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Abstract

As a major kind of query-dependent community detection,
community search finds a densely connected subgraph con-
taining a set of query nodes. As density is the major con-
sideration of community search, most methods of commu-
nity search often find a dense subgraph with many vertices
far from the query nodes, which are not very related to the
query nodes. Motivated by this, a new problem called com-
munity focusing (CF) is studied. It finds a community where
the members are close and densely connected to the query
nodes. A distance-sensitive dense subgraph structure called
β-attention-core is proposed to remove the vertices loosely
connected to or far from the query nodes, and a combinational
density is designed to guarantee the density of a subgraph.
Then CF is formalized as finding a subgraph with the largest
combinational density among the β-attention-core subgraphs
containing the query nodes with the largest β. Thereafter, ef-
fective methods are devised for CF. Furthermore, a speed-up
strategy is developed to make the methods scalable to large
networks. Extensive experimental results on real and syn-
thetic networks demonstrate the performance of our methods.

Introduction
As a major kind of query-dependent community detection
(Fang et al. 2016), community search finds a densely con-
nected subgraph containing a set of given query nodes
(Sozio and Gionis 2010). The problem has attracted great
interest due to its wide applications in biological networks
(Wu et al. 2015), tagging systems (Sozio and Gionis 2010),
and social networks (Cui et al. 2014).

Unfortunately, as density is the major consideration of
community search, most methods of community search of-
ten find a dense subgraph where many vertices are far from
the query nodes and the query nodes stage at the periphery.
As a result, the subgraph is not very related to the query
nodes, and it is hard to interpret the cause of the subgraph.
As a case study, we build a DBLP co-author network in
which each edge between two authors indicates they have
co-authored no less than three times (Huang et al. 2015;
Wu et al. 2015). The network contains 242K vertices and
530K edges. Three scholars (Zhou Wang, Gautam S. Mu-
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Figure 1: Case study 1. In the subgraphs, the circles are the
discovered members and the rectangles are the query nodes.
As too many members exist in (a), only the query nodes are
tagged with names. The white circles in (a) are the vertices
that are also in (b).

ralidhar and William R. Geiser) are selected from the net-
work as the query nodes. They have the experience studying
or working at the University of Texas, and articles published
in J. Digital Imaging. Given the query nodes, the subgraph
found by LCTC (a state-of-the-art method of community
search) is shown in Fig.1(a). It is not very meaningful to
the query nodes as: (1) The query nodes are marginalized in
the subgraph. (2) The members in the subgraph come from
various backgrounds. (3) Many members (60%) in the sub-
graph publish articles in NeuroComputing whereas none of
the query nodes have articles published in the journal.

Intuitively, a community meaningful to the query nodes
should satisfy the following conditions: (1) The members of
the community should be close to the query nodes. In gen-
eral, the further a vertex is away from the query nodes, the
less relevant the vertex is to the query nodes. (2) The mem-
bers of the community should be densely connected to the
query nodes, which requires strong associations to the query
nodes. Therefore, a new problem called community focusing
is proposed in this paper. Given a set of query nodes, we find
a community where the members are close and densely con-
nected to the query nodes. Different from community search,
distance to the query nodes and density of a subgraph are
equally important in our problem.

Our first contribution is proposing and formalizing the
community focusing problem (CF). A distance-sensitive
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dense subgraph structure called β-attention-core is devised
to discover the vertices close and densely connected to the
query nodes. As the structure cannot guarantee the density
of a subgraph when β is small, combinational density is de-
signed to enhance the density of a subgraph. Then the prob-
lem is formalized as finding a subgraph with large combi-
national density among the β-attention-core subgraphs con-
taining the query nodes with the largest β values.

Our second contribution is devising effective methods for
CF. Methods optimizing β and the combinational density
of a β-attention-core subgraph are developed. Then a lo-
cal method called LCF is proposed. The method builds a
Steiner tree as a sketch containing the query nodes. Then it
iteratively explores the neighborhood of the Steiner tree and
uses the optimizing methods as subroutines to approach the
optimal solution of CF.

Our third contribution is accelerating LCF. The demand
for the connectivity of the query nodes makes the meth-
ods of community search inefficient. The problem is inher-
ited in community focusing. Methods (Barbieri et al. 2015;
Huang et al. 2015; Wu et al. 2015) for the community search
build a Steiner tree to connect the query nodes. However, the
usually adopted algorithm (Mehlhorn 1988) needs to visit
the whole graph, which is time-consuming in large graphs.
Considering the characteristic that the vertices in a commu-
nity are not far from each other, a local method with provable
guarantees is proposed to build the Steiner tree for LCF. As
the proposed method need not visit the whole graph, LCF
with the speed-up method is scalable to the large networks.

Our fourth contribution is experimenting with various
methods on the real networks and synthetic networks. The
results show that our methods are effective to discover the
queried communities on the networks with ground-truth
communities. Besides, LCF with the speed-up method is
about two magnitudes faster than the state-of-the-arts of
community search on average.

