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Abstract

With the increasing prevalence of portable computing de-
vices, browsing unedited videos is time-consuming and te-
dious. Video highlight detection has the potential to signif-
icantly ease this situation, which discoveries moments of
user’s major or special interest in a video. Existing meth-
ods suffer from two problems. Firstly, most existing ap-
proaches only focus on learning holistic visual representa-
tions of videos but ignore object semantics for inferring video
highlights. Secondly, current state-of-the-art approaches of-
ten adopt the pairwise ranking-based strategy, which cannot
enjoy the global information to infer highlights. Therefore,
we propose a novel video highlight framework, named VH-
GNN, to construct an object-aware graph and model the re-
lationships between objects from a global view. To reduce
computational cost, we decompose the whole graph into two
types of graphs: a spatial graph to capture the complex inter-
actions of object within each frame, and a temporal graph to
obtain object-aware representation of each frame and capture
the global information. In addition, we optimize the frame-
work via a proposed multi-stage loss, where the first stage
aims to determine the highlight-probability and the second
stage leverage the relationships between frames and focus on
hard examples from the former stage. Extensive experiments
on two standard datasets strongly evidence that VH-GNN ob-
tains significant performance compared with state-of-the-arts.

Introduction

The video overload problem is intensifying. With the in-
creasing prevalence of digital devices and the rapid devel-
opment of social media platforms (like Taptap and Kwai), it
is seamless for users to record massive amounts of videos.
To mitigate the overload, video highlight detection has at-
tracted increasing attention in research and industrial com-
munities. The goal of video highlight detection is to retrieve
a short video clip that captures a person’s primary atten-
tion or interest within an unedited video. It also has a wide
range of applications such as video retrieval, event recog-
nition, and video recommendation. Despite much progress
has been achieved in recent years (Yao, Mei, and Rui 2016;
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Figure 1: Comparison between our method and conventional
pair-wise highlight prediction method. (a) Pervious methods
with pair-wise ranking. (b) Our VH-GNN builds an object-
aware graph to capture the object semantics and the global
information with a proposed multi-stage loss.

Jiao et al. 2018; Zhao, Li, and Lu 2018), this topic remains
difficult due to the challenging nature of videos such as a
huge semantic gap between visual features and high-level
semantics, and complex temporal structures.

Video highlight detection algorithms are generally cate-
gorized as either unsupervised or supervised methods. Un-
supervised techniques create video highlights by employing
heuristics, such as video duration (Xiong et al. 2019) and vi-
sual co-occurrence (Chu, Song, and Jaimes 2015), to achieve
desired characteristics. Without human-guided signals, how-
ever, the results are not satisfying enough. As opposed to un-
supervised ones, supervised approaches explicitly make full
use of the correspondence between the predicted video high-
light and the human-annotated one, which achieve promis-



ing performance. Therefore, supervised methods have re-
cently obtained significant attention.

To learn video highlight in a supervised fashion, as shown
in Figure 1(a), current state-of-the-art methods (Yao, Mei,
and Rui 2016; Jiao et al. 2018; Xiong et al. 2019) mainly
utilize a pair-wise ranking constraint for two video seg-
ments with a contrastive relationship. Although these meth-
ods achieve promising results, they suffer from two prob-
lems: (1) Most existing approaches only focus on learning
holistic visual representations of video segments but ignore
object semantics for inferring video highlights. In fact, re-
cent studies have shown that object semantics possess the re-
markable ability for various video understanding tasks such
as video classification (Jain, Van Gemert, and Snoek 2015;
Wang and Gupta 2018) and video reasoning (Baradel et
al. 2018). Note that we observe that video segments with
rich objects and object-object interactions are more likely
to be highlight than B-roll footage. For example, in surf-
ing videos, frames with people on the surfboard are more
likely to be highlight than the dull quiet ocean. As a result,
video highlight detection could get benefit from object se-
mantics. (2) The pairwise ranking-based methods cannot en-
joy the global information of an unedited video. Intuitively,
humans often take the long-range context of a video seg-
ment into consideration and select highlights from a global
perspective. Note that, different frames with the same se-
mantic content may have varying highlight strengths in dif-
ferent videos. For instance, frames of drinking water should
be determined as a highlight in a water advertisement, but
it is non-highlight in an academic lecture video. Although
RNN-based approaches can be applied for video highlight
detection with temporal modeling (Zhao, Li, and Lu 2018),
a limitation is that they can hardly capture the temporally
non-consecutive and long-distance relationships among se-
mantics. Obviously, it is difficult for RNNs to directly model
relationships between any two video frames. Besides, train-
ing RNNs may suffer from various problems and the training
speed is not promising (Vaswani et al. 2017).

