orative recommendations, Content-based recommendations
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Figure 1: The framework for online recommendation in our
E-commerce platform.

and Hybrid recommendations. Collaborative recommenda-
tions make users recommended items that people with sim-
ilar tastes preferred in the past. Content-based recommen-
dations make users recommended items similar to the ones
the user preferred in the past. Hybrid recommendations in-
tegrates two or more types of recommendation strategies,
which helps to avoid certain limitations of single strategy
(Adomavicius and Tuzhilin 2005).

Recommender System increasingly plays an essential role
in industry area, which promotes services for many applica-
tions (Gomez-Uribe and Hunt 2016; Davidson and Liebald
2010). In addition, in order to help customers find exactly
what they need, recommendation techniques have been stud-
ied and deployed extensively on E-commerce platforms,
which provides good user experience and promotes incredi-
ble increment in revenue. Usually, the deployed framework
for our online E-commerce platforms is illustrated in Fig. 1.
Specifically, when a user visits it through a terminal, such
as smart phones, the system firstly analyzes his/her long
and short term behaviors and then his/her interested items,
called Triggers, are selected. Then, massive items closely re-
lated with Triggers are generated. Further, top K(e.g., 500)
of them (based on the “matching score”), along with ex-
tra information (e.g., user, item, user-item cross features),
are delivered to the next Ranking stage where it mainly con-
tains two core modules, namely CTR and CVR. Finally, the
recommendation results are generated and displayed to the
user. In this paper, we mainly focused on the CVR module.

In the past few decades, deep learning has been wit-
nessed the tremendous successes in many application areas
(Zhang, Yao, and Sun 2017; Liu et al. 2017), such as im-
age classification (Krizhevsky, Sutskever, and Hinton 2012;
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Simonyan and Zisserman 2014) , speech recognition (Deng
et al. 2010; 2013) and object detection (Girshick 2015;
Ren et al. 2015). Meanwhile, recent studies also demon-
strate its efficiency and effectiveness in coping with rec-
ommendation tasks(Elkahky, Song, and He 2015; Wang,
Wang, and Yeung 2015; Chen et al. 2017; He et al. 2017;
Huang et al. 2015; Yang et al. 2017; Guo et al. 2017).
Though deep learning has been partially overcoming ob-
stacles of conventional models and gaining momentum due
to its state-of-the-art performances, it has apparent deficien-
cies, such as a huge amount of data and powerful computa-
tional facilities required for training, more importantly many
hyper-parameters to be tuned. Recently, gcForest (Zhou and
Feng 2017), an alternative to DNN, is proposed, which gen-
erates a deep forest ensemble, with a cascade structure to do
representation learning. In addition, it achieves highly com-
petitive performance compared with DNN for various do-
mains’ tasks while having fewer hyper-parameters.

In this paper, partially inspired by gcForest (Zhou and
Feng 2017), we firstly propose a multi-Level Deep Cascade
Trees model (short as ldcTree) to cope with the essential
task CVR prediction in the “also view” module. ldcTree is
another alternative to DNN and encourages to do represen-
tation learning by a level-by-level cascade structure. Specif-
ically, it takes a multi-dimensional representational feature
vector from preceding level and outputs its processing re-
sults to the next level by employing Gradient Boosting De-
cision Trees (GBDT ) models (Friedman 2001), where a new
tree is created to model the residual of previous trees during
each iteration, and a traversal from root node to a leaf node
represents a combination rule of certain input features. One
step further, we propose to utilize the cross-entropy value of
each leaf node on the trees in the preceding level GBDT to
construct the feature representation for the next level GBDT,
which results a clear explanation of the spliting node in the
next level GBDT, i.e., a traversal from root to a leaf node
in next level GBDT indicates a combination rule of certain
paths on the trees from preceding level GBDT. Then, in-
spired by the idea of ensemble learning, we proposed En-
semble ldcTree (short as E-ldcTree), which encourages the
model’s diversity and enhances the representation ability.

Furthermore, it is noteworthy that a small number of raw
features contributes the majority of explanatory power while
the remaining features have only a marginal contribution
in GBDT models (He et al. 2014), which results in the
importance of certain raw features can’t be demonstrated.
Therefore, we further proposed an improved Feature learn-
ing method based on the above EldcTree, named F-EldcTree,
which takes more adequately use of weak and strong corre-
lation features identified by pre-trained GBDT model at cor-
responding levels. The key contributions of this paper are:

• We propose a novel model ldcTree and its extension
EldcTree, which are decision tree ensemble methods by
exploiting the deep cascade structures and using a cross-
entropy based feature representation. It exhibits a strong
feature representation ability and has a clear explanation.