Related Work
Community search (Sozio and Gionis 2010) is a major kind
of query-dependent community detection (Fortunato and
Santo 2009; Wang et al. 2015; Xin et al. 2017). Studies (Cui
et al. 2014; Huang et al. 2014; Cui et al. 2013; Akbas and
Zhao 2017) find communities with a single query vertex.
Given a set of query nodes, studies (Sozio and Gionis 2010;
Barbieri et al. 2015; Huang et al. 2015; Wu et al. 2015; Yuan
et al. 2018) discover a densely connected subgraph contain-
ing the nodes. Some variants of community search, such as
attributed (Huang and Lakshmanan 2017; Fang et al. 2016;
Shang et al. 2017), influential (Li et al. 2015), spatial (Fang
et al. 2017) and skyline (Li et al. 2018) community search,
have also been studied recently.

In community search, studies (Sozio and Gionis 2010;
Barbieri et al. 2015; Huang et al. 2015; Wu et al. 2015;
Yuan et al. 2018) handling multiple query nodes are simi-
lar to ours. MDC (Sozio and Gionis 2010) discovers a con-
nected k-core subgraph containing the query nodes with the
largest k under a size constraint. GrCon (Barbieri et al. 2015)
outputs the subgraph with the minimum vertices among the
connected k-core subgraphs with the largest k. QDC (Wu

et al. 2015) finds a connected query-biased weighted sub-
graph with the largest weighted density. LCTC (Huang et
al. 2015) finds a subgraph with the smallest diameter among
the connected k-truss subgraphs with the largest k. DCPC
(Yuan et al. 2018) finds a maximal connected k-cliques with
the largest k. Compared to these works, our work has the
following features: (1) Community focusing is a new prob-
lem. Different from community search, distance is consid-
ered in our problem, which avoids the marginalization of the
query nodes. (2) The β-attention-core is a distance-sensitive
dense subgraph structure, which discovers the vertices close
and densely connected to the query nodes. Although MDC,
QDC and LCTC constrain the size of a community, they
have limitations. MDC and LCTC maximize the k of a k-
core/truss subgraph in priority, which may miss the vertices
close to the query nodes, and make the vertices far from
the query nodes hard to remove due to the k-core/truss con-
straint. In QDC, as the weights of the query nodes are large,
the subgraph with the largest weighted density contains very
few non-query vertices. (3) Combinational density ensures
the density of a subgraph. When the largest k of a con-
nected k-core/truss/clique subgraph is small, the subgraph
may be loosely connected. The combinational density solves
the problem. (4) LCF with the speed-up strategy (FLCF) is
an efficient method without indices. Hence FLCF is scalable
to large networks without preprocessing.

Using the Steiner tree as a sketch for local exploration
is widely adopted in community search (Sozio and Gionis
2010; Barbieri et al. 2015; Huang et al. 2015; Wu et al. 2015;
Huang and Lakshmanan 2017). 2-approximate methods
(Kou, Markowsky, and Berman 1981; Mehlhorn 1988) are
widely applied to the NP-hard problem. However, the meth-
ods still visit the whole graph, which is time-consuming.
Considering that query nodes in the same community are
close to each other, we develop a speed-up strategy to build
the sketch. Compared to the index-based (He et al. 2007;
Gubichev and Neumann 2012; Li et al. 2008) and breadth-
first (Kacholia et al. 2005; Kasneci et al. 2009; Bhalotia et
al. 2002) heuristics, our strategy admits 2-approximation to
the Steiner tree problem by visiting tiny vertices to connect
the query nodes without indices.

Several studies find interesting subgraphs with a set of
query nodes. Studies (Tong and Faloutsos 2006; Ruchan-
sky et al. 2015; Faloutsos, Mccurley, and Tomkins 2004)
find a subgraph connecting the query nodes. Studies (Gionis,
Mathioudakis, and Ukkonen 2015; Ruchansky et al. 2017)
discover the main components of the query nodes. Different
from these works, our work not only provides good connec-
tions among the query nodes but also discovers a community
meaningful to the query nodes.

Problem Statement

The community focusing problem is formulated on a con-
nected graph G(V,E) where V is the set of vertices, and E
is the set of edges. Table 1 lists the commonly used notations
in this paper.
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Table 1: Main Symbols

Symbol Definition
G(V,E) A connected and undirected graph
Q; q A set of query nodes Q; a query node q

NG(v) The neighbors of v in a graph G(V,E)
degG(v) The degree of v in a graph G(V,E)

distG(u, v) The length of the shortest path from u to
v in a graph G(V,E)

attGs,Q(v) The attention of a vertex in a subgraph
Gs with Q

ma(Gs, Q) The minimum attention of the vertices in
a subgraph Gs with Q, i.e., ma(Gs, Q)=
min{attGs,Q(v)|v ∈ V (Gs)}

cd(Gs, α) The combinational density of a subgraph
Gs and a tuning factor α

Distance-sensitive dense subgraph structure
Definition 1 (Negligible Vertex). Given a graph G(V,E)
and a set of query nodes Q, a vertex v is a negligible ver-
tex of Q if ∃u ∈ NG(v) makes that ∀q ∈ Q, distG(v, q) =
distG(u, q) + 1.

Given a negligible vertex v, v has a neighbor u that for
each query node q ∈ Q, u is on a shortest path between v and
q. In Fig.2(a), c1 is a negligible vertex as v2 is on the shortest
path between c1 and q1, and the shortest path between c1 and
q2. Similarly, c2, c3, and c4 are also negligible vertices.

