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Abstract

Attributed network embedding has received much interest
from the research community as most of the networks come
with some content in each node, which is also known as node
attributes. Existing attributed network approaches work well
when the network is consistent in structure and attributes,
and nodes behave as expected. But real world networks often
have anomalous nodes. Typically these outliers, being rela-
tively unexplainable, affect the embeddings of other nodes in
the network. Thus all the downstream network mining tasks
fail miserably in the presence of such outliers. Hence an inte-
grated approach to detect anomalies and reduce their overall
effect on the network embedding is required.

Towards this end, we propose an unsupervised outlier aware
network embedding algorithm (ONE) for attributed networks,
which minimizes the effect of the outlier nodes, and hence
generates robust network embeddings. We align and jointly
optimize the loss functions coming from structure and at-
tributes of the network. To the best of our knowledge, this
is the first generic network embedding approach which incor-
porates the effect of outliers for an attributed network with-
out any supervision. We experimented on publicly available
real networks and manually planted different types of out-
liers to check the performance of the proposed algorithm. Re-
sults demonstrate the superiority of our approach to detect the
network outliers compared to the state-of-the-art approaches.
We also consider different downstream machine learning ap-
plications on networks to show the efficiency of ONE as a
generic network embedding technique. The source code is
made available at https://github.com/sambaranban/ONE.

1 Introduction

Network embedding (a.k.a. network representation learning)
has gained a tremendous amount of interest among the re-
searchers in the last few years (Perozzi, Al-Rfou, and Skiena
2014; Grover and Leskovec 2016). Most of the real life
networks have some extra information within each node.
For example, users in social networks such as Facebook
have texts, images and other types of content. Research pa-
pers (nodes) in a citation network have scientific content
in it. Typically this type of extra information is captured
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using attribute vectors associated with each node. The at-
tributes and the link structure of the network are highly
correlated according to the sociological theories like ho-
mophily (McPherson, Smith-Lovin, and Cook 2001). But
embedding attributed networks is challenging as combining
attributes to generate node embeddings is not easy. Towards
this end, different attributed network representation tech-
niques such as (Yang et al. 2015; Huang, Li, and Hu 2017a;
Gao and Huang 2018) have been proposed in literature. They
perform reasonably well when the network is consistent in
its structure and content, and nodes behave as expected.

Unfortunately real world networks are noisy and there are
different outliers which even affect the embeddings of nor-
mal nodes (Liu, Huang, and Hu 2017). For example, there
can be research papers in a citation network with few spuri-
ous references (i.e., edges) which do not comply with the
content of the papers. There are celebrities in social net-
works who are connected to too many other users, and gener-
ally properties like homophily are not applicable to this type
of relationships. So they can also act like potential outliers in
the system. Normal nodes are consistent in their respective
communities both in terms of link structure and attributes.
We categorize outliers in an attributed network into three
categories and explain them as shown in Figure 1.

One way to detect outliers in the network is to use some
network embedding approach and then use algorithms like
isolation forest (Liu, Ting, and Zhou 2008) on the generated
embeddings. But this type of decoupled approach is not op-
timal as outliers adversely affect the embeddings of the nor-
mal nodes. So an integrated approach to detect outliers and
minimize their effect while generating the network embed-
ding is needed. Recently (Liang et al. 2018) proposes a semi
supervised approach for detecting outliers while generating
network embedding for an attributed network. But in prin-
ciple, it needs some supervision to work efficiently. For real
world networks, it is difficult to get such supervision or node
labels. So there is a need to develop a completely unsuper-
vised integrated approach for graph embedding and outlier
detection which can be applicable to any attributed network.