• To the extent of our knowledge, our proposed F-EldcTree
is the first recommendation work which adequately takes

into account weak and strong correlation features identi-
fied by pre-trained GBDT model at corresponding levels,
and contributes more excellent ability for representation
learning.

• We have successfully deployed the proposed methods to
the recommendation module in our E-commerce plat-
form, and carry out online experiments with more than
100M users and items, furthermore achieves 12 percent
CVR improvement compared with the baseline model.

The rest of this paper is organized as follows. Section 2
briefly reviews existing related work. Section 3 describes the
proposed approach in detail, followed by presenting exper-
imental results on both off-line evaluation and online appli-
cations in Section 4. We conclude the paper in Section 5.

Related work
Conversion Rate Prediction
Conversions are very rare events and only a very small por-
tion of the users will eventually convert after clicking or
being shown, resulting in extremely challenging for build-
ing thus models (Mahdian and Tomak 2007; Chapelle, Man-
avoglu, and Rosales 2015; Rosales, Cheng, and Manavoglu
2012; Oentaryo et al. 2014). In addition, it can be broadly di-
vided to two categories of Post View Conversion (PVC) and
Post Click Conversion (PCC), which means conversion after
viewing an item without having clicked it itself and conver-
sion after having clicked, respectively. In the context of this
paper, conversion refers to the purchase event that occurs af-
ter a user clicking an item, i.e. post click conversions (PCC)
(Rosales, Cheng, and Manavoglu 2012).

Tree based Feature Representation
GBDT follows the Gradient Boosting Machine (GBM)
(Friedman 2001), which produces competitive, highly ro-
bust, interpretable procedures for both regression and clas-
sification, especially appropriate for mining less than clean
data. In literature (He et al. 2014), a hybrid model, combin-
ing GBDT with Logistic Regression (LR), outperforms ei-
ther of these methods on their own. It treats each individual
tree as a bin feature and takes the index of the leaf node an
instance ends up falling in as value. Therefore, it converts
a real-valued vector into a compact binary-valued vector,
further included into the next linear model, i.e. LR. Com-
pared with (He et al. 2014), our proposed method employs
the cross-entropy based feature representation in a deep cas-
caded structure, which results in strong and explainable rep-
resentation ability, i.e., a traversal from root to a leaf node
in next level GBDT indicates a combination rule of certain
paths on the trees from preceding level GBDT.

gcForest, an alternative to deep neural networks for many
tasks, is proposed in literature (Zhou and Feng 2017), which
employs deep forest structure to do representation learning.
Specifically, it takes a multi-dimensional class vector from
preceding level, together with the original feature vector, as
the inputs of next level. Our proposed methods mainly have
two significant differences from gcForest:
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• In gcForest, the class-specific prediction probabilities
form a feature vector, further included into the next level
forest after concatenating it with the original features.
However, We employ GBDT as the base unit in the pro-
posed deep cascade structure. In addition, we use the
cross-entropy in each tree of the preceding GBDT as the
feature representation for next level GBDT. The afore-
mentioned two points lead to a more explainable fea-
ture representation ability of the proposed method, e.g.,
a traversal from root to a leaf node in next level GBDT
indicates a combination rule of certain paths on the trees
from preceding level GBDT.

• Compared with gcForest, Our method takes into account
mutual complementarity between strong correlation fea-
tures and weak correlation features for better representa-
tion learning.

The Proposed Approach
In this section, we firstly proposed a novel multi-Level Deep
Cascade Trees (ldcTree) to tackle the CVR prediction prob-
lem in recommendation. Specifically, the base structure of
the ldcTree is constructed by stacking several GBDTs se-
quentially, and the cross-entropy of each leaf node in the pre-
ceding GBDT is calculated and used to form the input fea-
ture representation for the next GBDT. Moreover, inspired
by the idea of ensemble learning, an improved structure of
the ldcTree is proposed, named Ensemble ldcTree (Eldc-
Tree), which further encourages the model’s diversity and
enhances the representation ability. Finally, we notice that
a small number of features contributes the majority of ex-
planatory power while the remaining features have only a
marginal contribution in GBDT models (He et al. 2014),
which leads to the importance of weak correlation features,
especially the combination of weak correlation features,
can’t be revealed. Therefore, based on EldcTree, We propose
an improved Feature learning method, named F-EldcTree.
We will present the details in the following parts.