In real networks, the relationship between v2 and v3, and
the relationship between v2 and c2 in Fig.2(a) may be differ-
ent. For instance, q1, q2, v1, v3 are v2’s families, and c1, c2,
c3, c4 are v2’s workmates. The relationship between v1 and
c2 is built via v2.

In our problem, the negligible vertices are removed as
they are not densely connected or close enough to the query
nodes. For instance, in Fig.2(a), c1 should communicate
with the query nodes via v2. Besides, v2 is closer to any
query node than c1.

Given a graph G(V,E) and a set of query nodes Q, the
focusing level (fl) of a vertex v to Q is defined as follows:

flG,Q(v) =
1∑

q∈Q distG(v, q)
(1)

fl measures the closeness of a vertex to the query nodes.
The closer a vertex is to the query nodes, the larger the fl
of the vertex is. For example, in Fig.2(b), flG2,Q(v1) =

1
1+1+2 = 0.25 and flG2,Q(c1) =

1
3+3+1 = 0.14.

In order to discover the vertices close and densely con-
nected to the query nodes, a distance-sensitive dense sub-
graph structure called β-attention-core is designed.

Given a graph G(V,E) and a set of query nodes Q, the
weight of an edge (u, v) in G(V,E) is defined as follows:

wG(u, v) =

{
0, u ∈ F ∨ v ∈ F ;

1, u /∈ F ∧ v /∈ F ;
(2)

F is the set of negligible vertices of Q in G(V,E). For each
edge adjacent to a negligible vertex, its weight is set to 0.
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Figure 2: Examples to illustrate β-attention-core.
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Figure 3: β-attention-core subgraphs with the largest β =
0.5. The average degree of G3 is 3.66 and that of G4 is 1.33.
The internal density of G3 is 0.73 and that of G4 is 0.66.
When α = 0.5, the combinational density of G3 is 0.82 and
that of G4 is 0.47.

The attention of a vertex v in a subgraph Gs(Gs ⊆ G) is
defined as:

attGs,Q(v) = flG,Q(v) ·
∑

u∈NGs (v)

wG(u, v) (3)

In Fig.2(b), flG2,Q(q3) =
1

2+2+0 = 0.25. In the subgraph
Gs1 = G2 in Fig.2(b), attGs1,Q(q3) = 0.25 · 3 = 0.75 (As
c1, c2, c3 and c4 are negligible vertices, the total weight of
the edges adjacent to q3 is 3).

Definition 2 (β-attention-core). Given a graph G(V,E), a
set of query nodes Q, and a number β, a connected sub-
graph H is called a β-attention-core if (1) H ⊆ G, (2)
∀v ∈ V (H), attH,Q(v) ≥ β.

With the vertices c1, c2, c3 and c4 in Fig.2(b) removed,
the resulted subgraph Gs (Gs ⊆ G2) is a 0.75-attention-
core as the minimum attention of the vertices in V (G2) is
0.75 (attG2,Q(q3) =

3
2+2+0 = 0.75).

β-attention-core can be used to prune the vertices loosely
connected to or far from the query nodes. When β > 0, the
negligible vertices are removed as the attention of a negli-
gible vertex is 0. Besides, if a vertex is far from the query
nodes or has small degree, its attention is small. Therefore,
by maximizing the β of a β-attention-core, vertices close
and densely connected to the query nodes can be discovered.

Theorem 1 Given a graph G(V,E) and a set of query
nodes Q, a β-attention-core Go containing Q with the
largest β contains no negligible vertices.

Combinational Density
Given a connected β-attention-core containing the query
nodes with the largest β = βmax, its density cannot be
guaranteed when βmax is small. For instance, both G3 and
G4 in Fig.3 are β-attention-core subgraphs with the largest
β = 0.5, however, G4 is sparser than G3.
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The internal density (Yang and Leskovec 2015) of a sub-
graph S(V,E) is 2·|E(S)|

|V (S)|·(|V (S)|−1) , which measures the den-
sity of S. A clique is a subgraph maximizing the internal
density. However, as cliques with large size are not common
in real networks, the subgraph containing the query nodes
with the largest internal density tends to be small in size.
In order to find a dense subgraph with proper size, a tuning
factor is provided to relax the internal density.

Given a subgraph S(V,E) and a number α (0 ≤ α ≤ 1),
the combinational density (cd) of S is defined as follows:

cd(S, α) =
2 · |E(S)|

|V (S)| · (|V (S)| − 1)α
(4)

cd(S, α) can be treated as a combination of the average de-
gree and internal density. When α = 0, cd(S, α) is the aver-
age degree. When α = 1, cd(S, α) is the internal density.

Problem Definition
The community focusing problem (CF) is formalized as:

Problem 1 (CF). Given a graph G(V,E), a set of query
nodes Q ⊆ V (G), and a number α (0 ≤ α ≤ 1), find a
subgraph Gs of G, such that

(1) Gs is a β-attention-core containing Q with the largest
β;

(2) Gs has the largest cd(Gs, α) among the subgraphs
satisfying condition (1).