Contributions: Following are the contributions we make.

e We propose an unsupervised algorithm called ONE
(Outlier aware Network Embedding) for attributed net-
works. It is an iterative approach to find lower dimen-
sional compact vector representations of the nodes, such
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Figure 1: This shows different types of outliers that we con-
sider in an attributed network. We highlight the outlier node
and its associated attribute by larger circle and rectangle re-
spectively. Different colors represent different communities.
Arrows between the two nodes represent network edges and
arrows between two attributes represent similarity (in some
metric) between them. (a) Structural Outlier: The node has
edges to nodes from different communities, i.e., its structural
neighborhood is inconsistent. (b) Attribute Outlier: The at-
tributes of the node is similar to attributes of the nodes from
different communities, i.e., its attribute neighborhood is in-
consistent. (c) Combined Outlier: Node belongs to a com-
munity structurally but it has a different community in terms
of attribute similarity.

that the outliers contribute less to the overall cost function.

e This is the first work to propose a completely unsuper-
vised algorithm for attributed network embedding inte-
grated with outlier detection. Also we propose a novel
method to combine structure and attributes efficiently.

e We conduct a thorough experimentation on the outlier
seeded versions of popularly used and publicly available
network datasets to show the efficiency of our approach
to detect outliers. At the same time by comparing with
the state-of-the-art network embedding algorithms, we
demonstrate the power of ONE as a generic embedding
method which can work with different downstream ma-
chine learning tasks such as node clustering and node
classification.

2 Related Work

This section briefs the existing literature on attributed net-
work embedding, and some outlier detection techniques in
the context of networks. Network embedding has been a
hot research topic in the last few years and a detailed sur-
vey can be found in (Hamilton, Ying, and Leskovec 2017b).
Word embedding in natural language processing literature,
such as (Mikolov et al. 2013) inspired the development of
node embedding in network analysis. DeepWalk (Perozzi,
Al-Rfou, and Skiena 2014), node2vec (Grover and Leskovec
2016) and Line (Tang et al. 2015) gained popularity for net-
work representation just by using the link structure of the
network. DeepWalk and node2vec use random walk on the
network to generate node sequences and feed them to lan-
guage models to get the embedding of the nodes. In Line,
two different objective functions have been used to capture
the first and second order proximities respectively and an
edge sampling strategy is proposed to solve the joint op-
timization for node embedding. In (Ribeiro, Saverese, and
Figueiredo 2017), authors propose struc2vec where nodes
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having similar substructure are close in their embeddings.

All the papers citeed above only consider link structure
of the network for generating embeddings. Research has
been conducted on attributed network representation also.
TADW (Yang et al. 2015) is arguably the first attempt to
successfully use text associated with nodes in the network
embedding via joint matrix factorization. But their frame-
work directly learns one embedding from content and struc-
ture together. In case when there is noise or outliers in struc-
ture or content, such a direct approach is prone to be af-
fected more. Another attributed network embedding tech-
nique (AANE) is proposed in (Huang, Li, and Hu 2017a).
The authors have used symmetric matrix factorization to get
embeddings from the similarity matrix over the attributes,
and use link structure of the network to ensure that the em-
beddings of the two connected nodes are similar. A semi-
supervised attributed embedding is proposed in (Huang, Li,
and Hu 2017b) where the label information of some nodes
are used along with structure and attributes. The idea of
using convolutional neural networks for graph embedding
has been proposed in (Niepert, Ahmed, and Kutzkov 2016;
Kipf and Welling 2016). An extension of GCN with node
attributes (GraphSage) has been proposed in (Hamilton,
Ying, and Leskovec 2017a) with an inductive learning setup.
These methods do not manage outliers directly, and hence
are often prone to be affected heavily by them.

Recently a semi-supervised deep learning based approach
SEANO (Liang et al. 2018) has been proposed for outlier de-
tection and network embedding for attributed networks. For
each node, they collect its attribute and the attributes from
the neighbors, and smooth out the outliers by predicting the
class labels (on the supervised set) and node context. But
getting labeled nodes for real world network is expensive.
So we aim to design an unsupervised attributed network em-
bedding algorithm which can detect and minimize the effect
of outliers while generating the node embeddings.