Recently, Graph Neural Networks (GNNs), which can
model the dependencies and propagate messages between
any two nodes in an arbitrary graph, have received in-
creasing attention in video understanding (Wang and Gupta
2018). GNNs possess great potential in modeling object-
level semantic interactions and global associations. By ex-
plicitly constructing edges between objects, graph-based ap-
proaches can capture such information for video highlight
detection. Besides, the training speed of graph-based ap-
proaches is faster than RNN-based models since GNNs do
not rely on sequential operations. Until now, the application
of GNN:ss to video highlight detection is yet to be explored.

Motivated by the above observations, as shown in Fig-
ure 1(b), we propose a novel video highlight framework,
named VH-GNN, to directly model the object-level interac-
tions among video frames via graph neural networks. Here,
to model the spatial and temporal relationships between ob-
jects, we can build a global graph that connects all the ob-
jects (graph nodes) within the whole video. However, learn-
ing relationships across all the objects suffers from the high
computational burden. To reduce the computational cost, as
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shown in Figure 2, we further decompose the whole graph
into two types of graphs: (1) We design a series of spa-
tial graphs to model the complex relations of objects within
each frame independently. Specifically, for each frame in the
video, we use a pre-trained object detector to extract features
of each object. Since all the objects may have interactions
under various scenes, we adopt a fully-connected graph to
depict the spatial relationships. Because the relationships be-
tween objects are asymmetric, we design the spatial graph as
a directed graph. (2) After the graph operation on each spa-
tial graph, we adopt a pooling strategy to obtain the object-
aware representations of each frame. These representations
can be organized as a temporal graph to capture the interac-
tions between video frames from a global view. We also for-
mulate it as a directed graph to model the asymmetry in the
temporal domain. For the graph operator design, most ex-
isting GNNs suffer from the mixing problem (Li, Han, and
Wu 2018), i.e., the features of vertices will converge to the
similar value. To overcome this problem, we consider uti-
lizing edge features to update the representations of graph
nodes. We optimize the model via a proposed multi-stage
loss, where the first stage aims to determine the highlight-
probability of each frame via a classification loss and the
second stage adopts a ranking loss to leverage the rela-
tionships between frames and focus on the hard examples
from the former stage. Extensive experiments on two pop-
ular datasets demonstrate the favorable performance against
state-of-the-art methods. We even obtain an absolute gain of
11% on the SumMe (Gygli et al. 2014) dataset.
The main contributions of this paper are as follows:

We propose a novel GNN-based framework that can ef-
fectively model the object semantics and global informa-
tion for video highlight. To the best of our knowledge, our
method is among the first to advance graph neural net-
works and object semantics for video highlight detection.

By carefully designing a decomposed spatial-temporal
graph, the proposed method achieves favorable compu-
tational efficiency and alleviate the overfitting problem.
Here, the spatial graph can model the object semantics
within each frame and the temporal graph can leverage
the global relationships. Besides, our graph operator is
suitable for handling the mixing problem of GNNss.

Different from current methods that use either classifica-
tion loss or ranking loss for video highlight detection, we
design a novel multi-stage loss to combine both loss func-
tions to improve the discriminative ability of our model.

Related Work
Video Highlight Detection

Video highlight detection aims to score individual video seg-
ments for their worthiness as highlights. In general, there are
two main research lines: unsupervised and supervised.
Unsupervised video highlight detection methods can
be further divided into methods that are domain-agnostic
or domain-specific. As for domain-agnostic approach,
Mendi et al. propose motion strength (Mendi, Clemente,
and Bayrak 2013) that operates uniformly on any video.



