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Abstract

Few-shot object detection is a challenging but realistic sce-
nario, where only a few annotated training images are avail-
able for training detectors. A popular approach to handle
this problem is transfer learning, i.e., fine-tuning a detec-
tor pretrained on a source-domain benchmark. However,
such transferred detector often fails to recognize new ob-
jects in the target domain, due to low data diversity of
training samples. To tackle this problem, we propose a
novel Context-Transformer within a concise deep transfer
framework. Specifically, Context-Transformer can effectively
leverage source-domain object knowledge as guidance, and
automatically exploit contexts from only a few training im-
ages in the target domain. Subsequently, it can adaptively
integrate these relational clues to enhance the discriminative
power of detector, in order to reduce object confusion in few-
shot scenarios. Moreover, Context-Transformer is flexibly
embedded in the popular SSD-style detectors, which makes
it a plug-and-play module for end-to-end few-shot learning.
Finally, we evaluate Context-Transformer on the challenging
settings of few-shot detection and incremental few-shot de-
tection. The experimental results show that, our framework
outperforms the recent state-of-the-art approaches.

1 Introduction

Object detection has been mainly promoted by deep learning
frameworks (Ren et al. 2015; He et al. 2017; Redmon et al.
2016; Liu et al. 2016). However, the impressive performance
of these detectors heavily relies on large-scale benchmarks
with bounding box annotations, which are time-consuming
or infeasible to obtain in practice. As a result, we often face
a real-world scenario, i.e., few-shot object detection, where
there are only a few annotated training images. In this case,
deep learning will deteriorate due to severe overfitting.

A popular strategy is transfer learning, i.e., one can train
an object detector with a large-scale benchmark in the source
domain, and then fine-tune it with a few samples in the tar-
get domain. By doing so, we observe an interesting and im-
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portant phenomenon. For few-shot object detection, a trans-
ferred detector often performs well on localization while
encounters difficulty in classification, e.g., a horse is well-
localized but misclassified as a dog in Fig. 1.

The main reason is that, an object detector uses bound-
ing box regressor (BBOX) for localization while ob-
ject+background classifier (OBJ+BG) for classification.
BBOX is often category-irrelevant. Hence, we can use
source-domain BBOX as a reliable initialization of target-
domain BBOX. In this case, the detector can effectively
localize new objects after fine-tuning with a few training
samples in the target domain. On the contrary, OBJ+BG is
category-specific. In other words, it has to be randomly ini-
tialized for new categories in the target domain. However,
only a few training images are available in this domain. Such
low data diversity significantly enlarges the training diffi-
culty of classifier, which leads to the key problem above,
i.e., object confusion caused by annotation scarcity.

To address this problem, we propose a novel Context-
Transformer. It can automatically exploit contexts from only
a few images on hand, and attentively integrate such dis-
tinct clues to generalize detection. Our design is inspired by
(Oliva and Torralba 2007) that, at an early age with little
object knowledge, humans can build the contextual associa-
tions for visual recognition. In other words, under little su-
pervision scenarios, we will try to explore distinct clues in
the surroundings (which we refer to as contextual fields in
this paper), to clarify object confusion. For example, a few
images may be discriminative enough to distinguish horse
from dog, when we find that these images contain important
contents such as a person sits on this animal, the scene is
about wild grassland, etc.

To mimic this capacity, we design Context-Transformer
in a concise transfer framework. Specifically, it consists of
two simple but effective submodules, i.e., affinity discovery
and context aggregation. For a target-domain image, affin-
ity discovery first constructs a set of contextual fields, ac-
cording to default prior boxes (also called as anchor boxes)
in the detector. Then, it adaptively exploits relations be-
tween prior boxes and contextual fields. Finally, context
aggregation leverages such relations as guidance, and in-
tegrates key contexts attentively into each prior box. As a

12653



 Target Image (Few-Shot) 

Context-Transformer 

Source Detector 
(Fine-Tune) 

Target Image (Few-Shot) 

dog 

       Localization: (√) 
       Classification: (X) 

horse 

       Localization: (√) 
       Classification: (√) 

Source Detector 
(Fine-Tune) 

Affinity Discovery 

Context Aggregation 

Prior Box Contextual Fields  

(a) Fine-Tune Source Detector (b) Fine-Tune Source Detector with Context-Transformer 