3 Problem Formulation

An information network is typically represented by a graph
as G = (V,E,C), where V. = {v1,va, -+ ,on} is the set
of nodes (a.k.a. vertexes), each representing a data object.
E C {(vi,vj)|vi,v; € V}is the set of edges between the
vertexes. Each edge e € F is an ordered pair e = (v;,v;)
and is associated with a weight w,, ,, > 0, which indi-
cates the strength of the relation. If G is undirected, we have
(vi,v5) = (vj,vi) and Wy, o, = Wy, v,; if G is unweighted,
Wy, v; = 1, V(v;,05) € E.

Let us denote the N x [N dimensional adjacency matrix of
the graph G by A = (a;,;), where a; j = wy, o, if (vi,v;) €
E, and a; ; = 0 otherwise. So ith row of A contains the
immediate neighborhood information for node ¢. Clearly for
a large network, the matrix A is highly sparse in nature. C
is a N x D matrix with C;. as rows, where C;. € RP is
the attribute vector associated with the node v; € V. C;q is
the value of the attribute d for the node v;. For example, if
there is only textual content in each node, c; can be the tf-idf
vector for the content of the node v;.

Our goal is to find a low dimensional representation of G
which is consistent with both the structure of the network



and the content of the nodes. More formally, for a given
network G, network embedding is a technique to learn a
function f : v; — y; € RE je., it maps every vertex
to a K dimensional vector, where K < min(N, D). The
representations should preserve the underlying semantics of
the network. Hence the nodes which are close to each other
in terms of their topographical distance or similarity in at-
tributes should have similar representations. We also need to
reduce the effect of outliers, so that the representations for
the other nodes in the network are robust.

4 Solution Approach: ONE

We describe the whole algorithm in different parts.

4.1 Learning from the Link Structure

Given graph G, each node v; by default can be represented
by the ith row A;. of the adjacency matrix. Let us assume
the matrix G € RY*X be the network embedding of G,
only by considering the link structure. Hence row vector G;.
is the K dimensional (X < min(N, D)) compact vector
representation of node v;, Yv; € V. Also let us introduce
a K x N matrix H to minimize the reconstruction loss:

N N
> S (Aij — Gy - Hj)?, where H.; is the jth column of
i=1j=1

H, and G;. - H.; is the dot product between these two vec-
tors'. kth row of H can be interpreted as the N dimensional
description of kth feature, where k = 1,2,--- | K. This re-
construction loss tends to preserve the original distances in
the lower dimensional spaces as shown by (Cunningham and
Ghahramani 2015). But if the graph has anomalous nodes,
they generally affect the embedding of the other (normal)
nodes. To minimize the effect of such outliers while learning
embeddings from the structure, we introduce the structural
outlier score O; for node v; € V, where 0 < Oq; < 1. The
bigger the value of Oy;, the more likely it is that node v; is
an outlier, and lesser should be its contribution to the total
loss. Hence we seek to minimize the following cost function
w.r.t. the variables Oy (set of all structural outlier scores), G
and H.

N N 1
['st'r' = Z ZIOg <0711>(AU - Gi~ . H'j)2 (1

i=1 j=1

N
We also assume Y, Oq; = p, i being the total outlier score
i=1
of the network. Otherwise minimizing Eq. 1 amounts to as-
signing 1 to all the outlier scores, which makes the loss
value 0. It can be readily seen that, when Oy; is very high
(close to 1) for a node v;, the contribution of this node

N
> log (%) (Aij — G, - H.j)2 becomes negligible, and
= P

when Oy, is small (close to 0), the corresponding contribu-
tion is high. So naturally, the optimization would concen-
trate more on minimizing the contributions of the outlier

"'We treat both row vector and column vector as vectors of same
dimension, and hence use the dot product instead of transpose to
avoid cluttering of notation
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(w.r.t. the link structure) nodes, to the overall objective, as
desired.