Representation Learning based on Cascade Trees
Inspired by representation learning in deep neural network
which mostly relies on the level-by-level abstraction of fea-
tures, we propose a novel method named ldcTree by em-
ploying the deep cascade tree structure. In ldcTree, level-
by-level greedily learning towards the final target is carried
out. Specifically, each level with a certain number of trees
included in GBDT, receives the outputted features from its
proceding level. Referring to Fig. 2, it is an illustration of
ldcTree, where it contains two levels, with each level three
trees and two trees respectively. To facilitate the narration,
some mathematical notations are defined as follows:

• Sijk: the cross-entropy of the k-th leaf node of the j-th
tree at level i.

• Iijk: the number of instances falling in the k-th leaf node
of the j-th tree at level i.

• δijk: the split threshold for the k-th node of the j-th tree at
the level i.

• Lij : the number of leaf nodes of the j-th tree at level i.

Tree 1

F11 F12 F13

Tree 1

(a)
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Level 1

Level 2

S111

Tree 2 Tree 3

0.13 0.18 0.19 0.15 0.11 0.14 0.13 0.16 0.13 0.04 0.18 0.16
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Figure 2: Illustration of feature representation in the ldcTree.
(a) an exemplar GBDT of three trees at level 1. (b) an exem-
plar GBDT at the next level of two trees. Each splitting node
at the level 2 corresponds a split of paths in a certain tree at
level 1. Please note the corresponding colors of paths at the
two levels.

• Fij : the feature value at the j-th dimension of the feature
at level i.

• Ni: the number of trees for the GBDT model at level i.
• hij(xn): the predicted probability of the n-th instance xn

on the j-th tree at the level i.
• yn: the ground truth label of the n-th instance xn: 0 or 1

in our two class CVR problem.
Given an instance, according to the principle of GBDT
model, each individual tree will produce a path from the root
node to a leaf node. Instances are split into different paths
and each leaf node will gather a certain part of them. Then,
we define the cross-entropy Sijk at each leaf node as:

Sijk = − 1

Iijk

Iijk∑
m=1

[ymlog(hij(x
m))

+(1− ym)log(1− hij(xm))] (1)
Therefore, there are Lij cross-entropy values on the j-th
tree on the i-th level, i.e., Sij1, Sij2, ..., SijLij and each of
them is a possible instantiation of Fij . For all the trees in a
GBDT at the level i, we denote the feature representation as
[Fi1, Fi2, ..., FiNi ], and use it as the inputs of the GBDT at
the level i+ 1.

Without loss of generality, assuming the feature Fij with
the best gini value is chosen for splitting instances on the
q-th node of the p-th tree at the level i+ 1. The split thresh-
old δ(i+1)pq divides the set of Sij1, Sij2, ..., SijLij

, into two
subsets S+

ij , S
−
ij :

S+
ij =

Lij⋃
p=1

I(Sijp > δ(i+1)pq)Sijp (2)

S−
ij =

Lij⋃
p=1

I(Sijp ≤ δ(i+1)pq)Sijp (3)
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where I(z) is an indicator faction that outputs 1 if z is true
and zero otherwise.

Remark 1. By using cross-entropy as the basic feature rep-
resentation for leaf nodes, the proposed ldcTree has a clear
explanation: i.e., a traversal from root to leaf nodes in the
next level GBDT corresponds to the combination of certain
traversals in the preceding GBDT, which also leads to a dis-
tributed feature representation ability.