Figure 1: Our Motivation. Fine-tuning a pretrained detector is a popular approach for few-shot object detection. However, such
transferred detector often suffers from object confusion in the new target domain, e.g., a horse is misclassified as a dog, due to
annotation scarcity. Alternatively, humans can effectively correct such few-shot confusions by further exploiting discriminative
context clues from only a few images on hand. Inspired by this observation, we introduce a novel Context-Transformer to tackle
object confusion for few-shot object detection. More explanations can be found in Section 1 and 4.

result, Context-Transformer can generate a context-aware
representation for each prior box, which allows detector
to distinguish few-shot confusion with discriminative con-
text clues. To our best knowledge, Context-Transformer
is the first work to investigate context for few-shot ob-
ject detection. Since it does not require excessive con-
textual assumptions on aspect ratios, locations and spatial
scales, Context-Transformer can flexibly capture diversi-
fied and discriminative contexts to distinguish object con-
fusion. More importantly, it leverages elaborative transfer
insights for few-shot detection. With guidance of source-
domain knowledge, Context-Transformer can effectively re-
duce learning difficulty when exploiting contexts from few
annotated images in the target domain. Additionally, we em-
bed Context-Transformer into the popular SSD-style detec-
tors. Such plug-and-play property makes it practical for few-
shot detection. Finally, we conduct extensive experiments
on different few-shot settings, where our framework outper-
forms the recent state-of-the-art approaches.

2 Related Works

Over the past years, we have witnessed the fast development
of deep learning in object detection. In general, the deep de-
tection frameworks are mainly categorized into two types,
i.e., one-stage detectors (e.g., YOLO or SSD styles (Red-
mon et al. 2016; Liu et al. 2016)) and two-stage detectors
(e.g., R-CNN styles (Girshick et al. 2014; Girshick 2015;
Ren et al. 2015; He et al. 2017)). Even though both types
have achieved great successes in object detection, they heav-
ily depend on large-scale benchmarks with bounding boxes
annotations. Collecting such fully-annotated datasets is of-
ten difficult or labor-intensive for real-life applications.

Few-Shot Object Detection. To alleviate this problem,
weakly (Bilen and Vedaldi 2016; Lai and Gong 2017;
Tang et al. 2017) or semi (Hoffman et al. 2014; Tang et al.
2016) supervised detectors have been proposed. However,
only object labels are available in the weakly-supervised set-
ting, which restricts the detection performance. The semi-
supervised detectors often assume that, there is a moderate
amount of object box annotations, which can be still chal-
lenging to obtain in practice. Subsequently, few-shot data
assumption has been proposed in (Dong et al. 2018). How-
ever, it relies on multi-model fusion with a complex training
procedure, which may reduce the efficiency of model de-
ployment for a new few-shot detection task. Recently, a fea-
ture reweighting approach has been introduced in a transfer
learning framework (Kang et al. 2019). Even though its sim-
plicity is attractive, this approach requires object masks as
extra inputs to train a meta-model of feature reweighting.
More importantly, most approaches may ignore object con-
fusion caused by low data diversity. Alternatively, we pro-
pose a novel Context-Transformer to address this problem.

Object Detection with Contexts. Modeling context has
been a long-term challenge for object detection (Bell et
al. 2016; Chen and Gupta 2017; Kantorov et al. 2016;
Mottaghi et al. 2014). The main reason is that, objects may
have various locations, scales, aspect ratios, and classes.
It is often difficult to model such complex instance-level
relations by manual design. Recently, several works have
been proposed to alleviate this difficulty, by automatically
building up object relations with non-local attention (Wang
et al. 2018; Hu et al. 2018). However, these approaches
would lead to unsatisfactory performance in few-shot detec-
tion, without elaborative transfer insights. Alternatively, our
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Context-Transformer is built upon a concise transfer frame-
work, which can leverage source-domain object knowledge
as guidance, and effectively exploit target-domain context
for few-shot generalization.

