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Abstract

Autonomous biofeedback tools in support of rehabilitation
patients are commonly built as multi-tier pipelines, where a
segmentation algorithm is first responsible for isolating mo-
tion primitives, and then classification can be performed on
each primitive. In this paper, we present a novel segmenta-
tion technique that integrates on-the-fly qualitative classifica-
tion of physical movements in the process. We adopt Long
Short-Term Memory (LSTM) networks to model the tempo-
ral patterns of a streaming multivariate time series, obtained
by sampling acceleration and angular velocity of the limb
in motion, and then we aggregate the pointwise predictions
of each isolated movement using different boosting methods.
We tested our technique against a dataset composed of four
common lower-limb rehabilitation exercises, collected from
heterogeneous populations (clinical and healthy). Experimen-
tal results are promising and show that combining segmenta-
tion and classification of orthopaedic movements is a valid
method with many potential real-world applications.

1 Introduction

Integrating machine learning methods in healthcare applica-
tions is becoming an established trend within the context of
rehabilitative science (Tack 2019). Patients and practitioners
can both benefit from the adoption of autonomous biofeed-
back tools, capable of producing quantitative and qualita-
tive feedback during physical therapy, with the aim of sup-
porting patient adherence (Argent, Daly, and Caulfield 2018;
Giggins, Persson, and Caulfield 2013). A common pipeline
to generate such feedback involves a segmentation step, that
is, the isolation of individual movements from a longer ac-
tivity stream, and a subsequent classification step, so that
deviant or aberrant movements can be identified and noti-
fied to the patients. Often, systems that acquire the input
data from inertial sensors such as accelerometer and gyro-
scope (Godfrey et al. 2008) address segmentation and clas-
sification as completely distinct, disjoint steps. In this pa-
per, we present a novel segmentation technique that embeds
on-the-fly classification for rehabilitation movements, sam-
pled as multivariate timeseries of inertial signals, within the
segmentation process. Our method works on streaming data,
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thus it provides live feedback to the users, and does not re-
quire domain knowledge about the target exercises. These
two aspects constitute crutial requirements for any biofeed-
back system to be adopted in real world applications.

The rest of the paper is organised as follows. Section 2
briefly introduces existing segmentation and classification
methods currently in the state of the art. In Section 3 we
lay out a formal description of the segmentation task, and
we provide an overview of our proposed solution. In Section
4 we introduce our datasets and the basic processes behind
data collection and annotation. Findings of the experimental
campaigns are presented in Section 5, while final remarks
and considerations are given in Section 6.

2 Related Work

An extensive body of literature exists about human motion
segmentation, and specifically rehabilitation exercise seg-
mentation and classification. In their comprehensive study,
Lin, Karg, and Kulić introduce the problem of segmentation
in the context of human motion modeling (Lin, Karg, and
Kulić 2016). The authors describe the main requirements of
a segmentation system, and introduce common state-of-the-
art segmentation techniques such as Zero Velocity Crossing
(ZVC) or Hidden Markov Models (HMM). ZVC is based
on the detection of points where there is a change of di-
rection in the movement (Fod, Matarić, and Jenkins 2002),
while HMMs model the observed signals as a sequence of
unobservable Markovian states. Both ZVC and HMM are
popular in literature, as they do not rely on domain knowl-
edge. However, given their poor mechanism of false posi-
tive rejection, they are prone to oversegmentation. In a study
conducted by Bevilacqua et al., the authors propose a seg-
mentation technique based on the clustering of ZVC points.
The cluster centroids are used to extract segment candidates,
and analytically adjusted until a good match is found against
previously generated templates. Once segments are isolated,
they are classified using a set of features extracted from the
raw input signals (Bevilacqua et al. 2018). This method was
proved to be effective on a cohort of exercises collected in a
laboratory environment, however, it requires the entire exer-
cise to be completed before segmentation and classification
can take place. More recently, Lin, Joukov, and Kulić sug-
gested a segmentation strategy based on the classification of
individual points of the joint angle measure (Cheng and Oel-
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mann 2010) as either segment points or non-segment points
(Lin, Joukov, and Kulić 2018). The authors apply PCA to
the input signals in order to reduce the degrees of freedom
(DoF) of the data and hence the computational demand of
the technique. As a tradeoff, also this technique is unsuit-
able for working on a live stream of data. To overcome this
issue, Bevilacqua et al. designed convFSM, a segmentation
approach that involves the classification of sliding windows
extracted from the signal using a Convolutional Neural Net-
work (CNN). The predictions obtained from the CNN are
then fed into a Finite State Machine (FSM) that models the
temporal state of the signal and, therefore, the exercise ex-
ecution (Bevilacqua et al. 2019). This technique minimizes
the required domain knowledge, but heavily relies on the as-
sumption that the streaming signal starts from a condition of
resting, which is not always true in unsupervised, real-world
scenarios. Moreover, given the nature of the FSM, it is not
suitable for modeling isokinetic motion patterns.