Explanation: Usually, δ(i+1)pq in Eq.(2) and Eq.(3) takes
a value from the set of Sij1, Sij2, ..., SijLij

. The splitting
process is carried out repeatedly until the stop rule for leaf
nodes holds (We show an example in Fig. 2). It can be seen
that, each element in S+

ij or S−
ij corresponds a path on the

j-th tree of level i. Therefore, each splitting node at the
level i + 1 corresponds a split of paths in a certain tree
at the preceding level i. Consequently, a path at the level
i + 1 corresponds a union of several paths at the preced-
ing level i. It indicates the nature of the proposed ldcTree:
a clear explanation and a distributed feature representation
ability. As shown in Fig. 2, an instance is represented as a
three-dimensional feature vector [F11, F12, F13] after level
1 with three trees, where F11 takes a value from the set of
0.13, 0.18, 0.19, 0.15, analogously for F12 and F13. Given
[F11, F12, F13] as the inputs at level 2, F12 is chosen as the
split feature with the split threshold 0.13 on Tree 1, which
leads to S121, S123 ⊂ S−

12 and S122, S124 ⊂ S+
12. And anal-

ogously, S112, S113 ⊂ S+
11 and S111, S114 ⊂ S−

11. Conse-
quently, the union of paths at leaf node A can be represented
as S−

12 ∩S
+
11, i.e. (S121

⋃
S123)

⋂
(S112

⋃
S113), and analo-

gously for Tree 2.
Moreover, inspired by the ensemble learning idea, we pro-

pose an Ensemble ldcTree named EldcTree by constructing
several parallel ldcTrees to enhance the representation abil-
ity further. As shown in Fig. 3, each horizontal part of the
ensemble structure is a single ldcTree, and each vertical part
of the ensemble structure are parallel GBDTs. Their initial
input features for the first level of each ldcTree are different
and chosen randomly from a raw feature pool which encour-
ages the model’s diversity. The last level’s outputted features
from each ldcTree are concatenated together and used as the
input features of the last GBDT for final prediction. Here,
the diversity in our model not only represents the nature of
diverse abstracted high-level features, but also the value of
inherent ensemble learning. For example, each individual
Horizontal structure randomly choose a subset of features
from the feature pool as input, which are then abstracted to
different high-level features through the cascaded structure.
It inherits the idea in feature engineering by learning high-
level features from different combinations of low-level raw
features. Then, the final GBDT model, concatenating all the
high-level features from preceding ldcTree as inputs, indeed
follows the ensemble learning idea for further enhancing the
performance of the entire model. It is noteworthy that such
an ensemble structure is naturally apt to parallel implemen-
tation and have the potential for incremental learning, e.g.,
the idea used in broad learning system (Chen and Liu 2018).
We leave it as a future work.

GBDT 

GBDT GBDT 

GBDT 

GBDT 

GBDT 

GBDT 

Input

Result

Level 1 … Level NLevel 2

Horizontal
Vertical Concatenate

Figure 3: Illustration of the structure of EldcTree, where
each horizontal part of the ensemble structure is a single
ldcTree, and each vertical part of the ensemble structure
are parallel GBDTs. The input features of the first level
GBDTs are different and randomly chosen from a feature
pool, which encourages the model’s diversity. The outputted
features from each ldcTree are concatenated together and
used as the input features of the last GBDT for final pre-
diction.

Cascade Trees Associated With Weak Correlation
Features
Though features can be chosen randomly from a given fea-
ture pool and used as the input features of each ldcTree, fea-
tures indeed have different importance for prediction. In this
paper, we use the statistic Boosting Feature Importance (He
et al. 2014), which aims to capture the cumulative loss re-
duction attributable to a feature, to measure feature’s impor-
tance. More specifically, a best feature is selected and split
to maximize the squared error reduction during each tree
node construction. Therefore, the importance of each fea-
ture is determined by summing the total reduction for itself
across all the trees. Typically, a small number of features
contributes the majority of explanatory power while the re-
maining features have only a marginal contribution in GBDT
models. Here, we regard the features contributing the major-
ity of explanatory power as SCF, i.e. “Strong Correlation
Features”, while features having only a marginal contribu-
tion as WCF, i.e. “Weak Correlation Features”.

To take adequate use of WCF, we proposed an im-
proved Feature learning method based on the above Eldc-
Tree, named F-EldcTree, whose structure is showed in Fig.
4. In Fig. 4(a), a separated GBDT is pre-trained to identify
the importance of all the initial raw features, and these fea-
tures are further split into two subsets, namely WCF and
SCF. Due to our practical lessons, single feature from WCF
contributes little to final prediction results, while the combi-
nations of these features from WCF not. Moreover, in GBDT
models, a traversal from root to a leaf node in each tree indi-
cates a combination rule of certain raw features. Therefore,
we can resort to GBDT models for uniting certain features
from WCF to take full advantage of them and collaborate
with SCFs to further improve the prediction accuracy.