Few-Shot Learning. Unlike deep learning models, hu-
mans can learn new concepts with little supervision (Lake,
Salakhutdinov, and Tenenbaum 2015). For this reason,
few-shot learning has been investigated by Bayesian pro-
gram learning (Lake, Salakhutdinov, and Tenenbaum 2015),
memory machines (Graves, Wayne, and Danihelka 2014;
Santoro et al. 2016), meta learning (Finn, Abbeel, and
Levine 2017; Yoon et al. 2018), metric learning (Qi, Brown,
and Lowe 2018; Snell, Swersky, and Zemel 2017; Vinyals et
al. 2016), etc. However, these approaches are designed for
the standard classification task. Hence, they may lack the
adaptation capacity for few-shot object detection.

3 Source Detection Transfer

To begin with, we formulate few-shot object detection in a
practical transfer learning setting. First, we assume that, we
can access to a published detection benchmark with Cs ob-
ject categories. It is used as large-scale dataset for model
pretraining in the source domain. Second, we aim at ad-
dressing few-shot detection in the target domain. Specifi-
cally, this task consists of Ct object categories. For each
category, there are only N fully-annotated training images,
e.g., N=5 for 5-shot case. Finally, we consider a challenging
transfer scenario, i.e., object categories are non-overlapped
between source and target domains, for evaluating whether
our framework can generalize well on new object categories.

Detection Backbone. In this work, we choose the SSD-
style detector (Liu et al. 2016; Liu, Huang, and others 2018)
as backbone. One reason is that, multi-scale spatial receptive
fields in this architecture provide rich contexts. Additionally,
its concise detection design promotes flexibility of our trans-
fer framework in practice. In particular, the SSD-style de-
tector is a one-stage detection framework, which consists of
detection heads on K spatial scales. For each spatial scale,
the detection heads contain bounding box regressor (BBOX)
and object+background classifier (OBJ+BG).

Source Detection Transfer. To generalize few-shot
learning in the target domain, we first pretrain the SSD-
style detector with large-scale benchmark in the source do-
main. In the following, we explain how to transfer source-
domain detection heads (i.e., BBOX and OBJ+BG), so that
one can leverage prior knowledge as much as possible to re-
duce overfitting for few-shot object detection.

(1) Source BBOX: Fine-Tuning. BBOX is used for local-
ization. As it is shared among different categories, source-
domain BBOX can be reused in the target domain. Fur-
thermore, source-domain BBOX is pretrained with rich an-
notations in the large-scale dataset. Hence, fine-tuning this
BBOX is often reliable to localize new objects, even though
we only have a few training images in the target domain.

(2) Source BG: Fine-Tuning. OBJ+BG is used for classi-
fication. In this work, we factorize OBJ+BG separately into
OBJ and BG classifiers. The reason is that, BG is a binary
classifier (object or background), i.e., it is shared among dif-

ferent object categories. In this case, the pretrained BG can
be reused in the target domain by fine-tuning.

(3) Source OBJ: Preserving. The last but the most chal-
lenging head is OBJ, i.e., multi-object classifier. Note that,
object categories in the target domain are non-overlapped
with those in the source domain. Traditionally, one should
unload source-domain OBJ and add a new target-domain
OBJ. However, adding new OBJ directly on top of high-
dimensional feature would introduce a large number of
randomly-initialized parameters, especially for multi-scale
design in SSD-style frameworks. As a result, it is often hard
to train such new OBJ from scratch, when we have only a
few annotated images in the target domain. Alternatively,
we propose to preserve source-domain OBJ and add a new
target-domain OBJ on top of it. The main reason is that, the
dimensionality of prediction score in source-domain OBJ
is often much smaller than the number of feature channels
in convolutional layers. When adding a new target-domain
OBJ on top of source-domain OBJ, we will introduce fewer
extra parameters and therefore alleviate overfitting.

Context-Transformer Between Source and Target
OBJs. To some degree, preserving source-domain OBJ can
reduce the training difficulty of target-domain OBJ. How-
ever, simple source detection transfer is not enough to ad-
dress the underlying problem of few-shot object detection,
i.e., object confusion introduced by annotation scarcity in
the target domain. Hence, it is still necessary to further ex-
ploit target-domain knowledge effectively from only a few
annotated training images. As mentioned in our introduc-
tion, humans often leverage contexts as a discriminative clue
to distinguish such few-shot confusion. Motivated by this,
we embed a novel Context-Transformer between source and
target OBJs. It can automatically exploit contexts, with the
guidance of source domain object knowledge from source
OBJ. Then, it can integrate such relational clues to enhance
target OBJ for few-shot detection.