Domain-specific approaches tailor highlights to the topic do-
main, and leverage video duration (Xiong et al. 2019) and
visual co-occurrence (Chu, Song, and Jaimes 2015) as the
weak supervision signal, or leverage category-aware recon-
struction loss (Yang et al. 2015a). However, without human-
guided signals, the results are not satisfying enough.

On the other hand, supervised methods treat video high-
light detection as the classification or ranking task. Some
methods focus on selecting keyframes or segments indepen-
dently (Wang et al. 2017; Zhang et al. 2018), and treat the
highlight detection as a binary classification task. However,
these approaches ignore the relationship between segments
and lost a lot of information. Yao et al. propose DCNN and
employ deep learning techniques to learn the relationship
between highlight and non-highlight video segments with a
pairwise deep ranking model (Yao, Mei, and Rui 2016).

However, the approaches mentioned above do not make
full use of the object semantics and global information of
the whole video. In this work, we build a object-aware graph
and decompose the whole graph into two types of graphs, a
spatial graph to capture the object semantics and a temporal
graph to model the global information.

Graph Neural Network

In recent years, generalization of neural networks for ar-
bitrarily structured graphs has drawn considerable atten-
tion (Wu et al. 2019b; Zhang, Cui, and Zhu 2018; Zhou et
al. 2018b; Gao, Zhang, and Xu 2019a; Gao et al. 2017). The
convolution operation can be applied in the spatial or spec-
tral domain. In the spatial domain, the methods apply feed-
forward networks to each node of the graph (Scarselli et al.
2009; Li et al. 2016), and iteratively propagate nodes in the
graph until the nodes reach a stable fixed point. In the spec-
tral domain, several approaches design localized operators
on graphs via convolution theorem (Defferrard, Bresson,
and Vandergheynst 2016; Kipf and Welling 2016).

Until now, graph neural networks have shown great po-
tential in many video-related tasks. For example, group
activity recognition (Deng et al. 2016; Qi et al. 2018;
Wu et al. 2019a), relation modeling (Sun et al. 2019) and
relation reasoning (Zhou et al. 2018a). Wang et al. (Wang
and Gupta 2018) propose to interpret videos as space-time
region graphs which consider similarity relationships and
spatial-temporal relationships. Gao et al. (Gao, Zhang, and
Xu 2019b) design a two-stream GCN model for zero-shot
action recognition with relationship modeling.

Object Semantics for Video Understanding

Complex videos like human actions and events have been
shown to strongly relate to their involved objects, which
provide rich context information for video understand-
ing (Marszatek, Laptev, and Schmid 2009; Wu et al. 2016;
Yang et al. 2015b; Yang, Zhang, and Xu 2016; Gao, Zhang,
and Xu 2017; Yang, Zhang, and Xu 2014). Sun et al. uti-
lize an LSTM network as a temporal model with considering
high-level object semantic features (Sun et al. 2016). Ma et
al. learn to model higher-order object interactions between
arbitrary subgroups of objects for various video understand-
ing tasks, such as video captioning (Ma et al. 2018). Until
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now, the application of object semantics for video highlight
detection is rarely explored.

Methodology

In this section, we elaborate on our model for video highlight
detection. We first give the problem definition. Then we in-
troduce the video graph representation and present how to
operate on video graphs. Finally, we introduce our multi-
stage loss function for model training.

Problem Definition

For each video, the provided annotations are a set of sampled
frames and their labels Y = {yi, ..., yar}, each of which
describes the frame is highlight(1) or not(-1). We denote the
total number of sampled frames as M. What we want to do
is to predict the highlight score of the sampled frames.

Graph Representation for Videos

Object Feature Extraction To capture the object seman-
tics within a frame, we extract the object features by a pre-
trained object detector. Given a video, we apply the Region
Proposal Network (RPN) (Ren et al. 2015) to generate ob-
ject bounding boxes on each frame. Taking the video fea-
tures and projected bounding boxes, we apply RolAlign (He
et al. 2018) to extract the feature of each object region.