The strategies of randomly selecting features in gcForest
(Zhou and Feng 2017) convinces us its effectiveness in en-
semble learning. Therefore, in Fig. 4(b), features are also
randomly chosen from WCFs during the first level GBDT
training stage of each ldcTree, which not only can learn
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the combination of certain WCFs, but also encourages the
model’s diversity and enhances the representation ability
further. For GBDTs at the remaining levels of each ldc-
Tree, their input features consists of two parts: one is the
representational features from the preceding level, the other
is randomly chosen from the SCFs. In this way, the F-
EldcTree starts learning features from WCFs and combines
the learned features (i.e., the combinations of WCFs) with
SCFs little by little. Lastly, an additional GBDT model con-
catenates all the representational features from ldcTrees as
the inputs for final results.

Experimental results
To evaluate the effectiveness of the proposed method, we
conducted extensive experiments including off-line and on-
line evaluations. First, we present the evaluation settings
including data set preparation, evaluation metrics, a brief
description of related comparison methods, and the hyper-
parameters settings of the proposed method. Then, we
present the experimental results of different methods on the
off-line data set along with the analysis. Finally, we present
experimental results of different methods for online deploy-
ment through A/B test.

Evaluation settings
Data set preparation The off-line benchmark data set was
constructed from the real click and purchase logs of our
recommendation module in several consecutive days of De-
cember, 2017. And it consists of more than 100M instances,
each of which contains user/item features and label (here,
an individual id for each instance, while label is positive
if purchase after clicking, or negative if no purchase af-
ter clicking). When preparing off-line benchmark data set,
we divided the whole benchmark data into three disjoint
parts according to the id, i.e., 40, 20 and 40 percent of the
whole benchmark data for training data, validation data and
test data respectively. Additionally, we extract hundreds of
raw features including user features, item features and user-
item cross features for each instance. For example, user fea-
tures include users’ ages, genders and purchasing powers,
etc. Item features include items’ prices, historical CVRs and
Click-through Rate (CTRs), etc. User-item cross features in-
clude uses’ historical CVRs, preference scores, etc, on items.

Evaluation metrics In order to comprehensively compare
the performance of the propose method with other related
methods, we adopt two commonly used metrics namely
AUC (Area Under Curve) and F1 score based on precision
and recall. Specifically, denoting all ground truth positive in-
stances as T and all predicted positive instances as P, then
precision and recall are defined as follows:

precision =
|P

⋂
T |

|P |
(4)

recall =
|T

⋂
P |

|T |
(5)

Then, the F1 score is defined as:

F1 =
2 ∗ precision ∗ recall
precision+ recall

(6)

Table 1: Hyper-parameters in ldcTree and EldcTree
Parameters Name Value

the type of loss function logistic loss
minimum instance numbers when node split 20
sampling rate of train set for each iteration 0.6
sampling rate of features for each iteration 0.6

the tree depth 8
the number of trees 150

learning rate 0.01

Related comparison methods In the following experi-
ments, we compare the proposed method with other related
methods including:
• Naive GBDT: We refer to a single GBDT model without

level-by-level learning as Naive GBDT.
• GBDT + LR: First, feature representation is trained from

a GBDT model. Then, it is used for CVR prediction by
a Logistic Regression (LR). For feature representation, it
calculated a bin feature for each individual tree by tak-
ing the index of the leaf node which an instance ends up
falling in as the corresponding feature value. Therefore, it
converts a real-valued raw feature vector into a compact
binary-valued feature vector (He et al. 2014).

• DNN: Referring to (He et al. 2017), we design a DNN
structure including three hidden layers and a prediction
layer, where ReLU is used as the activation function for
each hidden layer. We choose the hyper-parameters on the
validation set. For instance, the number of units for each
hidden layer is set as 128. Dropout rate is set as 0.5. We
use the cross-entropy loss and SGD algorithm to train this
DNN model.

• gcForest: Following our practical experience, we replace
the Forests in the original gcForest (Zhou and Feng 2017)
with GBDTs. Since the CVR prediction is a binary clas-
sification problem, a two-dimensional class-specific fea-
ture vector is obtained from each GBDT. Then, it is used
along with the raw feature vector as the inputs of next
level GBDT for learning deep feature representation fur-
ther.