The single-vertex-query is handled individually. Assume
Q = {q}, for each neighbor v of q, Q′ = {v, q} is generated
as the input of CF. As a result, the solution to the single-
vertex-query is a set of subgraphs. Two reasons account for
the above operation: (1) When Q = {q}, any vertex except
q is a negligible vertex to be removed. The neighbors of q
are used to make CF suitable for the single-vertex-query. (2)
Given a query node q, it may belong to many communities
(Cui et al. 2013). The neighbors of q help to discover com-
munities with different semantics. For instance, if a neigh-
bor v is q′s mother, a community consisting of q’s families
is discovered. If v is q’s workmate, a discovered community
consists of q′s workmates.

Method
Optimizing β of a β-attention-core
Optimizing β of a β-attention-core Gs is equal to maximiz-
ing the minimum attention of the vertices in Gs. Indeed,
the attention of a vertex is a node-monotone non-increasing
function (Sozio and Gionis 2010).

Theorem 2 The attention of a vertex is node-monotonic
non-increasing.

Hence a β-attention-core Gs (Q ⊂ V (Gs)) with the
largest β can be obtained by iteratively removing the ver-
tex with the minimum attention. A method called OPT -ma
is designed to obtain a maximal β-attention-core containing
the query nodes with the largest β:

Given a graph G(V,E) and a set of query nodes Q, the
details of OPT -ma are the following:
1. Compute the attention of each vertex in V (G).

2. l = 0, Gl = G. The vertex with the minimum attention is
removed from Gl iteratively:
2.1. Obtain a vertex u with the minimum attention from

Gl, that is, ∀v ∈ V (Gl), attGl,Q(u) ≤ attGl,Q(v).
2.2. Obtain Gl+1 by deleting u from Gl, l = l + 1.
2.3. The attention of each u’s neighbor is updated,

i.e., ∀v ∈ NGl−1
(u), attGl,Q(v) = flG,Q(v) ·∑

v′∈NGl
(v) wG(v, v

′).
2.4. If Q is not connected in Gl or any query node has

the minimum attention in Gl, return the subgraph R =
argmaxGt

{ma(Gt, Q)|t = 0, 1, ..., l − 1}.

Theorem 3 OPT -ma runs in O(|Q|m + nm′ + mlogn)
where n = |V (G)|, m = |E(G)|, and m′ (m′ ≪ m) is the
number of visited edges to check whether the query nodes
are connected in a subgraph.

Optimizing the combinational density of a
β-attention-core
Given a β-attention-core Gs containing a given set of query
nodes Q, Lagrange multipliers method (Bertsekas 2014) is
used to optimize the combinational density of Gs while
maintaining the property of β-attention-core.

Suppose Gs is represented by an adjacency matrix Aij

where Aij = 1 if vertex vi is adjacent to vj and Aij = 0
otherwise. Let n = |V (Gs)| be the number of vertices in Gs,
and x⃗ ∈ {0, 1}n be a binary indicator vector representing a
subset of V (Gs). Given a subgraph Go of Gs, V (Go) can
be represented by x⃗ with the vertices in Go set to 1s. Then
the combinational density of Go is:

cd(Go, α) =
x⃗Ax⃗T

x⃗T x⃗ · (x⃗T x⃗− 1)α
(5)

where x⃗T is the transpose of x⃗. x⃗T x⃗ is the number of vertices
in Go, and x⃗Ax⃗T is twice the number of edges in Go.

If Go is a β-attention-core, ∀v ∈ V (Go), v’s attention
should be no less than β:

x⃗vWAx⃗T ≥ β (6)
where x⃗v ∈ {0, 1}n is a one-hot encoded vector, i.e., only
v in x⃗v is set to 1 and the other vertices are all set to 0s.
W is an n × n diagonal matrix. If v is a negligible vertex,
Wvv = 0. Otherwise, Wvv = flG,Q(v).

If Go contains all the query nodes Q:

x⃗Qx⃗
T ≥ |Q| (7)

where x⃗Q ∈ {0, 1}n is a vector with only the query nodes
set to 1s.

Then the Lagrangian function which maximizes Equation
5 with the constraints Equation 6 and Equation 7 is:

L(x⃗, λ⃗, µ) = − x⃗Ax⃗T

x⃗T x⃗ · (x⃗T x⃗− 1)α
+

n∑
v=1

λv(β − x⃗vWAx⃗T ) + µ(|Q| − x⃗Qx⃗
T )

(8)

where λv is the parameter of v in λ⃗.
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Due to the inequality constraints (Equations 6 and 7),
Karush-Kuhn-Trucker conditions should be satisfied:

∇x⃗L(x⃗, λ⃗, µ) = 0 (9)

µ(|Q| − x⃗Qx⃗
T ) = 0, λv(β − x⃗vWAx⃗T ) = 0 (10)

|Q| − x⃗Qx⃗
T ≤ 0, β − x⃗vWAx⃗T ≤ 0 (11)

µ ≥ 0, λv ≥ 0 (12)

v is any vertex that is set to 1 in x⃗.
In order to minimize Equation 8, we develop a method

called OPT -cd(Gs, Q, α, β). The details are the following:
1. Initialize x⃗ with each element set to 1. Go = Gs.
2. x⃗ is iteratively updated by the largest drop of Equation 8:

2.1. Let X be the vertices that are set to 1s in x⃗. For each
vertex u ∈ X , let Gu be the subgraph which removes u
from Go. Then OPT -ma is used to find a β-attention-
core Ru containing the query nodes from Gu.