4.2 Learning from the Attributes

Similar to the case of structure, here we try to learn a K
dimensional vectorial representation U;. from the given at-
tribute matrix C, where C;. is the attribute vector of node v;.
Let us consider the matrices U € RV*K and V € RE*D,
U being the network embedding just respecting the set of at-
tributes. In the absence of outliers, one can just minimize
N D
the reconstruction loss Y > (Ciq — U;. - Vig)? with re-
i=1d=1
spect to the matrices U and V. But as mentioned before,
outliers even affect the embeddings of the normal nodes.
Hence to reduce the effect of outliers while learning from
the attributes, we introduce the attribute outlier score Oo; for
node v; € V, where 0 < Oy; < 1. Larger the value of Oy;,
higher the chance that node v; is an attribute outlier. Hence
we minimize the following cost function w.r.t. the variables
Oy, Uand V.

N

C
Lar =3 Y log () Cua = Ui Vi @)

i=1 d=1

N
We again assign the constraint that Y Oo; = p for the rea-
i=1
son mentioned before. Hence contributions from the non-
outlier (w.r.t. attributes) nodes would be bigger while mini-

mizing Eq. 2.

4.3 Connecting Structure and Attributes

So far, we have considered the link structure and the attribute
values of the network separately. Also the optimization vari-
ables of Eq. 1 and that in Eq. 2 are completely disjoint. But
optimizing them independently is not desirable as, our ulti-
mate goal is to get a joint low dimensional representation of
each node in the network. Also we intend to regularize struc-
ture with respect to attributes and vice versa. As discussed
before, link structure and attributes in a network are highly
correlated and they can be often noisy individually.

One can see that, G;. and U;. are the representation of the
same node v; with respect to structure and attributes respec-
tively. So one can easily act as a regularizer of the other.
Also as they contribute to the embedding of the same node,

N K
it makes sense to minimize Y. > (Gir — Uix)?. But it is
i=1k=1
important to note that, there is no explicit guarantee that the
features in G;. and features in U;. are aligned, i.e., kth fea-
ture of the structure embeddings can be very different from
the kth feature of attribute embeddings. Hence before min-
imizing the distance of G;. and Uj,., it is important to align
the features of the two embedding spaces.

Embedding Transformation and Procrustes problem
To resolve the issue above, we seek to find a linear map W €
REXK which transforms the features from the attribute em-
bedding space to structure embedding space. More formally
we want to find a matrix W which minimizes |G — WU || .



This type of transformation has been used in the NLP lit-
erature, particularly for machine translation (Lample et al.
2018). If we further restrict W to be an orthogonal matrix,
then a closed form solution can be obtained from the solu-
tion concept of Procrustes problem (Schonemann 1966) as
follows:
W* = argmin||G — UW7T|| ¢
WeOk
where W* = XY7T with X3XY7T = SVD(GTU), Ok is
the set of all orthogonal matrices of dimension K x K. Re-
stricting W to be an orthogonal matrix has also several other
advantages as shown in the NLP literature (Xing et al. 2015).
But we cannot directly use the solution of Procrustes
problem, as we have anomalies in the network. As before,
we again reduce the effect of anomalies to minimize the dis-
agreement between the structural embeddings and attribute
embeddings. Let us introduce the disagreement anomaly
score Os; for anode v; € V, where 0 < O3; < 1. Disagree-
ment anomalies are required to manage the anomalous nodes
which are not anomalies in either of structure or attributes in-
dividually, but they are inconsistent when considering them
together. Following is the cost function we minimize.

N K 1
Lo = o (o) (G
i=1 k=1 t

N
> O3
i=1
after applying a simple trick to the cost function above, as
shown in the derivation of the update rule of W later.

3

2
~ Ui (W) @

= p. We will use the solution of Procrustes problem

4.4 Joint Loss Function

Here we combine the three cost functions mentioned before,
and minimize the following with respectto G, H, U, V, W
and O (O contains all the variables from O1, O and O3).