4 Context-Transformer

In this section, we introduce Context-Transformer for few-
shot object detection. Specifically, it is a novel plug-and-
play module between source and target OBJs. We name it
as Context-Transformer, because it consists of two submod-
ules to transform contexts, i.e., affinity discovery and context
aggregation. The whole framework is shown in Fig. 2.

4.1 Affinity Discovery

In SSD-style detectors (Liu et al. 2016), prior boxes are de-
fault anchor boxes with various aspect ratios. Since classifi-
cation is performed over the representations of these boxes,
affinity discovery first constructs a set of contextual fields
for prior boxes. Subsequently, it exploits relations between
prior boxes and contextual fields in a target-domain image,
with guidance of source-domain object knowledge.

Source-Domain Object Knowledge of Prior Boxes. For
a target-domain image, we should first find reliable represen-
tations of prior boxes, in order to perform affinity discov-
ery under few-shot settings. Specifically, we feed a target-
domain image into the pretrained SSD-style detector, and
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Figure 2: Few-Shot Detection with Context-Transformer. It is a plug-and-play module between source and target OBJs, based
on SSD-style detectors. It consists of affinity discovery and context aggregation, which can effectively reduce object confusion
in the few-shot target domain, by exploiting contexts in a concise transfer framework. More details can be found in Section 4.

extract the score tensor from source OBJ (before softmax),

Pk ∈ R
Hk×Wk×(Mk×Cs), k = 1, ...,K, (1)

where Pk(h,w,m, :) ∈ R
Cs is a source-domain score vec-

tor, w.r.t., the prior box with the m-th aspect ratio located at
(h,w) of the k-th spatial scale. We would like to emphasize
that, the score of source-domain classifier often provides
rich semantic knowledge about target-domain object cate-
gories (Tzeng et al. 2015; Yim et al. 2017). Hence, {Pk}Kk=1
is a preferable representation of prior boxes for a target-
domain image. Relevant visualization can be found in our
supplementary material.

Contextual Field Construction via Pooling. After ob-
taining the representation of prior boxes, we construct a set
of contextual fields for comparison. Ideally, we hope that
contextual fields are not constructed with excessive spatial
assumptions and complicated operations, due to the fact that
we only have a few training images on hand. A naive strat-
egy is to use all prior boxes directly as contextual fields.
However, there are approximately 10,000 prior boxes in the
SSD-style architecture. Comparing each prior box with all
others would apparently introduce unnecessary learning dif-
ficulty for few-shot cases. Alternatively, humans often check
sparse contextual fields, instead of paying attention to ev-
ery tiny detail in an image. Motivated by this observation,
we propose to perform spatial pooling (e.g., max pooling)
over prior boxes Pk. As a result, we obtain the score tensor
Qk ∈ R

Uk×Vk×(Mk×Cs) for a set of contextual fields,

Qk = SpatialPool(Pk), k = 1, ...,K, (2)

where Uk × Vk is the size of the k-th scale after pooling.
Affinity Discovery. To discover affinity between prior

boxes and contextual fields, we compare them according
to their source-domain scores. For convenience, we reshape
score tensors P1:K and Q1:K respectively as matrices P ∈

R
Dp×Cs and Q ∈ R

Dq×Cs , where each row of P (or Q)
refers to the source-domain score vector of a prior box (or a
contextual field). Moreover, Dp =

∑K
k=1 Hk × Wk × Mk

and Dq =
∑K

k=1 Uk × Vk × Mk are respectively the to-
tal number of prior boxes and contextual fields in a target-
domain image. For simplicity, we choose the widely-used
dot-product kernel to compare P and Q in the embedding
space. As a result, we obtain an affinity matrix A ∈ R

Dp×Dq

between prior boxes and contextual fields,

A = f(P)× g(Q)�, (3)
where A(i, :) ∈ R

1×Dq indicates the importance of all con-
textual fields, w.r.t., the i-th prior box. f(P) ∈ R

Dp×Cs

and g(Q) ∈ R
Dq×Cs are embeddings for prior boxes and

contextual fields respectively, where f (or g) is a fully-
connected layer that is shared among prior boxes (or contex-
tual fields). These layers can increase learning flexibility of
kernel computation. To sum up, affinity discovery allows a
prior box to identify its important contextual fields automati-
cally from various aspect ratios, locations and spatial scales.
Such diversified relations provide discriminative clues to re-
duce object confusion caused by annotation scarcity.