.
Moreover, we also evaluate the performance among our

proposed ldcTree, EldcTree and F-EldcTree methods for
demonstrating the effectiveness of ensemble learning and
the adequate use of WCF and SCF at corresponding levels.
It should also be noted that all methods use the same raw
features as inputs if not specified (e.g., here, user, item and
user-item cross features are included.)

Hyper-parameters settings We choose the hyper-
parameters of the proposed methods according to the AUC
metric on the validation set. And the main hyper-parameters
of the proposed methods we used in all the following
concern experiments are shown in Tab. 1. Here, we take a
critical parameter “the tree depth” as example to illustrate
the process of parameter selection in ldcTree model. After
sampling a small subset from the whole data, we train
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Figure 4: Illustration of the proposed F-EldcTree method, which utilizes weak correlation features and strong correlation fea-
tures in a coordinated manner.

Table 2: The metric on Time Cost and the AUC in ldcTree
Metric Name Depth 4 Depth 6 Depth 8 Depth 10

Time Cost(s) 5 7 15 26
AUC 0.783 0.789 0.794 0.797

different ldcTree models by changing the tree depth while
fixing other settings. Results are shown in Tab. 2. It can
be seen that the time cost for each iteration increases
consistently with the growth of the tree depth, and the
corresponding AUC on the validation set also increases.
In addition, the time cost increases significantly when the
depth increases from 8 to 10, while for the AUC value, it
grows at a snail’s pace. For example, marginal gains of
0.003 are achieved by increasing the depth from 8 to 10.
Therefore, to achieve a trade-off between model capacity
and complexity, we set the hyper-parameter “the tree depth”
as 8. Moreover, EldcTree and F-EldcTree can refer to the
same hyper-parameters as ldcTree. Finally, aforementioned
naive experiments also taught us that the performance of
models can’t be boosted further while increasing the tree
depth blindly.

Comparison results on off-line dataset
We report the AUC values and F1 scores of different meth-
ods on the off-line test set. The results are shown in Tab.
3 and Tab. 4, respectively. Referring to Tab. 3, it can be
seen that the GBDT + LR method achieves a gain of 0.0039
compared to Naive GBDT due to the additional LR classi-
fier. DNN and gcForest achieve better results than GBDT +
LR. It convinces us that strong representation features are
learned due to their deep structures. Our proposed method
ldcTree achieves higher AUC values than certain related
methods(such as Naive GBDT, GBDT+LR, DNN). More-
over, the proposed EldcTree achieves better AUC result than
ldcTree due to the idea of ensemble learning. Finally, the
further proposed F-EldcTree achieves the best result than all
the other competitive methods by taking full use of WCF
and SCF little by little, together with the idea of ensemble
learning. And the gain is nearly 0.063 compared to the initial

Table 3: Comparison AUC results for all competitors.
Method Name AUC

Naive GBDT 0.7692
GBDT + LR 0.7731

DNN 0.7793
gcForest 0.7854
ldcTree 0.7942

EldcTree 0.8121
F-EldcTree 0.8315

baseline Naive GBDT. According to our practical lessons, it
should be noted that a gain of 0.01 in off-line AUC can lead
to big increment in revenue in our online recommendation
system. In conclusion, the significant gain over initial Naive
GBDT convinces the effectiveness of the proposed deep cas-
cade structure for stronger feature representation, and the
gain over gcForest convinces the effectiveness of level-by-
level learning, for example, taking the outputs of preceding
level as the inputs of the next level. Moreover, compared
with EldcTree, results of F-EldcTree convince the idea by
taking full use of weak and strong correlation features.

As for the F1 score, we report several values by set-
ting different thresholds. First, we sort all the instances in
a descending order according to the predicted score. Then,
we choose 3 thresholds namely top@10%, top@20% and
top@50% to split the predictions into positive and negative
groups accordingly. Finally, we calculate the Precision, Re-
call and F1 scores of these predictions at different thresh-
olds. Results are showed in Tab. 4. As can be seen, the pro-
posed method achieves the best performance which is con-
sistent with Tab. 3.