L= Estr + aﬁattr + ﬂ‘cdis (5)
The full set of constrains are:
0<014,02,03 <1,V €V

N N N
D 01=) 0u=) Ou=n
i=1 i=1 i=1

WeOk «— W'W=1

Here «, 5 > 0 are weight factors. We will discuss a
method to set them in the experimental evaluation. It is to
be noted that, the three anomaly scores O1;, Os; and Os; for
any node v; are actually connected by the cost function 5.
For example, if a node is anomalous in structure, O1; would
be high and its embedding GG;. may not be optimized well.
So this in turn affects its matching with transformed U;., and
hence Os; would be given a higher value to minimize the
disagreement loss.

4.5 Derivations of the Update Rules

We will derive the necessary update rules which can be used
iteratively to minimize Eq. 5. We use the alternating mini-
mization technique, where we derive the update rule for one
variable at a time, keeping all others fixed.
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4.6 Updating G, H,U,V
We need to take the partial derivative of £ (Eq. 5) w.r.t
one variable at a time and equate that to zero. For exam-

) N
ple, a‘é—ﬁm =0= leog (O%i)(A” —G,. - H;)(—Hy;) +
]:

log (OLM)(GM —U;. - (WT) %) = 0. Solving it for Gz,

G”“m1+ﬁlog( )(Wk Ui)

tog (o ) (Hi. - H.) + log ()

N
G;Lkuml = log (0117) Z(AU — Z Gik/Hk/j)ij

j=1 k' #k

G, =

(6)

Similarly we can get the following update rules.

Zi]\il log (c%) (Aij — Zk/;ék G Hy )Gk
ZZ 1 log ( )Gfk

Hyj =

)

U_numl

_610g(012i)(v Vi) + v10g (G ) W W

PR

o () -

U_num2

MU

Uneml — Blog ( — 3 Uy Vi) Vaa

K #k

(VW) = (U - W)

num2
Uik

®)

N
> i1 log (é) (Cia — Zk’;ﬁk Ui Vi ) Uik

¥ tog (o) U3

)
4.7 Updating W

We use a small trick to directly apply the closed form solu-
tion of Procrustes problem as follows.

N K ) )

Lais=Y_ Y log (@) (Gik —Ui.- (WT)-k)
i=1 k=1 g

(e (WT).k)2 (10)

Here the new matrices are defined as, (G)ix =

log (ol) ik and Usg \/logi ik Say, XXYT =

SVD(GTU), then W can be obtained as:

(1)



4.8 Updating O
We derive the update rule for Oy first. Taking the Lagrangian

N
of Eq. 1 with respect to the constraint Y, O1; = p, we get,
i=1

9 1
001; izj:log (Oih) (Aij = Gi. - H'j)2 + )\(zz: O1i — 1)

)

A € R is the Lagrangian constant. Equating the partial
derivative w.r.t. O¢; to O:
_ (A =Gy -Hy)?

(Ai]‘ —Gz 'H4j)2
- A= 07 =0 i =
O1i * ! )
N N oo e
So, >~ O1; = pimplies Y W = u. Hence,
i=1 i=1

B (Z;VZI(AU - Gi. 'H‘j)Q) h
N SN (A - Gi H)?

It is to be noted that, if we set © = 1, the constraints
0 < O;1 < 1,Vu; € V, are automatically satisfied. Even
it is possible to increase the value of p by a trick similar to
(Gupta et al. 2012), but experimentally we have not seen any
advantage in increasing the value of ;.. Hence, we set = 1
for all the reported experiments. A similar procedure can be
followed to derive the update rules for O; and Os.

(ZdDzl(Cid - U;. - V,d)Q) e
Y, S (Cia = Ui Vaa)?

1i (12)

021' =

13)

Oai — (Zszl(Gik - Wi- . Uk)2> Y (14)
v Zi]\il Zszl(Gik — Wi - Uy)?