Spatial-Temporal Graph To capture the object-level in-
teraction, we can build a global graph that connects all the
objects (graph nodes) within the whole video. However, per-
formance may suffer due to the fact that a finite-capacity
neural network is used to model a large combinatorial space.
To reduce the high computational burden, we decompose the
whole graph into two types of graphs, a series of spatial
graphs within the frames and a temporal graph among the
frames. Here, the spatial graphs can be regarded as graph
signals inputted to the temporal graph, as shown in Figure 2.

The spatial graph models the complex relations of objects
and the whole image frame. Here, we use the feature of the
whole image to capture other useful information (e.g., scene,
background) except for objects. For the ¢-th sampled frame,
the spatial graph can be defined as G; = (Vy, &, W*), where
V; is a finite set of vertices, corresponding to the NV —1 object
region proposals and one node of the whole image, as shown
in Figure 2. & is a set of edges, because the relationships
between objects are asymmetric, we design the spatial graph
as a directed graph, and all vertices are connected to each
other; W? denotes the input-to-hidden weight matrix, which
is shared among the frames.

The temporal graph models the global information of the
video and the interaction between video frames. We utilize
the global information because humans take the long-range
context of a video segment into consideration and select
highlights from a global perspective. The temporal graph
can be denoted as G = (V, &, W?), where elements in V
corresponding to the sampled frames; The edges in £ exist
in every two frames; W denotes the weight matrix of G.
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Figure 2: Overview of the proposed VH-GNN. The input is the sampled frames. We first use a RPN to extract the object region
proposals and features. Then we construct a spatial graph for each frame and apply message passing over the graph, where each
nodes corresponding to one object region or the whole image. Note that all the nodes are fully-connected, however, to avoid
line crossing, we omit some edges. After the graph operations on spatial graphs, we use max-pooling to generate the object
feature in each frame, and construct the temporal. Finally, we optimize the model via a proposed multi-stage loss.

Graph Neural Network on Video Graphs

In this section, we present the graph operator that is applied
to the spatial and temporal graphs. We use the same graph
operator on both types of video graphs.

Edge Feature To capture the complex relations between
graph nodes, we consider utilizing edge features to update
their representations. The features are calculated from the
source and target nodes of the edge. We use a two-layer
fully-connected network H with the hidden layer size of d;:

€]

where x; and x; are the source and target node features of
the edge e; ;, and e; ; is a do-dimensional vector. || denotes
the concatenating operation.

e;; = H(xi[|x;),

Message-Passing Graph operators allow us to compute
the response of a node based on its neighbors defined by
the graph relations, which is equal to performing message
passing inside the graph. We use a message function M (-)
to aggregate information from all neighbors of each node
with the features of edges. In particular, for each node, the
message is defined as below,

m; = Y a; ;M(x;ei),
G

@

where M () is a two-layer fully-connected neural network
with the hidden layer size of d3, o; ; = o((ReLU(ay - x; +
a, - X;))) is the attention weight, where a; and a, are two
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learnable d;-dimensional vectors and o is the softmax func-
tion. We now need to define a mechanism that utilizes the
message received from the node’s neighbors and its previous
state to update its state. Therefore, we use a residual layer to
update the feature of the node in each time step.

X; Z)A(i—le’,

3)

where X; is the original feature of node <.

Comparing with traditional graph neural networks which
averages the neighbors of a node for learning node represen-
tations, our graph operator leverages edge features to update
the representations of graph nodes. Since e; ; # e; ; and the
messages m, are significantly different among nodes, the
mixing problem is alleviated.

Highlight Prediction

As shown in Figure 2, to predict if the frame is highlight
or not, the graph operations are firstly conducted on each
spatial graph. Then, a max-pooling strategy is performed to
obtain the object-aware representation (a feature vector) of
each frame as the representation for each G;. These repre-
sentations are fed to the temporal graph as node features.
Finally, we apply graph operations on the temporal graph
and calculate the highlight score for each frame(nodes in the
temporal graph) with a feed-forward layer:

f(xi) = Wxi +b, (4)

where x; is the output feature of each node in the temporal
graph, and f(x;) is the highlight score for the frame.