2.2. Denote u⃗ as a vector of length n with only the ver-
tices in Ru set to 1s. Find the vector u⃗max which
achieves the largest positive drop of Equation 8 among
the vectors {u⃗|u ∈ X}. x⃗ = u⃗max. Remove the ver-
tices which are set to 0s in x⃗ from Go. As x⃗ and
{u⃗|u ∈ X} are satisfied with the constraints (Equa-
tions 6 and 7), the drop of Equation 8 is equal to
− x⃗Ax⃗T

x⃗T x⃗·(x⃗T x⃗−1)α
+ u⃗Au⃗T

u⃗T u⃗·(u⃗T u⃗−1)α
.

2.3. If there are no feasible solutions for OPT -ma in Step
2.1 or positive drops in Step 2.2, Go is returned.

Theorem 4 OPT -cd runs in O(msn
2
s) where ns =

|V (Gs)|, ms = |E(Gs)|.

LCF
A straightforward method to solve the CF problem is ap-
plying OPT -ma and OPT -cd orderly. However, as OPT -
ma and OPT -cd remove vertices from the input graph it-
eratively, the method is inefficient in large graphs. For effi-
ciency, a local method called LCF is proposed.

Given a graph G(V,E), a set of query nodes Q, the tuning
factor α of the combinational density, and a size constraint
η, LCF works as follows:
1. Build a Steiner tree T containing Q. T is used as a sketch

for expansion. The 2-approximate method (Mehlhorn
1988) is adopted for this NP-hard problem.

2. Obtain a subgraph Gcan induced from G with V (T ).
3. Enlarge ma(Gcan, Q) and cd(Gcan, α) iteratively:

3.1. Expand Gcan with vertices having large attentions
and ensure that |V (Gcan)| ≤ η. In the neighbor-
hood of Gcan, vertices with attentions no less than
ma(Gcan, Q) are added into Gcan. Denote S as the
set of vertices to add. If |S ∪ V (Gcan)| > η,
only η − |V (Gcan| vertices with larger attentions
are selected. Given a vertex v, as attG,Q(v) is un-
known, attG[V (Gcan∪{v}],Q(v) is used to approximate
attG,Q(v). G[V (Gcan ∪ {v}] is the subgraph induced
by V (Gcan) ∪ {v} from G.

3.2. Enlarge ma(Gcan, Q) using OPT -ma(Gcan, Q).
3.3. Use OPT -cd(Gcan, Q, α,ma(Gcan, Q)) to enlarge

the combinational density. Instead of computing the

drop of L(x⃗, λ⃗, µ) for each vertex (Step 2.1 in OPT -
cd), x⃗ is updated by removing the vertex with the min-
imum attention.

3.4. If ma(Gcan, Q) and cd(Gcan, α) are no longer in-
creased, Gcan is returned.

Theorem 5 Denote t as the number of iterations (Step 3) in
LCF and G′(V ′, E′) as the largest Gcan during the loops.
Then LCF runs in O(mlogn+ t|Q|m′+ tm′n′) where m =
|E(G)|, n = |V (G)|, m′ = |E(G′)|, and n′ = |V (G′)|.

LCF solves CF effectively due to the following reasons:
(1) The Steiner tree T containing the query nodes Q can be
a good sketch of a community. As T contains the minimum
additional vertices to ensure the connectivity of Q, the addi-
tional vertices are probably close and densely connected to
Q. Hence V (T ) are good seeds for expansion. (2) LCF ap-
proaches the solution of OPT -ma by local expansion (Step
3.1). As the β-attention-core is a distance-sensitive dense
subgraph structure, almost all the vertices in the β-attention-
core with the largest β are around the query nodes. (3) Steps
3.1 and 3.3 increase the combinational density. The larger
the degree of a vertex is in a β-attention-core, the larger at-
tention the vertex has. In Step 3.1, vertices with large atten-
tions are added and the constraint size limits a subgraph in a
proper size. In Step 3.3, vertices with small attentions tend
to be removed. Both the steps try to enlarge the number of
edges and decrease the number of vertices in a subgraph,
which increases the combinational density.

Speed-up Strategy
In LCF, a Steiner tree containing the query nodes is con-
structed using Mehlhorn’s method (Mehlhorn 1988). As the
method visits the whole graph, LCF is time-consuming in
large graphs. In order to speed up building a Steiner tree, a
strategy which only visits a part of the graph but with prov-
able guarantees is developed.

Our strategy is in line with Mehlhorn’s method (Mehlhorn
1988). Given a graph G(V,E) and a set of query nodes Q,
the method consists of the following steps:
A. Compute the partition of V (G), i.e., V (G) = ∪q∈Qn(q).
n(q) denotes the set of vertices in V (G), which are closer
to a query node q ∈ Q than the other query nodes. It is
required that ∀q1, q2 ∈ Q, q1 ̸= q2, n(q1) ∩ n(q2) = ∅.

B. Create an auxiliary graph G1(V1, E1, D1). V1 = Q is
the set of query nodes. E1 = {(qs, qt)|qs, qt ∈ Q ∧
∃(u, v) ∈ E, u ∈ n(qs), v ∈ n(qt)} and D1((qs, qt)) =
min{distG(qs, u) + distG(u, v) + distG(v, qt)|(u, v) ∈
E(G), u ∈ n(qs), v ∈ n(qt)}.