Online evaluation results
Next, we firstly present the effectiveness of level-by-level
learning through online contrastive experiments. Then, we
further demonstrate the effectiveness of F-EldcTree by tak-
ing full advantage of WCF and SCF compared with other
competitors. It should also be noted that all comparison
methods use the same input features if not specified (e.g.,
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Table 4: The Precision, Recall and F1 score for all the competitors.
Method Type Method Name top@10 percent top@20 percent top@50 percent

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

Compare Methods

Naive GBDT 5.75% 36.39% 9.93% 4.16% 51.69% 7.70% 2.42% 76.57% 4.68%
GBDT + LR 6.39% 37.40% 10.92% 4.63% 54.16% 8.52% 2.68% 78.71% 5.19%

DNN 6.79% 38.32% 11.54% 4.92% 55.51% 9.03% 2.85% 80.96% 5.51%
gcForest 6.82% 39.03% 11.61% 4.94% 56.52% 9.08% 2.87% 82.14% 5.54%

Our Methods

ldcTree 6.85% 39.86% 11.69% 4.96% 57.72% 9.13% 2.88% 82.92% 5.56%
EldcTree 7.44% 41.49% 12.62% 5.39% 61.81% 9.91% 3.13% 87.31% 6.04%

F-EldcTree 8.16% 43.91% 13.76% 5.91% 63.58% 10.81% 3.43% 92.40% 6.61%

Table 5: The Effectiveness of level-by-level learning.
Model Name Day 1 Day 2 Day 3 Day 4

Naive GBDT 100% 100% 100% 100%
ldcTree 104.3% 104.1% 103.8% 103.9%

EldcTree 107.1% 107.4% 106.3% 106.8%

Figure 5: The online A/B test results on CVR. The initial
baseline model marked in yellow is based on Naive GBDT.
Here, all the comparison methods resort to the same features
including user, item, and user-item cross features.

here, user, item and user-item cross features are included.).
In addition, we fix all the other online recommendation mod-
ules unchanged except the CVR module.

The Effectiveness of level-by-level Learning For demon-
strating the effectiveness of the proposed level-by-level
learning, we implement ldcTree and EldcTree methods with
the same features from Naive GBDT. After deploying them
in the online recommendation system, we record four days’
purchase logs and calculate the relative increasement in
CVR. The A/B test results are showed in Tab. 5. It can be
seen the proposed ldcTree method achieves more than 4%
gain of CVR averagely, while EldcTree more than 7%. In ad-
dition, after analyzing the difference between the structures
of the two methods, we find that the gain mainly comes from
the stronger feature representation ability of the proposed
deep cascade structure in EldcTree. It is consistent with the
experimental results on the aforementioned off-line data set.

The Effectiveness of F-EldcTree. After demonstrating
the effectiveness of utilizing level-by-level learning through

online A/B experiments, we employed F-EldcTree for on-
line environment. In addition, the features for other competi-
tive methods are exactly the same with F-EldcTree. The A/B
test results are showed in Fig. 5, where gcForest and DNN
achieve better results than Naive GBDT due to their deep
feature representation abilities. As for the proposed method,
it achieves the best result, i.e. 12 percent increment in CVR
among all the methods.

In a nutshell, considering the experimental results from
both off-line and online tests, we conclude that the proposed
method has a stronger feature representation ability due to
its deep cascade structure and the adequate use of WCFs and
SCFs at corresponding levels. Moreover, these two distinct
characteristics enables the learned features to have a clear
explanation as depicted in Section 3.1.

Conclusions and future work
In this paper, we introduce effective and efficient distributed
feature learning methods ldcTree and its extension EldcTree,
which have a deep cascade structure by stacking several
GBDT units sequentially. By using a cross-entropy based
feature representation, it leads to a clear explanation and
a distributed feature representation ability. Moreover, af-
ter taking into account mutual complementarity between
strong correlation features and weak correlation features un-
der the ensemble learning framework, the proposed method
F-EldcTree achieves the best performance in both off-line
and on-line experiments. Specifically, we successfully de-
ploy the proposed method online in our E-commerce plat-
form, it achieves a significant improvement compared with
the previously baseline, i.e. 12 percent increment in CVR.
Our methods have small training cost and are naturally apt
to parallel implementation. In addition, it is promising to be
applicable for other online advertising scenarios.

Future work may include the following two directions: 1)
Incorporating more features, such as information from the
parent nodes and sibling nodes for learning stronger feature
representation. 2) Studying the end-to-end training method
for jointly feature learning and classifying based on the pro-
posed deep cascade tree structure.
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