4.2 Context Aggregation

After finding affinity between prior boxes and contextual
fields, we use it as a relational attention to integrate contexts
into the representation of each prior box.

Context Aggregation. We first add softmax on each
row of A. In this case, softmax(A(i, :)) becomes a gate
vector that indicates how important each contextual field is
for the i-th prior box. We use it to summarize all the contexts
Q attentively,

L(i, :) = softmax(A(i, :))× h(Q), (4)
where L(i, :) is the weighted contextual vector for the i-
th prior box (i=1, ..., Dp). Additionally, h(Q) ∈ R

Dq×Cs
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refers to a contextual embedding, where h is a fully-
connected layer to promote learning flexibility. Finally, we
aggregate the weighted contextual matrix L ∈ R

Dp×Cs into
the original score matrix P, and obtain the context-aware
score matrix of prior boxes P̂ ∈ R

Dp×Cs ,

P̂ = P+ ϕ(L). (5)

Similarly, the embedding ϕ(L) ∈ R
Dp×Cs is constructed

by a fully-connected layer ϕ. Since P̂ is context-aware, we
expect that it can enhance the discriminative power of prior
boxes to reduce object confusion in few-shot detection.

Target OBJ. Finally, we feed P̂ into target-domain OBJ,

Ŷ = softmax(P̂×Θ), (6)

where Ŷ ∈ R
Dp×Ct is the target-domain score matrix for

classification. Note that, target OBJ is shared among dif-
ferent aspect ratios and spatial scales in our design, with
a common parameter matrix Θ ∈ R

Cs×Ct . One reason is
that, each prior box has combined with its vital contextual
fields of different aspect ratios and spatial scales, i.e., each
row of P̂ has become a multi-scale score vector. Hence, it
is unnecessary to assign an exclusive OBJ on each individ-
ual scale. More importantly, target domain is few-shot. The
shared OBJ can effectively reduce overfitting in this case.

Discussions. We further clarify the differences between
related works and our Context-Transformer. (1) Few-
Shot Learners vs. Context-Transformer. Few-shot learn-
ers (Snell, Swersky, and Zemel 2017; Finn, Abbeel, and
Levine 2017; Qi, Brown, and Lowe 2018) and our Context-
Transformer follow the spirit of learning with little supervi-
sion, in order to effectively generalize model based on few
training samples. However, most few-shot learners are de-
signed for standard classification tasks. Hence, they are of-
ten used as a general classifier without taking any detec-
tion insights into account. On the contrary, our Context-
Transformer is a plug-and-play module for object detection.
Via exploiting contexts in a concise transfer framework, it
can adaptively generalize source-domain detector to reduce
object confusion in the few-shot target domain. In fact, our
experiment shows that, one can fine-tune the pretrained de-
tector with Context-Transformer in the training phase, and
flexibly unload it in the testing phase without much loss
of generalization. All these facts make Context-Transformer
a preferable choice for few-shot detection. (2) Non-local
Transformer vs. Context-Transformer. Non-local Trans-
former (Wang et al. 2018) and our Context-Transformer fol-
low the spirit of attention (Vaswani et al. 2017) for mod-
eling relations. However, the following differences make
our Context-Transformer a distinct module. First, Non-local
Transformer does not take any few-shot insights into ac-
count. Hence, it would not be helpful to reduce training
difficulty with little supervision. Alternatively, our Context-
Transformer leverages source knowledge as guidance to
alleviate overfitting in few-shot cases. Second, Non-local
Transformer is not particularly designed for object detec-
tion. It is simply embedded between two convolution blocks
in the standard CNN for space/spacetime modeling. Alter-
natively, our Context-Transformer is developed for few-shot

object detection. We elaborately embed it between source
and target OBJs in a SSD-style detection framework, so
that it can tackle object confusions caused by annotation
scarcity. Third, Non-local Transformer is a self-attention
module, which aims at learning space/spacetime dependen-
cies in general. Alternatively, our Context-Transformer is
an attention module operated between prior boxes and con-
textual fields. It is used to automatically discover important
contextual fields for each prior box, and subsequently aggre-
gate such affinity to enhance OBJ for few-shot detection. In
our experiments, we compare our Context-Transformer with
these related works to show effectiveness and advancement.