C. Find a minimum spanning tree T1 of G1 (T1 =
MST (G1)). Build G2 by replacing each edge in T1 with
its corresponding shortest path in G.

D. T2 = MST (G2). Build a Steiner tree T3 by deleting
edges from T2 to make the leaves are query nodes.
The method admits 2-approximation to the Steiner tree

problem and runs in O(|E(G)|log|V (G)|) if a binary heap
is applied in Step A. Steps A and B are the most time-
consuming steps in the method. In the steps, all the vertices
and edges in G(V,E) should be traversed. As a result, the
time cost of the method is unaffordable in large networks.
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Table 2: Network statistics(K=103 and M=106)

Network Abbr. |V | |E| Diameter
Amazon AZ 335K 926K 44
DBLP DP 317K 1M 21

Youtube YT 1.1M 3M 20
LiveJournal LJ 4M 35M 17

Orkut OR 3.1M 117M 9

Our speed-up strategy is inspired by two observations: (1)
Given a graph, the vertices in the same community are not
far from each other in general. Hence we consider visiting a
subset of V (G) to build a Steiner tree. (2) As our problem is
studied on an unweighted graph, the breadth-first search is
used to find one shortest path between two vertices.

In our strategy, s(v) denotes the query node closest to a
vertex v in G(V,E). Steps A and B are replaced as:
A’. Initialize an auxiliary graph G′(V ′, E′, D′) as V ′ = Q,

and E′ = D′ = ∅. S = ∅ is the set of visited vertices.
Queue is a queue for breadth-first search. For each query
node q ∈ Q, n(q) = {q}, S = S ∪ {q}, and q is pushed
into Queue with distG(s(q), q) = 0.

B’. If Queue is empty or G′ is connected, G′ is re-
turned. Otherwise, a vertex v is popped from Queue with
dist(s(v), v). For each neighbor u of v,
B’.1. If u /∈ S: (1) Insert u into S. (2) Insert

u into n(s(v)). (3) u is pushed into Queue with
distG(s(u), u) = distG(s(v), v) + 1.

B’.2. If u ∈ S, s(u) ̸= s(v), (s(u), s(v)) /∈ E(G′), adjoin
s(u) and s(v) with length equal to distG(s(u), u)+1+
distG(s(v), v) in G′.

Theorem 6 For each edge (qs, qt) ∈ E(G′), D′((qs, qt)) =
D1((qs, qt)) = distG(qs, qt).

Theorem 7 A minimum spanning tree of G′ is a minimum
spanning tree of G1.

Theorem 8 The speed-up strategy runs in O(|E′|log|V ′|+
|Q|2) where E′ is the set of visited edges, and V ′ is the set
of visited vertices. Q is the set of query nodes.

Compared to Mehlhorn’s method, our strategy only visits
a subset of the vertices in a graph. Once the query nodes are
connected in the auxiliary graph, the strategy terminates. As
the query nodes in the same community are not far from each
other in a network, |Q| ≤ |V ′| ≪ |V (G)|, |E′| ≪ |E(G)|.

Experiments
Experimental Setup
Real-world networks are summarized in Table 2. They are
publicly available from Stanford Network Analysis Project
(snap.stanford.edu), and provide ground-truth communities.

Synthetic networks are generated using the LFR bench-
mark (Lancichinetti, Fortunato, and Radicchi 2008). Based
on the default settings, n (number of vertices) and u (the
proportion of neighbors around a vertex residing in other
communities) are varied for evaluation. To model the com-
munities of the real networks, 10% vertices belong to two or
more communities, and the average degree is set to 10.
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Figure 4: Comparison among BASE, LCF, and FLCF

Evaluation Criteria. F1 = 2·|C∩CT |
|C|+|CT | (Zhang, King, and Lyu

2015) measures the similarity between a discovered commu-
nity C and the corresponding ground-truth community CT .

Given a graph G(V,E) and a subgraph S(V,E), the con-
ductance of S is cS

2·mS+cS
where mS = |{(u, v) ∈ E(S) :

u ∈ V (S), v ∈ V (S)}| and cS = |{(u, v) ∈ E(G) : u ∈
V (S), v /∈ V (S)}|. The lower the conductance is, the better
separated S is from the rest of the network.

The geometric density 2·|E(S)|
|V (S)|·(|V (S)|−1)0.5 of a subgraph

S(V,E) is the geometric mean of the average degree and the
internal density. As is illustrated in Problem Statement, the
subgraph with large internal density may be small in size.
Thus a subgraph with large internal density may only con-
tain the query nodes. In addition, a subgraph with large av-
erage degree may contain vertices not related to the query
nodes (Wu et al. 2015). Hence the geometric density is used
to measure the density of a subgraph while alleviating the
drawbacks of the average degree and internal density.
Our methods. A straightforward method to solve CF is ap-
plying OPT -ma and OPT -cd sequentially. The method is
called BASE for simplicity. LCF is a local method for CF.
To accelerate LCF, a speed-up strategy is designed. FLCF
(fast LCF) is called for LCF with the speed-up strategy.
Baselines. FLCF is compared with the state-of-the-arts
(MDC (Sozio and Gionis 2010), GrCon (Barbieri et al.
2015), QDC (Wu et al. 2015), LCTC (Huang et al. 2015)
and DCPC (Yuan et al. 2018)) of community search.
Environment. The methods are written in C++. The exper-
iments are conducted on a Linux Server with 128GB main
memory and Intel Xeon CPU E5-2630 (2.4GHz).