The purpose of our novel segmentation technique is then
to overcome the main gaps left open by existing approaches,
with respect to domain knowledge, false positive rejection,
and capability of working live on data streams.

3 Proposed Approach

Our feedback system is based on the main assumption that
segmentation and classification of exercise primitives are in-
tertwined steps, and should not be addressed in isolation. In
order to enforce such assumption, we designed a LSTM net-
work responsible of producing label sequences for the in-
put signals. We can then aggregate these labels in order to
extract both the edge points for the motion primitives and
the final qualitative feedback for each one of them. A high-
level overview of the system is depicted in Figure 1, where
we illustrate the segmentation/classification pipeline starting
from the signals being streamed by the sensors.

Problem formulation

An exercise is a streaming sequence S of multidimensional
points si sampled from one or more inertial sensors. The
dimensionality of these points depends on the sensors be-
ing used for the sampling (for instance, points sampled from
a triaxial accelerometer will have coordinates [ax, ay, az]).
The stream subsequence between time t − k and time t is
denoted with St

t−k. As depicted in Figure 1, our LSTM net-
work accepts in input subsequences of type St

t−k, where
the number k of timesteps in the sequence and the stride
value between consecutive windows, are hyperparameters.
For each input sequence, the network produces a probabil-
ity vector pt = [pst , p

e
t , p

c
t ], where pst is the probability of

the signal to be silent at time t (no physical motion is de-
tected at that particular time), pet is the probability of the
signal to correspond to physical movement at time t when
the detected movement is classified as deviant or far from
a correct execution, and pct is the probability of the signal
to correspond to physical movement at time t when the de-
tected movement is classified as correctly executed. Input
sequences for t < k are padded with zeros, so every point
st of the stream is assigned to a probability vector pt. Dur-

ing an exercise execution, the patient performs a number of
physical repetitions, also called motion primitives. The main
objective of the segmentation algorithm is to isolate all the
motion primitives in the time domain, while the exercise is
being executed. An example is illustrated in Figure 2, where
4 motion primitives are performed. The vertical dashed lines
in the picture correspond to edge points marking the begin-
ning and the end of each primitive, while the solid coloured
bars on top of the graph indicate the class assigned to each
point of the stream.

Segment detection

Transitions in the streaming signal correspond to physical
changes of state of the limb in motion. As rehabilitation ex-
ericses comprise multiple executions of the same movement,
we are interested in isolating all the points in time where a
movement starts or ends. In order to do so, we apply Algo-
rithm 1 to the sequence S.