4.9 Algorithm: ONE

With the update rules derived above, we summarize ONE
in Algorithm 1. variables G, H, U and V can be initialized
by any standard matrix factorization technique (A ~ GH
and C =~ UYV) such as (Lee and Seung 2001). As our al-
gorithm is completely unsupervised, we assume not to have
any prior information about the outliers. So initially we set
equal outlier scores to all the nodes in the network and nor-
malize them accordingly. At the end of the algorithm, one
can take the final embedding of a node as the average of the
structural and the transformed attribute embeddings. Simi-
larly the final outlier score of a node can be obtained as the
weighted average of three outlier scores.

Lemma 1 The joint cost function in Eq. 5 decreases after
each iteration (steps 4 to 6) of the for loop of Algorithm 1.

Proof 1 It is easy to check that the joint loss function L is
convex in each of the variables G, H,U,V and O, when all
other variables are fixed. Also from the Procrustes solution,
update of W also minimizes the cost function. So alternat-
ing minimization guarantees decrease of cost function after
every update till convergence.
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The computational complexity of each iteration (Steps
4 to 6 in Algo. 1) takes O(N?) time (assuming K is a
constant) without using any parallel computation, as updat-
ing each variable G, Hyj, Via, O14, O2i, O3; and W takes
O(N) time. But we observe that ONE converges very fast
on any of the datasets, as updating one variables amounts to
reaching the global minima of the corresponding loss func-
tion when all other variables are fixed. The run time can be
improved significantly by parallelizing the computation as
done in (Huang, Li, and Hu 2017a).

Algorithm 1 ONE

Input: The network G = (V, E, C), K: Dimension of
the embedding space where K < min(n, d), ratio pa-
rameter 6
Output: The node embeddings of the network G, Out-
lier score of each node vinV’
Initialize G and H by standard matrix factorization on
A, and U and V by that on C.
Initialize the outlier scores O, Oy and O3 uniformly.
for until stopping condition satisfied do

Update W by Eq. 11.

Update G, H, U and V by Eq. from 6 to 9.

Update outlier scores by Eq. from 12 to 14.
end for -
Embedding for the node v; is %(W), Yo, € V.
Final outlier score for the node v; is a weighted average
of O1;, O9; and Os;, Yv; € V.

Ju—
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5 Experimental Evaluation

In this section, we evaluate the performance of the proposed
algorithm on multiple attributed network datasets and com-
pare the results with several state-of-the-art algorithms.

5.1 Datasets Used and Seeding Outliers

To the best of our knowledge, there is no publicly avail-
able attributed networks with ground truth outliers available.
So we take four publicly available attributed networks with
ground truth community membership information available
for each node. The datasets are WebKB, Cora, Citeseer and
Pubmed?. To check the performance of the algorithms in the
presence of outliers, we manually planted a total of 5% out-
liers (with equal numbers for each type as shown in Figure
1) in each dataset. The seeding process involves: (1) comput-
ing the probability distribution of number of nodes in each
class, (2) selecting a class using these probabilities. For a
structural outlier: (3) plant an outlier node in the selected
class such that the node has (m £ 10%) of edges connecting
nodes from the remaining (unselected) classes where m is
the average degree of a node in the selected class and (4) the
content of the structural outlier node is made semantically
consistent with the keywords sampled from the nodes of the
selected class. A similar approach is employed for seeding
the other two types of outliers. The statistics of these seeded
datasets are given in Table 1. Outlier nodes apparently have

’Datasets: https://lings.soe.ucsc.edu/data
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Table 1: Summary of the datasets (after planting outliers).

Dataset #Nodes #Edges #Labels #Attributes
WebKB 919 1662 5 1703
Cora 2843 6269 7 1433
Citeseer 3477 5319 6 3703
Pubmed 20701 49523 3 500

similar characteristics in terms of degree, number of nonzero
attributes, etc., and thus we ensured that they cannot be de-
tected trivially.