Evaluating the proposed methods
BASE, LCF, and FLCF are evaluated in terms of the min-
imum attention of a resulted subgraph, combinational den-
sity, and running time. As BASE is not scalable to large net-
works, the methods are compared on Amazon and DBLP.
Using the drawn-by-drawn method (a simple random sam-
pling method), 100 ground-truth communities are selected
for each network. Then, |Q| (|Q| ∈ [1, 16]) nodes are ran-
domly selected as a query for each selected community.

Fig.4 shows the statistics when α = 0.5 (the tuning factor
of the combinational density) and η = 200 (the size con-
straint of LCF and FLCF). The methods are also tested with
different α and η, and the tendencies of the results are simi-
lar to those in Fig.4.
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Table 3: Average time costs(s) in real networksa

A B C D E F
AZ 0.0003 1.89 0.43 3.28 0.017 0.45
DP 0.0003 2.24 0.64 2.95 0.567 0.51
YT 0.007 8.1 2.82 10.8 1.39 1.27
LJ 0.004 54.6 18.3 112.8 - 16.3
OR 0.018 402.6 76.2 315.6 - 38.2

aA-F are FLCF, MDC, GrCon, QDC, DCPC, and LCTC orderly.

Table 4: Average F1(%) in real networksa

A B C D E F
AZ 92.8 59.6 83.2 75.3 89.9 91.6
DP 90.9 44.5 82.0 75.1 67.6 86.2
YT 69.9 30.7 48.4 75.6 40.1 61.8
LJ 81.5 62.1 68.0 62.5 - 79.0
OR 53.2 41.4 42.8 40.2 - 39.4

aA-F are FLCF, MDC, GrCon, QDC, DCPC, and LCTC orderly.

Fig.4(a) presents the average minimum attention. The
methods achieve similar results, which shows that LCF and
FLCF effectively enlarge the minimum attention of a sub-
graph by local expansion. Fig.4(b) shows the average combi-
national density. The methods produce similar average com-
binational density, which shows that the combinational den-
sity can be effectively enlarged by removing the vertex with
the minimum attention iteratively. On DBLP, the combina-
tional density of LCF and FLCF is slightly higher than that
of BASE. In BASE, a vertex with large attention may be
removed to increase the combinational density. As a result,
the attention values of many vertices are decreased. Due to
the constraint of β-attention-core, the combinational den-
sity reaches a small maximal value. In contrary, iteratively
removing the vertex with the minimum attention in FLCF
and LCF increases the combinational density continuously,
which leads to a large maximal value. Fig.4(c) reports the
average time costs. As both LCF and FLCF are local meth-
ods, they are faster than BASE. Compared to LCF, FLCF
uses the speed-up strategy to build a Steiner tree which is
equivalent to that of LCF. Hence FLCF is much faster than
LCF and achieves high quality in the meanwhile.

Comparison with baselines
Evaluation in real networks. FLCF is compared with the
baselines in the real networks. For each network, 1,000 com-
munities are selected from the ground-truth communities us-
ing the drawn-by-drawn method. For each selected commu-
nity, |Q| (|Q| ∈ [1, 16]) nodes are randomly selected as a
query. Then, the average running time, F1, conductance, and
geometric density are evaluated.

In FLCF, η is a size constraint of a resulted subgraph, and
α is the tuning factor of the combinational density. Through
empirical evaluation, η is set to 200. For each network, α is
set to the number achieving the highest F1 (α is set to 0.0,
0.8, 1.0, 0.4, and 0.2 for Amazon, DBLP, Youtube, LiveJour-
nal, and Orkut respectively).

For a single-vertex-query, FLCF produces multiple com-

Table 5: Average geometric density in real networksa

A B C D E F
AZ 1.71 1.21 1.64 1.38 1.62 1.69
DP 1.99 1.41 1.85 1.54 1.62 1.93
YT 1.25 0.94 1.17 1.23 0.72 1.1
LJ 3.67 3.38 3.23 2.31 - 3.61
OR 3.6 2.89 3.45 3.36 - 3.06

aA-F are FLCF, MDC, GrCon, QDC, DCPC, and LCTC orderly.

Table 6: Average conductance in real networksa

A B C D E F
AZ 0.132 0.195 0.208 0.416 0.137 0.15
DP 0.408 0.496 0.469 0.621 0.412 0.41
YT 0.831 0.905 0.881 0.844 0.869 0.825
LJ 0.338 0.419 0.491 0.675 - 0.359
OR 0.718 0.732 0.735 0.809 - 0.74

aA-F are FLCF, MDC, GrCon, QDC, DCPC, and LCTC orderly.

munities. For fairness, the statistics are collected for |Q| ∈
[2, 16]. The number of such queries is about 850 for each
network. DCPC is an index-based method. As the index
size of LiveJournal and that of Orkut are too large to load
into memory. We only report the DCPC results of Amazon,
DBLP, and Youtube.