Algorithm 1: Segmentation algorithm
Input : Streaming signal S
Input : Number k of LSTM input timesteps
Input : Number n of previous probability values
Output: Set of cutting points for the input signal

1 coordinates← [ ]
2 lstm win← [0,0, . . . ,0] FIFO queue, fixed length k
3 sma win← [ ] FIFO queue, maximum length n
4 rest← True

5 while new point pt available from S do
6 push pt in lstm win
7 [pst , p

e
t , p

c
t ] = LSTM(lstm win)

8 push pst in sma win
9 m = MEAN(sma win)

10 if rest and ((m < pet ) or (m < pct)) then
11 push t in coordinates
12 rest← False
13 else if not rest and (m > pet ) and (m > pct) then
14 push t in coordinates
15 rest← True

16 subtract n/2 from all items in coordinates
17 return coordinates

In short, through our segmentation algorithm, a probabil-
ity vector pt is produced for every point of the stream S
(line 7), and the values of pst are stored in a FIFO queue
of maximum length n. After that, the average of the last n
probability values psi is computed (line 9). If the signal is
currently in a state of silence, and the computed average is
smaller than pet or pot , then a starting coordinate is extracted,
and the signal is considered to be in a state of motion (lines
10-12). However, if the signal is currently in a state of mo-
tion, and the computed average is bigger than both pet and
pct , then an ending coordinate is extracted at time t, and the
signal is marked to be in a state of silence (lines 13-15).
The windowing mechanism used for the average computa-
tion of the probability values psi is an implementation of the
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Figure 1: High-level overview of the system. The input stride and number of timesteps, and the smoothing parameters for the
probability sequences are provided to the system after empirical testing.

Figure 2: Signals sampled from an exercise execution.

Simple Moving Average (SMA). Applying the SMA rather
than using the raw probability values has a smoothing effect
on the probability subsequence, reducing oversegmentation
in regions of confusion often occurring when a movement
starts and when a movement ends. This is shown in Figure
3a, where the raw sequence of values ps is drawed alongside
its smoothed version SMA(ps).

Segment classification: prediction boosting

A motion primitive starting at time a and ending at time b
corresponds to the input sequence Sb

a, and is mapped by the
LSTM network to a sequence of probability vectors P b

a , as
described by Algorithm 1. We use for P the same notation
introduced for the sequence S, in order to analytically ag-
gregate its values and produce a final qualitative label for
the motion primitive. For the sequence P b

a , however, we do
not take into account the temporal ordering of its values, and
we only consider the values of pe and po, as illustrated in
Figure 3b. We apply to the isolated primitives four differ-
ent aggregation techniques, three of which were originally
designed by Toto, Foley, and Rundensteiner for audio clip
classification (Toto, Foley, and Rundensteiner 2019).

Deviation Voting (DV) The class d̂ assigned to the target
primitive is the most frequent predicted class among all the
points in the primitive. This is formally expressed in Equa-
tion 1, where the compressed notation pi = p̄ indicates that
for point i in the sequence, the highest probability of the
network softmax output has the same index of p̄.

d̂ = argmax
p̄∈{pe,po}

(|{pi : pi = p̄, ∀pi ∈ P b
a}|) (1)

This aggregation method is based on the assumption that
the qualitative characterisation of a movement is evenly dis-
tributed across its full duration, so all timesteps equally con-
tribute to the final prediction.

Cumulative Deviation Strength (CDS) The class d̂ of a
repetition is selected as the class with the highest cumulative
probability across all its point, as shown in Equation 2.

d̂ = argmax
p̄∈{pe,po}

( ∑
pi∈P b

a :pi=p̄

pi

)
(2)

The rationale behind CDS is the same as DV, but in this
case also the degree of confidence of the pointwise labels is
taken into account. CDS can be interpreted as weighted DS.