5 Experiments
To evaluate our approach effectively, we adapt the popular
benchmarks as two challenging settings, i.e., few-shot object
detection, and incremental few-shot object detection. More
results can be found in our supplementary material.

5.1 Few-Shot Object Detection

Data Settings. First, we set VOC07+12 as our target-
domain task. The few-shot training set consists of N images
(per category) that are randomly sampled from the original
train/val set. Unless stated otherwise, N is 5 in our experi-
ments. Second, we choose a source-domain benchmark for
pretraining. To evaluate the performance of detecting novel
categories in the target domain, we remove 20 categories of
COCO that are overlapped with VOC, and use the rest 60
categories of COCO as source-domain data. Finally, we re-
port the results on the official test set of VOC2007, by mean
average precision (mAP) at 0.5 IoU threshold.

Implementation Details. We choose a recent SSD-style
detector (Liu, Huang, and others 2018) as basic architec-
ture, which is built upon 6 spatial scales (i.e., 38 × 38,
19 × 19, 10 × 10, 5 × 5, 3 × 3, 1 × 1). For contex-
tual filed construction, we perform spatial max pooling on
the first 4 scales of source-domain score tensors, where
the kernel sizes are 3, 2, 2, 2 and the stride is the same
as the kernel size. The embedding functions in Context-
Transformer are residual-style FC layers, where input and
output have the same number of channels. Finally, we im-
plement our approach with PyTorch (Paszke et al. 2017),
where all the experiments run on 4 TitanXp GPUs. For
pre-training in the source domain, we follow the details of
original SSD-style detectors (Liu, Huang, and others 2018;
Liu et al. 2016). For fine-tuning in the target domain, we set
the implementation details where the batch size is 64, the op-
timization is SGD with momentum 0.9, the initial learning
rate is 4 × 10−3 (decreased by 10 after 3k and 3.5k itera-
tions), the weight decay is 5 × 10−4, the total number of
training iterations is 4k.

Source Detection Transfer. The key design in Source
Detection Transfer is OBJ. To reduce object confusion in
the few-shot target domain, we propose to preserve source
OBJ, and embed Context-Transformer between source and
target OBJs. In Table 1, we evaluate the effectiveness
of this design, by comparison with baseline (i.e., tradi-
tional fine-tuning with only target OBJ). First, our ap-
proach outperforms baseline, by adding target OBJ on
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Method OBJ (S) Context-Transformer OBJ (T) mAP
Baseline × × √

39.4

Ours

√ × √
40.9

× √ √
41.5√ √ √
43.8√ √ → × √
43.4

Table 1: Source Detection Transfer. Baseline: traditional
fine-tuning with target-domain OBJ.

√ → ×: We fine-
tune the pretrained detector with Context-Transformer in the
training phase, and then unload it in the testing phase.

Context Construction mAP Embedding Layer mAP
Without 42.5 Without 42.2
Pool avg 43.5 FC no residual 43.0
Pool max 43.8 FC residual 43.8

Affinity Discovery mAP OBJ (Target) mAP
Euclidean 43.5 Separate 41.4
Cosine 43.8 Share 43.8

Table 2: Designs of Context-Transformer.

top of source OBJ. It shows that, preserving source OBJ
can alleviate overfitting for few-shot learning. Second,
our approach outperforms baseline, by adding target OBJ
on top of Context-Transformer. It shows that, Context-
Transformer can effectively reduce confusion by context
learning. Third, our approach achieves the best when we em-
bed Context-Transformer between source and target OBJs.
In this case, Context-Transformer can sufficiently leverage
source-domain knowledge to enhance target OBJ. Note that,
our design only introduces 15.6K extra parameters (i.e.,
Context-Transformer: 14.4K, target OBJ: 1.2K), while base-
line introduces 2,860K extra parameters by adding target
OBJ directly on top of multi-scale convolution features. It
shows that, our design is of high efficiency. Finally, we un-
load Context-Transformer in the testing, after applying it in
the training. As expected, the performance drops marginally,
indicating that Context-Transformer gradually generalizes
few-shot detector by learning contexts during training.