Loss Function

We optimize the whole framework via a proposed multi-
stage loss. The first stage is a classification loss L., which
aims to determine the highlight-probability of each frame:

L. = CrossEntropy(f(x;),y:). (5)

The second stage adopts a ranking loss £, to leverage the
relationships between frames and focus on the hard exam-
ples from the former stage, which is defined as follows:

L, = |%| Z max (0,1 — f(x,) + f (xn)), (6)

(pn)€Z

where Z is the hard sample set, in which each pair (p,n),
consists of a highlight frame p and a non-highlight frame n,
is constructed by the following steps:

1. Sort the frames by their scores obtained in the first stage;

2. Select 7% frames with lowest scores for positive labeled
samples, and denoted the set of frames as P, select r%
highest scores for negative labeled samples, and denoted

the set of frames as N\, where 7% is set to 80%;

. Z is the set of paired frames, for the items in each pair,
one is the positive example and the other is the negative
example, Z = {(p,n)|p € P,n € N'}.

Therefore, the entire loss function is defined as follows:

L=Mc+ (1=NL +7]0||F, 0

where A and + are the trade-off hyperparameters and © is all
the learnable parameters.

Experiment

We evaluate the performance of VH-GNN against several
state-of-the-art methods on two public datasets.

Dataset

Details of the two datasets are illustrated as follows.

YouTube dataset (Sun, Farhadi, and Seitz 2014): This
dataset contains about 490 videos of six categories. The
video is annotated as segment-level with three classes:
1-highlight; O-normal; -1-non-highlight. Each segment in-
cludes approximately 100 frames.

SumMe dataset (Gygli et al. 2014): This dataset consists
of 25 videos with different events. The video is annotated
with frame-level score: 1-highlight/0-non-highlight. We fol-
low the preprocessing procedure in (Jiao et al. 2018). We
treat 50 frames as a clip, and it is highlight only if the aver-
age score is higher than 0.4. We define 25 tasks for training
and test, where each task preforms highlight prediction for
one video and uses the remaining 24 videos as training data.

Implementation Details

Feature Extraction These two datasets have segment-
level annotations. To improve computational efficiency, our
model adopts sampled frames as input. We sample intra pic-
tures (I-frames) with FFmpeg'. For those segments without

"https://ffmpeg.org/
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I-frames, we sample the center frame from the segments.
We use RPN with ResNet50 backbone, which is pretrained
on the MSCOCO object detection dataset (Lin et al. 2014).

Parameter Setting We implement our model with Py-
torch 1.1.0. For spatial graph, the number of nodes N is set
to 20. The input feature dimension for each region and the
whole image is 4096. The size of hidden layers d;, ds and
the feature size of graph nodes and edges ds are set to 512.
We use one-layer graph neural network for spatial and tem-
poral graph, since we do not observe much gain by adding
more layers above. Since the lengths of videos are different,
in each training step, we simply consider one video. Dropout
is applied after each fully-connected layer with a ratio of 0.3.
The balance term A that controls the classification loss and
ranking loss is set to 0.5 and the learning rate is set to le-
5. As for weight decay, 7 is setting to 0.001. Details of our
implementation can be find in the opened code.?

Evaluation Metrics Since the two datasets have segment-
level labels, during the evaluation, if a segment has more
than one sampled frames, we use the average score of the
frames in this segment as its highlight score. We use the
mean average precision(mAP) as evaluation metrics, as in
the most existing methods (Jiao et al. 2018; Gygli, Song,
and Cao 2016; Yao, Mei, and Rui 2016)

Comparing Methods

We compare VH-GNN with four state-of-the-art methods:
(1) GIFs (Gygli, Song, and Cao 2016), a domain-agnostic
method that is trained with human-edited video-GIF pairs.
(2) LR(Sun, Farhadi, and Seitz 2014). It introduces latent
variables to accommodate highlight detection and uses the
EM-like self-paced model selection procedure to train the
framework effectively. (3) DCNN (Yao, Mei, and Rui 2016),
which uses a convolutional network to extract features and
detect highlight by a ranking network. To aggregate the
CNN features to obtain highlight scores, they use two strate-
gies: average-pooling (DCA) and max-pooling(DCM). (4)
AFM (Jiao et al. 2018), which uses a fully connected layer
to learn the 3D attention weights and performs max-pooling
for the features of a video segment both spatially and tem-
porally in a proposed attention module.