Maximum Deviation Strength (MDS) The class d̂ of a
primitive is selected as the class with the highest probability
among all the probability values in P b

a , as per Equation 3.

d̂ = argmax
p̄∈{pe,po}

(max (pi : pi = p̄, ∀pi ∈ P b
a)) (3)

MDS works under the assumption that a full movement
characterisation can be extracted from an individual point
in the sequence, for which the network returned the highest
overall probability.

q-best Deviation Rank (qDR) The class d̂ of a primitive
is selected as the most frequent class among the q classes
with the highest probability values in P b

a . When q = 1, qDR
corresponds to MDS, while q = |P b

a | makes qDR equiva-
lent to DV. In our experiments, we set q to 30 (30DR), 50
(50DR), and half the length of the target primitive (halfDR).
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(a) Signal segmentation (b) Segment classification

Figure 3: Segmentation and classification with the probability values generated by the LSTM network.

Table 1: Dataset composition

exercise subjects sets reps correct (%)

train

HS 49 94 1055 0.65
SKE 47 94 1043 0.43
IRQ 45 84 924 0.54
SLR 49 89 986 0.53

test
healthy

HS 10 10 148 1
SKE 10 10 150 1
IRQ 10 10 150 1
SLR 10 10 150 1

test
clinical

HS 10 23 320 1
SKE 11 17 241 0.43
IRQ 10 18 270 0.75
SLR 10 21 297 0.49

4 Data and Methodology

In this work we target 4 lower limb rehabilitation exercises,
namely, heel slide (HS), seated knee extension (SKE), inner
range quadriceps (IRQ), and straight leg raise (SLR), which
are commonly undertaken following orthopaedic surgery
(American Academy of Orthopaedic Surgeons 2017). For
each exercise, we collected a training set and 2 separate,
independent test sets. Table 1 lists the number of partici-
pants, sets, and repetitions for each exercise and dataset. The
percentage of correct repetitions is included. All the exer-
cises are collected with the Shimmer inertial unit (Burns et
al. 2010), a research device that embeds a number of iner-
tial sensors. For this work, we use the accelerometer, with a
range of ±2g, and the gyroscope, with a range of 500dps.
Both sensors sample data at a frequency of 102.4Hz.

Training data

Training data were collected from a heterogeneous group of
roughly 50 subjects, both in a controlled environment from
healthy participants, and in a clinical setup from real-world
patients. The proportion of clinical subjects to healthy sub-
jects is approximately 1 to 4. A Chartered Physiotherapist
was responsible of supervising the exercise executions in
order to provide reliable ground truth for both the quantita-
tive and qualitative characterisation of the data. Subjects can

perform the exercises in a correct fashion, or with particu-
lar deviations caused by pain, distress, or fatigue (Bevilac-
qua et al. 2019). Whilst healthy subjects are instructed by
the supervising Physiotherapist to artificially emulate a de-
viation, real-world patients perform the exercises to the best
of their capabilities, thus providing genuine, aberrant exam-
ples, with the inclusion of other common physical imperfec-
tions such as co-articulations or baseline drifting.

Test data

As we use the training data for hyperparameter tuning, a sep-
arate test dataset was collected and used for performance
evaluation. The test dataset is composed of exercises sam-
pled from 10 healthy subjects, and 10 clinical subjects, as
outilned in Table 1. All exercises in the test dataset are col-
lected in a real-world environment, under the supervision of
a Chartered Physiotherapist. Participants were not instructed
to perform the exercises inducing specific deviations, so the
resulting dataset for HS does not include any example of the
negative class. Given the different quality of physical perfor-
mance between healthy and clinical subjects, the results of
these two groups are presented separately.

5 Experimental Results

For our experimental campaigns, we perform hyperparam-
eter tuning on the training dataset, focusing on the number
of timesteps and the stride between consecutive input win-
dows. Tested values for the timesteps are 10, 20, 50, 100,
and 250. Tested values for the stride are 10, 5, and 1. We
adopt the Leave-One-Subject-Out (LOSO) validation proto-
col (Jordao et al. 2018), in order to avoid the introduction
of positive bias while searching for the best hyperparameter
configuration. With LOSO, validation splits are constructed
so that data collected from the same subject cannot appear
in both training and validation set at the same time. Figure
4 shows the breakdown of accuracy (4a) and loss (4b) for
all the hyperparameter configurations. What stands out from
this set of results is the increase in pointwise classification
accuracy for long timestep inputs to the LSTM. The stride
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Table 2: Segmentation scores on test data, terr = ±35, n = 25