5.2 Baseline Algorithms and Experimental Setup

We use DeepWalk (Perozzi, Al-Rfou, and Skiena 2014),
node2vec (Grover and Leskovec 2016), Line (Tang et al.
2015), TADW (Yang et al. 2015), AANE (Huang, Li, and Hu
2017a), GraphSage (Hamilton, Ying, and Leskovec 2017a)
and SEANO (Liang et al. 2018) as the baseline algorithms to
be compared with. The first three algorithms consider only
structure of the network, the last four consider both structure
and node attributes. We mostly use the default settings of the
parameters values in the publicly available implementations
of the respective baseline algorithms. As SEANO is semi-
supervised, we include 20% of the data with their true labels
in the training set of SEANO to produce the embeddings.

For ONE, we set the values of « and (3 in such a way that
three components in the joint losss function in Eq. 5 con-
tribute equally before the first iteration of the for loop in Al-
gorithm 1. For all the experiments we keep embedding space
dimension to be three times the number of ground truth com-
munities. For each of the datasets, we run the for loop (Steps
4 to 6in Alg. 1) of ONE only 5 times. We observe that ONE
converges very fast on all the datasets. Convergence rate has
been shown experimentally in Fig. 2.

Citeseer Loss Pubmed Loss

)

o
—
~

o
-
[~}

Loss (in 10°

o
=
w

0 1 2 3 4 5 0 1 2 3 4 5
Iteration number Iteration number

Figure 2: Values of Loss function over different iterations of
ONE for Citeseer and Pubmed (seeded) datasets

5.3 Outlier Detection

A very important goal of our work is to detect outliers while
generating the network embedding. In this section, we see
the performance of all the algorithms in detecting outliers
that we planted in each dataset. SEANO and ONE give out-
lier scores directly as the output. For ONE, we rank the
nodes in order of the higher values of a weighted average
of three outlier scores (more the value of this average outlier
score, more likely the vertex is an outlier). We have observed
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experimentally that O» is more important to determine out-
liers. For SEANO, we rank the nodes in order of the lower
values of the weight parameter A (lower the value of A more
likely the vertex is an outlier). For other embedding algo-
rithms, as they do not explicitly output any outlier score, we
use isolation forest to detect outliers from the node embed-
dings generated by them.

We use recall to check the performance of each embed-
ding algorithm to find outliers. As the total number of out-
liers in each dataset is 5%, we start with the top 5% of the
nodes in the ranked list (L) of outliers, and continue till 25%
of the nodes, and calculate the recall for each set with respect
to the artificially planted outliers. Figure 3 shows that ONE,
though completely unsupervised in nature, is able to outper-
form SEANO mostly on all the datasets. SEANO considers
the role of predicting the class label or context of a node
based on only its attributes, or the set of attributes from its
neighbors, and accordingly fix the outlierness of the node.
Whereas, ONE explicitly compares structure, attribute and
their combination to detect outliers and then reduces their
effect iteratively in the optimization process. So discrimi-
nating outliers from the normal nodes becomes somewhat
easier for ONE. As expected, all the other embedding algo-
rithms (by running isolation forest on the embedding gen-
erated by them) perform poorly on all the datasets to detect
outliers, except on Cora where AANE performs good.

5.4 Node Classification

Node classification is an important application when label-
ing information is available only for a small subset of nodes
in the network. This information can be used to enhance
the accuracy of the label prediction task on the remain-
ing/unlabeled nodes. For this task, firstly we get the em-
bedding representations of the nodes and take them as the
features to train a random forest classifier (Liaw, Wiener,
and others 2002). We split the set of nodes of the graph into
training set and testing set. The training set size is varied
from 10% to 50% of the entire data. The remaining (test)
data is used to compare the performance of different algo-
rithms. We use two popular evaluation criteria based on F1-
score, i.e., Macro-F1 and Micro-F1 to measure the perfor-
mance of the multi-class classification algorithms. Micro-F1
is a weighted average of F1-score over all different class la-
bels. Macro-F1 is an arithmetic average of Fl-scores of all
output class labels. Normally, the higher these values are,
the better the classification performance is. We repeat each
experiment 10 times and report the average results.