Quantitative Analysis

Performance Comparison From the results in Table 1-2,
we have the following observations: YouTube Dataset: Ta-
ble 1 summarizes the overall highlight detection results for
different methods on YouTube dataset (Sun, Farhadi, and
Seitz 2014) and shows that our proposed approach signifi-
cantly outperforms the state-of-the-art methods in most do-
mains. In particular, the accuracies of “parkour” and “ski-
ing” achieve 0.83 and 0.69, which makes considerable im-
provements over others, as they do not utilize object se-
mantic and relationship modeling techniques in video high-
light detection. Instead, we use a spatial graph to model ob-
ject semantics within the frames and a temporal graph to

*https://github.com/GNN-VH/GNN-VH



Table 1: Results comparison on the YouTube dataset.

Class GIFs LR DCA DCM AFM ours
gymnastics 0.34 040 0.75 052 056 0.66
parkour 054 061 054 071 075 0.83
skating 055 062 066 064 068 0.70
skiing 033 036 06 0.61 0.64 0.69
surfing 054 061 065 073 078 0.69
dog 031 060 058 069 072 0.67
Average 046 053 0.63 065 0.68 0.69

model global information, with a multi-stage loss to opti-
mize our model. We notice that, in the “gymnastics” cate-
gory, our result does not reach our expectation, and is worse
than DCA. After analyzing the videos carefully, we find that
those videos are mostly recorded indoors, and the scenes are
similar. It is the motion of the athletes that contributes to
the highlight detection significantly. However, our object-
semantic based method ignores to capture such information.
In the future, we will introduce the motion/action informa-
tion into our framework to further improve the performance.
SumMe Dataset: Table 2 shows the evaluation results of all
25 videos with cross validation. It is easy to see that our
proposed method outperforms the comparing methods in
most videos especially in “Bearpark climbing”, “Cooking”,
“Paluma ball”. On average, the average accuracy of our pro-
posed model is 0.73, which obtains an absolute gain of 11%
over the state-of-the-art method AFM.

Another advantage is that we only use very few frames
in one segment, but achieve comparable/superior results
against baseline methods that use all of the frames. It aver-
agely takes 1.48s for our model to predict the highlight score
per video. The results demonstrate that the proposed model
can achieve favorable performance with high efficiency.

Parameter Sensitivity We investigate the influence of the
number of nodes in each frame NV, and the trade-off term
for multi-stage loss A. We vary N from 5 to 30, while keep-
ing other parameters fixed. The results on YouTube are pre-
sented in Figure 3(a). We can observe that, with the in-
crease of N, the performance is boosted at first, since our
model learns richer object semantics. However, the accu-
racy is dropped after reaching a high score due to the noises
are introduced when considering more object proposals. We
vary A from 0.1 to 0.9, while keeping other parameters fixed.
The results on YouTube datasets are present in Figure 3(b).
We can find that for most categories, the accuracy is higher
when we cooperate with the classification loss and ranking
loss, which indicates our multi-stage loss strategy is useful.

In addition, to analyze the proposed model’s sensitivity
of the backbone network, we change the backbone from
ResNet50 to AlexNet. The AlexNet is pretrained on the Im-
ageNet database (Deng et al. 2009). For this baseline, we
achieve the average mAP of 0.70 on the SumMe dataset,
with 8% increment compared with AFM (Jiao et al. 2018),
and only 3% decrease compared with the ResNet50. The re-
sults show that our VH-GNN is robust to various backbones.
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Table 2: Results comparison on the SumMe dataset.