Table 3 lists the average time costs. Table 4, Table 5, and
Table 6 present the average F1, geometric density, and con-
ductance of the methods respectively. Due to the speed-up
strategy, FLCF is much faster than the other methods. Be-
sides, FLCF outperforms the other methods in terms of the
quality. For one thing, the β-attention-core discovers the ver-
tices close and densely connected to the query nodes, which
makes the resulted subgraph meaningful to the query nodes.
Hence FLCF achieves higher F1 compared to the other
methods. For another, the combinational density guarantees
the density of the resulted subgraph. Thus FLCF also outper-
forms the others in terms of geometric density and conduc-
tance. DCPC finds a maximal union of k-cliques containing
the query nodes, which contains many irrelevant vertices and
hence its F1 is low. As the binary-tree-like index of DCPC is
large and the bottom-up searching process ends at the node
close to the root in many cases, DCPC is slower than FLCF.
As the weights of the query nodes are large, the subgraph
with the largest weighted density found by QDC contains
very few non-query nodes. Thus QDC has large conduc-
tance. In Youtube, the ground-truth communities are sparse.
As QDC finds a subgraph connecting the query nodes rather
than a dense subgraph, QDC achieves high F1 in Youtube.

Evaluation in synthetic networks. Based on the settings
introduced in Experimental Setup, a set of LFR networks
(Lancichinetti, Fortunato, and Radicchi 2008) are generated
with different n and u. Query generation and evaluation are
the same as the ones in the real networks (The number of
queries with |Q| > 1 is about 950 for each network). α is set
to 0 and η is set to 200 for FLCF.

A set of LFR networks are generated with n = 100K
and u varying from 0.2 to 0.8. Fig.5(a)-(c) show the average
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Figure 5: Evaluation on the synthetic networks

F1, geometric density, and conductance respectively. Due to
the same reason of the evaluation in real networks, FLCF
discovers high-quality subgraphs. As u increases, the clear-
ness of the community structure decreases. The ground-truth
community becomes sparse and hard to detect. Hence the
metrics worsen as u increases.

A set of LFR networks are generated with u = 0.4 and
n varying from 0.1M to 1.6M . Fig.5(d) reports the average
time costs. As MDC, QDC, and LCTC visit the whole graph,
their time costs become larger as n increases. When n is
larger, GrCon deals with a larger subgraph, and the height of
the binary-tree-like index in DCPC is larger. Hence GrCon
and DCPC need more time to find a result when n is larger.
As FLCF connects the query nodes locally, the time cost of
FLCF increases with the increasing n slowly.

Case Studies
Case study 1. In Introduction, we give an example of LCTC
on the co-author network of DBLP. The subgraph found by
FLCF with the same query nodes is shown in Fig.1(b). The
query nodes are close to the other members and centred. All
the members have the experience studying or working at the
University of Texas at Austin or the University of Texas MD
Anderson Cancer Center. Besides, each member has articles
published in J. Digital Imaging.
Case study 2. Three authors, Harvey B. Newman, Alexan-
dru Costan and Costin Grigoras, are selected as a query. The
authors have papers published in Computer Physics Com-
munications, and are close to each other in the network. The
LCTC-community is shown in Fig.6(a). Similar to Fig.1(a),
the query nodes are marginalized and the members of the
community come from various backgrounds. None of the

Harvey B. Newman

Alexandru Costan

Costin Grigoras

(a) LCTC

Ciprian Dobre

Ramiro Voicu

Iosif Legrand

Catalin Cirstoiu

Alexandru Costan

Harvey B. Newman

Costin Grigoras

Corina Stratan

(b) FLCF

Figure 6: Case study 2. The meaning of the colors and ver-
tices is the same with that of Fig.1.
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Bang Bang

(b) FLCF

Figure 7: Case study 3. The meaning of the vertices and col-
ors is the same with that of Fig.1.

query nodes have papers published in the Journal of Mobile
Information Systems which is popular in the community.
Fig.6(b) is the community discovered by FLCF. They are the
scholars coming from Polytechnic University Bucharest and
California Institute of Technology. All of them have papers
published in the same journal of the query nodes.
Case study 3. In the Amazon co-purchasing network with
548K nodes and 1.78M edges (Available from the SNAP
project), three albums (“Any Time Now”, “Gut the Van”,
and “Soul’s Aflame”) are input as the query nodes. The al-
bums are tagged with “Rock Jam Bands”. Fig.7(b) shows the
community discovered by FLCF. All the albums are tagged
with “Rock Jam Bands”. Fig.7(a) is found by LCTC. One of
the black circle is “Risen” which is tagged with “Alternative
Rock”. The other black circle is not related to music.

Conclusion
In this paper, community focusing is studied. Given a set of
query nodes Q, it finds a subgraph where the vertices are
close and densely connected to Q. We formalize the prob-
lem as finding the subgraph maximizing the combinational
density among the β-attention-core subgraphs containing Q
with the largest β. Then effective methods are developed.
For scalability, a speed-up strategy is devised. Experiments
demonstrate the performance of our methods. In the future,
we will explore community focusing on attributed graphs.
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