On all the datasets (Fig. 4), ONE consistently performs
the best for classification, both in terms of macro and micro
F1 scores. We see that conventional embedding algorithms
like node2vec and TADW, which are generally good for con-
sistent datasets, perform miserably in the presence of just
5% outliers. AANE is the second best algorithm for classi-
fication in the presence of outliers, and it is very close to
ONE in terms of F1 scores on the Citeseer dataset. ONE is
also able to outperform SEANO with a good margin, even
though SEANO is a semi-supervised approach and uses la-
beled data for generating node embeddings.
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Figure 3: Outlier Recall at top L% from the ranked list of outliers for all the datasets. ONE, though it is an unsupervised
algorithm, outperforms all the baseline algorithms in most of the cases. SEANO uses 20% labeled data for training.
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Figure 4: Performance of different embedding algorithms
for Classification with Random Forest

5.5 Node Clustering

Node Clustering is an unsupervised method of grouping the
nodes into multiple communities or clusters. First we run
all the embedding algorithms to generate the embeddings
of the nodes. We use the node’s embedding as the features
for the node and then apply KMeans++ (Arthur and Vas-
silvitskii 2007). KMeans++ just divides the data into dif-
ferent groups. To find the test accuracy we need to assign
the clusters with an appropriate label and compare with the
ground truth community labels. For finding the test accuracy
we use unsupervised clustering accuracy (Xie, Girshick, and
Farhadi 2016) which uses different permutations of the la-
bels and chooses the label ordering which gives best possi-
) S5 1(P(E)=Cr)
ble accuracy Acc(C,C) = maxp =——5——. Here C is
the ground truth labeling of the dataset such that C; gives the
ground truth label of ith data point. Similarly C is the clus-
tering assignments discovered by some algorithm, and P is
a permutation of the set of labels. We assume 1 to be a logi-
cal operator which returns 1 when the argument is true, oth-
erwise returns 0. Clustering performance is shown and ex-
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plained in Fig. 5. It can be observed that except for ONE, all
the conventional embedding algorithms fail in the presence
of outliers. Our proposed unsupervised algorithm is able to
outperform or remain close to SEANO, though SEANO is
semi supervised in nature, on all the datasets.
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Figure 5: Clustering Accuracy of KMeans++ on the em-
beddings generated by different algorithms. ONE is always
close to the best of the baseline algorithms. AANE works
best for Citeseer. Though SEANO uses 20% labeled data as
the extra supervision to generate the embeddings, its accu-
racy is always close (or less) to ONE which is completely
unsupervised in nature.

6 Discussion and Future Work

We propose ONE, an unsupervised attributed network em-
bedding approach that jointly learns and minimizes the ef-
fect of outliers in the network. We derive the details of
the algorithm to optimize the associated cost function of
ONE. Through experiments on seeded real world datasets,
we show the superiority of ONE for outlier detection and
other downstream network mining applications.

There are different ways to extend the proposed approach
in the future. One interesting direction is to parallelize the
algorithm and check its performance on real world large at-
tributed networks. Most of the networks are very dynamic
now-a-days. Even outliers also evolve over time. So bring-
ing additional constraints in our framework to capture the
dynamic temporal behavior of the outliers and other nodes
of the network would also be interesting. As mentioned in
Section 4.9, ONE converges very fast on real datasets. But



updating most of the variables in this framework takes O(N)
time, which leads to O(N?) runtime for ONE without any
parallel processing. So, one can come up with some intelli-
gent sampling or greedy method, perhaps based on random
walks, to replace the expensive sums in various update rules.
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