VideoName DCA DCM AFM ours
Air Force One 0.68 074 0.67 0.80
Base Jumping 0.64 0.68 0.68 0.60
Bearpark climbing 0.73 036 0.68 0.98
Bike Polo 059 065 079 0.68
Bus in Rock Runnel 057 047 0.65 071
car over camera 055 086 095 092
Car railcrossing 0.54 030 040 0.70
Cockpit Landing 051 0.60 0.74 0.70
Cooking 037 047 038 0.78
Eiffel Tower 028 048 054 0.69
Excavators river crossing  0.65  0.50 055  0.67
Fire Domino 0.67 068 0.69 0.77
Jumps 032 045 050 0.63
Kids playing in leaves 030 036 023 0.96
Notre Dame 068 046 047 0.70
Paintball 063 082 072 0.69
Paluma Jump 049 050 0.66 0.86
playing ball 052 065 0.60 0.72
playing on water side 0.01 077 091 0.98
Saving dolpines 046 0.12 0.12 0.79
Scuba 075 072 095 095
St Maarten Landing 0.78 0.87 0.82 0.5
Statue of Liberty 0.65 023 026 0.93
Uncut Evening Flight 049 068 083 0.76
Valparaiso Downhill 040 087 094 0.74
Average 053 057 062 0.73

Figure 3: Parameter analysis with different IV and \.

Table 3: Accuracy of different variants on Youtube Dataset.

Class w/o TG w/0oSG w/o Att FULL
gymnastics 0.54 0.63 0.63 0.66
parkour 0.71 0.70 0.63 0.77
skating 0.64 0.48 0.60 0.83
skiing 0.64 0.56 0.60 0.69
surfing 0.63 0.56 0.61 0.69
dog 0.63 0.63 0.57 0.67
Average 0.63 0.57 0.61 0.69




(d) skating

(a) dog (c) parkour

(b) gymnast.

(e) skiing

(f) surfing

(g) Scuba

(h) SXM L

Figure 4: Examples of highlight frames and scores for videos in YouTube((a)—(f)) and SumMe dataset((g)—(h), SXM L is short
for St Maarten Landing).The red blocks besides the frames indicate the strength of highlight. The darker, the more highlight.

Ablation Study We demonstrate the necessity of compo-
nents of our model by comparing the accuracy of ablated
versions on the YouTube Dataset, as shown in Table 3.

W/o TG omits the temporal graph, so the features from
the spatial graphs are directly fed to the prediction layer.

W/o SG abandons the spatial graphs. As a result, the orig-
inal features are directly fed into a max-pooling layer to ob-
tain the node features in the temporal graph.

W/o Att takes out the attention weight when aggregating
the message, and uses the sum operation as the alternative.

From the results in Table 3, we can find that the overall
accuracy of VH-GNN is higher than that of any variants.
This demonstrates that our decomposed spatial and tempo-
ral graphs are useful, and can capture the object semantics
as well as global information. Moreover, the results also val-
idate that the proposed graph operation is important.

Qualitative Analysis

Figure 4 shows some sampled frames from 8 videos in both
YouTube and SumMe datasets. The highlight score of each
frame is first normalized with min-max normalization and
then mapped to color scale. Deeper color beside the frame
reflects higher highlight strength. We can easily see that our
model can well discriminate the highlight and non-highlight
frames. For example, in Figure 4(a), the first 4 frames get
higher scores than the 5-8th frames. The reason is that the
dog in the 5-8th images is far from the shot and small, thus
these frames are unlikely to be highlight.

Conclusion

In this paper, we present VH-GNN for efficient video high-
light detection. Our model achieves the state-of-the-art per-
formance and is significantly fast. Specifically, we incor-
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porate decomposed spatial and temporal graphs to capture
object semantics and global information, which contributes
to the video highlight detection. Although our proposed
video highlight detector can achieve favorable results in the
two benchmark datasets, our method can still be improved.
Firstly, the proposed VH-GNN dose not achieve the topmost
performance when handling the indoor scenes with fixed
camera and similar objects. Actually, we can introduce the
relative-position of objects as a feature to record the motion
of objects. Other action/motion features can also be used
to improve the proposed method. Secondly, since different
videos have different lengths, in this paper, we simply con-
sider one video in a training batch. In fact, we can uniformly
sample fixed number of frames from each video, then train
the model with better parallel processing capability.
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