(a) Healthy set
model metric LSTM convFSM clustree hmm zvc

HS
accuracy 0.9732 0.7507 0.7878 0.706 0.6892
precision 0.9897 0.8605 0.8845 0.8277 0.7521
recall 0.9831 0.8547 0.8783 0.8277 0.8918

SKE
accuracy 1 0.9933 0.5463 0.8018 0.825
precision 1 1 0.7066 0.89 0.8319
recall 1 0.9933 0.5605 0.89 0.99

SLR
accuracy 0.9672 0.7758 0.85 0.5582 0.6082
precision 0.9833 0.8708 0.9315 0.7301 0.7283
recall 0.9833 0.8766 0.9066 0.7033 0.7866

IRQ
accuracy 0.9638 0.8098 0.9354 0.2625 0.5179
precision 0.9865 0.9103 0.9666 0.8076 0.8357
recall 0.9766 0.88 0.9666 0.28 0.5766

(b) Clinical set
model metric LSTM convFSM clustree hmm zvc

HS
accuracy 0.8466 0.2828 0.5362 0.2815 0.5505
precision 0.8654 0.7674 0.7737 0.4397 0.5932
recall 0.975 0.3093 0.6359 0.439 0.8843

SKE
accuracy 0.9151 0.8772 0.5379 0.7629 0.6002
precision 0.9721 0.9506 0.7418 0.9068 0.6528
recall 0.9398 0.919 0.6618 0.8278 0.8817

SLR
accuracy 0.7138 0.6282 0.5721 0.6562 0.4849
precision 0.8261 0.781 0.7353 0.8454 0.7635
recall 0.84 0.7626 0.7205 0.7457 0.5707

IRQ
accuracy 0.9263 0.5384 0.6592 0.211 0.4332
precision 0.9681 0.8 0.8247 0.631 0.6503
recall 0.9555 0.6222 0.7666 0.2407 0.5648

(a) Accuracies (b) Losses

Figure 4: Grid search in the hyperparameter space. On the x axis, the combinations of timesteps (T) and stride (S) values.

value between consecutive windows, however, does not af-
fect significantly the final score.

We use the best model for each exercise to extract algo-
rithmic coordinates on the test datasets. To compute the seg-
mentation accuracy, we match the algorithmic coordinates
against coordinates manually annotated during the data col-
lection phase. Any algorithmic coordinate that matches a
manually annotated coordinate within a temporal threshold
terr is considered to be a true positive. If an algorithmic co-
ordinate does not have any corresponding ground truth co-
ordinate, it is accounted for as false positive. Lastly, a man-
ually annotated point that is not matched by any algorith-
mic coordinate is considered to be a false negative. We al-
low the set of true negative points to be empty (Lin, Karg,
and Kulić 2016). A group of baseline techniques is imple-
mented and compared with our method. We generate coordi-
nates using ZVC, HMM, convFSM, and the clustering tech-
nique proposed by Bevilacqua et al., hereinafter named clus-
tree (Bevilacqua et al. 2018). The segmentation results over
the two test sets are summarised in Table 2, for terr = 35
(roughly one third of a second) and n = 25 (roughly one
quarter of a second). These two hyperparameter values were
empirically derived before the evaluation process to pre-
vent eccesively distorted segmentation points to be treated

as valid coordinates. Our method performs better than all
the baseline techniques, for both the healthy and the clinical
datasets, showing no sign of oversegmentation.