Designs of Context-Transformer. We investigate key
designs of Context-Transformer in Table 2. (1) Context Con-
struction. First, the pooling cases are better. It shows that,
we do not need to put efforts on every tiny details in the
images. Pooling can effectively reduce the number of con-
textual fields, and consequently alleviate learning difficulty
in comparison between prior boxes and contexts. Addition-
ally, max pooling is slightly better than average pooling.
Hence, we choose max pooling. (2) Embedding Functions.
As expected, Context-Transformer performs better with FC
layers, due to the improvement of learning flexibility. Ad-
ditionally, the residual style is slightly better than the no-
residual case, since it can reduce the risk of random initial-
ization especially for few-shot learning. Hence, we choose
the residual-style FC layers. (3) Affinity Discovery. We com-
pute affinity by two popular similarity metric, i.e., Cosine
(dot-product) and Euclidean distance. The results are com-
parable, showing that Context-Transformer is robust to the
metric choice. For simplicity, we choose Cosine in our pa-
per. (4) OBJ (Target). Sharing OBJ (Target) among spatial

No. of Shots (N) 1 2 3 5 10 all
Baseline 21.5 27.9 33.5 39.4 49.2 80.7
Ours 27.0 30.6 36.8 43.8 51.4 81.5

Table 3: Influence of Training Shots.
Trials No. 1 2 3 4 5 mean±std
Baseline 41.7 43.1 37.9 43.5 38.2 (Baseline)
Ours 43.7 46.5 41.5 45.7 41.1 40.4±2.0
Trials No. 6 7 8 9 10 mean±std
Baseline 40.4 38.8 40.7 38.7 40.6 (Ours)
Ours 44.7 41.9 43.4 42.4 42.3 43.3±1.8

Table 4: Influence of Random Trials (5-Shot Case).

SSD-Style Framework (Liu et al. 2016) (Liu et al. 2018)
Baseline Ours Baseline Ours

mAP 35.3 38.7 39.4 43.8

Table 5: Influence of SSD-Style Framework.

scales achieves better performance. This perfectly matches
our insight in Section 4.2, i.e., each prior box has combined
with its key contextual fields of various spatial scales, after
learning with Context-Transformer. Hence, it is unnecessary
to assign an exclusive OBJ (Target) for each scale separately.

Influence of Shot and Framework. First, the detection
performance tends to be improved as the number of train-
ing shots increases in Table 3. Interestingly, we find that
the margin between our approach and baseline tends to de-
cline gradually, when we have more training shots. This
matches our insight that, Context-Transformer is preferable
to distinguish object confusion caused by low data diver-
sity. When the number of training samples increases in the
target domain, such few-shot confusion would be alleviated
with richer annotations. But still, Context-Transformer can
model discriminative relations to boost detection in general.
Hence, our approach also outperforms baseline for all-shot
setting. Second, our approach exhibits high robustness to
random trials (Table 4), where we run our approach on ex-
tra 10 random trials for 5-shot case. The results show that
our approach consistantly outperforms baseline. Finally, we
build Context-Transformer upon two SSD-style frameworks
(Liu et al. 2016) and (Liu, Huang, and others 2018). In Table
5, our approach significantly outperforms baseline. The re-
sult is better on (Liu, Huang, and others 2018) due to multi-
scale dilation.

Comparison with Related Learners. We compare
Context-Transformer with popular few-shot learners (Snell,
Swersky, and Zemel 2017; Qi, Brown, and Lowe 2018) and
Non-local Transformer (Wang et al. 2018). We re-implement
these approaches in our transfer framework, where we re-
place Context-Transformer with these learners. More imple-
mentation details can be found in our supplementary ma-
terial. In Fig. 3, Context-Transformer outperforms Proto-
type (Snell, Swersky, and Zemel 2017) and Imprinted (Qi,
Brown, and Lowe 2018), which are two well-known few-
shot classifiers. It shows that, general methods may not
be sufficient for few-shot detection. Furthermore, Context-
Transformer outperforms Non-local (Wang et al. 2018). It
shows that, it is preferable to discover affinity between prior
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Figure 3: Comparison with Related Learners (Few-Shot Object Detection). We re-implement these learners in our transfer
framework, where we replace our Context-Transformer by them.