The motion primitives in the test sets are isolated using
the coordinates generated with Algorithm 1 and then classi-
fied. In Table 3, we present the classification scores obtained
with the boosting strategies described in Section 3. We also
include the scores of a number of learning models, namely,
Logistic Regression, Random Forest, Support Vector Ma-
chines (SVM), Adaptive Boosting (AdaBoost), and J48 De-
cision Tree. These models are trained using static and dy-
namic features extracted from the training dataset (Bevilac-
qua et al. 2018). As the healthy training set contains only
instance of the positive class, precision and recall values are
superfluous and therefore ignored in Table 3a. It is apparent
from this table that our technique yields mixed results, with
qDR being generally better than DV and CDS.

6 Conclusions and Future Works

This paper set out to present and evaluate a novel segmenta-
tion and classification technique for rehabilitation exercises.
Our study was finalized at the resolution of some of the most
common issues of the existing methods, such as the cou-
pling with domain knowledge or the inability to work on
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Table 3: Test classification score. Best results per exercise are marked in bold.

(a) Healthy set (accuracy)

exercise DV MDS CDS 30DR 50DR halfDR Logistic Rnd. Forest SVM AdaBoost J48
HS 0.9662 0.9797 0.9662 0.9797 0.9797 0.9797 0.9391 0.9121 0.831 0.9459 0.9256

SKE 1 1 1 1 1 1 0.76 0.78 0.78 0.78 0.7733
SLR 0.72 0.7702 0.6466 0.74 0.7333 0.7933 0.7929 0.2733 0.6 0.6733 0.5733
IRQ 0.8378 0.7972 0.8783 0.831 0.8445 0.8851 0.8666 0.7933 0.92 0.66 0.4466

(b) Clinical set
exercise metric DV MDS CDS 30DR 50DR halfDR Logistic Rnd. Forest SVM AdaBoost J48

accuracy 0.9968 1 0.9968 1 1 1 0.8406 0.8218 0.3156 0.8218 0.8343
HS precision 1 1 1 1 1 1 1 1 1 1 1

recall 0.9968 1 0.9968 1 1 1 0.8406 0.8218 0.3156 0.8218 0.8343
accuracy 0.6473 0.6431 0.6473 0.6514 0.6473 0.6514 0.5311 0.5925 0.6296 0.5791 0.6498

SKE precision 0.5703 0.5669 0.5725 0.576 0.5714 0.576 0.4647 0.5645 0.6 0.6315 0.6272
recall 0.7087 0.7 0.6893 0.7 0.7 0.7 0.6407 0.3398 0.3784 0.466 0.67
accuracy 0.5369 0.5214 0.5369 0.5019 0.4863 0.5291 0.6091 0.5276 0.6319 0.6286 0.5309

SLR precision 0.596 0.5984 0.6043 0.5819 0.5689 0.6046 0.6296 0.5555 0.7397 0.7575 0.5833
recall 0.6081 0.5135 0.5675 0.4797 0.4459 0.527 0.4594 0.1013 0.3648 0.3378 0.0945
accuracy 0.8843 0.8097 0.8805 0.832 0.8395 0.8768 0.5862 0.7126 0.7164 0.5632 0.544

IRQ precision 0.9673 0.975 0.9723 0.9647 0.9651 0.9619 0.8125 0.8843 0.7968 0.8303 0.7804
recall 0.8768 0.7684 0.867 0.8078 0.8177 0.8719 0.5531 0.6914 0.8138 0.4946 0.5106

live data streams. We adopted a mixture of LSTM networks
and pointwise boosting techniques to detect cutting points in
inertial signals, and produce qualitative classes for the mo-
tion primitives of rehabilitation patients. The results of our
experimental campaigns suggest that the proposed technique
reliably identify edge points in the input signals, and yields
classification results comparable to the ones obtained with
more traditional learning models, without however relying
on any domain knowledge.

Several questions still remain to be answered, and in fu-
ture works we will investigate (i) the effect of more elaborate
boosting techniques, (ii) the adoption of hierarchical classi-
fication instead of multiclass classification for the evaluation
of the motion primitives, and (iii) the application of our tech-
nique on bigger datasets, including heterogeneous exercises
and motion patterns.
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