Before Incremental Split1 Split2 Split3
S T S T S T

S
(All)

Shmelkov2017 67.2 - 68.3 - 69.3 -
Kang2019 69.7 - 72.0 - 70.8 -

Ours 72.9 - 73.0 - 74.0 -

After Incremental Split1 Split2 Split3
S T S T S T

S+T
(1Shot)

Shmelkov2017 52.5 23.9 54.0 19.2 54.6 21.4
Kang2019 66.4 14.8 68.2 15.7 65.9 19.2

Ours 67.4 34.2 68.1 26.0 66.8 29.3

S+T
(5Shot)

Shmelkov2017 57.4 38.8 58.1 32.5 59.1 31.8
Kang2019 63.4 33.9 66.6 30.1 64.6 40.6

Ours 67.3 44.2 67.4 36.3 67.4 40.8

Table 6: Incremental Few-Shot Object Detection (mAP). S:
source-domain classes. T: target-domain classes. More de-
tails can be found in Section 5.2.

0.61 0.14 

0.10 

Horse:0.83 
0.27 0.23 

Baseline Ours  Top-3 Contextual Fields with Their Affinity Scores  

Car:0.67 Train:0.84 

Dog:0.70 
0.18 

Figure 4: Context Affinity. Context-Transformer can distin-
guish a car from a train, when it finds that there is a family
house (1st context) with windows (2nd context) and entrance
stairs (3rd context). Similarly, it can distinguish a horse from
a dog, when it finds that there is a person (1st context) on top
of this animal (2nd and 3rd contexts).

boxes and contextual fields to reduce object confusion, in-
stead of self-attention among prior boxes.

5.2 Incremental Few-Shot Object Detection

In practice, many applications refer to an incremental sce-
nario (Kang et al. 2019), i.e., the proposed framework
should boost few-shot detection in a new target domain,
while maintaining the detection performance in the previ-
ous source domain. Our transfer framework can be straight-
forwardly extended to address it. Specifically, we add a
residual-style FC layer on top of the pretrained source-
domain OBJ, which allows us to construct a new source-
domain OBJ that can be more compatible with target-
domain OBJ. Then, we concatenate new source and target
OBJs to classify objects in both domains. More implemen-
tation details can be found in our supplementary material.
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Figure 5: Detection Visualization (5-Shot Case).
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Figure 6: Object Confusion (Top-4 Improvement). Context-
Transformer can effectively reduce the correctly-localized
but wrongly-classified instances (e.g., baseline vs. ours: 34%
vs. 24% for motorbike), and promote the correct detection
(e.g., baseline vs. ours: 47% vs. 57% for motorbike).

To evaluate this incremental scenario, we follow the origi-
nal data settings of (Kang et al. 2019). There are 3 data splits
that are built upon VOC07+12 (train/val) and VOC07 (test).
For each split, there are 15 source-domain classes (base)
and 5 target-domain classes (novel). For each target-domain
class, there are only N -shot annotated bounding boxes. We
compare our approach with two recent incremental detection
approaches, i.e., (Shmelkov, Schmid, and Alahari 2017) and
(Kang et al. 2019) As shown in Table 6, our approach can
effectively boost few-shot detection in the target domain as
well as maintain the performance in the source domain, and
significantly outperform the state-of-the-art approaches.

5.3 Visualization

Context Affinity. In Fig. 4, we show top-3 important con-
textual fields learned by our Context-Transformer. As we
can see, context affinity can correct object confusion to boost
few-shot detection. Furthermore, the sum of top-3 affinity
scores is over 0.6. It illustrates that, Context-Transformer
can learn to exploit sparse contextual fields for a prior box,
instead of focusing on every tiny detail in the image.

Detection Visualization. In Fig. 5, we show the detection
performance for 5-shot case. One can clearly see that, our
approach correctly detects different objects, while vanilla
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fine-tuning introduces large object confusions.
Object Confusion Analysis. In Fig. 6, we show top-4 im-

proved categories by our approach. As expected, Context-
Transformer can largely reduce object confusion and boost
performance in few-shot cases.

6 Conclusion

In this work, we propose a Context-Transformer for few-
shot object detection. By attentively exploiting multi-scale
contextual fields within a concise transfer framework, it can
effectively distinguish object confusion caused by annota-
tion scarcity. The extensive results demonstrate the effec-
tiveness of our approach.
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