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Abstract

To simulate human interaction in real life, dialog systems
are introduced to generate a response to previous chat utter-
ances. There have been several studies for two-speaker video
dialogs in the form of question answering. However, more
informative semantic cues might be exploited via a multi-
rounds chatting or discussing about the video among multiple
speakers. So multi-speakers video dialogs are more applica-
ble in real life. Besides, speakers always chat about a sub-
segment of the long video fragment for a period of time. Cur-
rent video dialog systems require to be directly given the rel-
evant video sub-segment which speakers are chatting about.
However, it is always hard to accurately spot the correspond-
ing video sub-segment in practical applications. In this pa-
per, we introduce a novel task of Multi-Speaker Video Dia-
log with frame-level Temporal Localization (MSVD-TL) to
make video dialog systems more applicable. Given a long
video fragment and a set of chat history utterances, MSVD-
TL targets to predict the following response and localize the
relevant video sub-segment in frame level, simultaneously.
We develop a new multi-task model with a response predic-
tion module and a frame-level temporal localization module.
Besides, we focus on the characteristic of the video dialog
generation process and exploit the relation among the video
fragment, the chat history, and the following response to re-
fine their representations. We evaluate our approach for both
the Multi-Speaker Video Dialog without frame-level tempo-
ral localization (MSVD w/o TL) task and the MSVD-TL task.
The experimental results further demonstrate that MSVD-TL
enhances the applicability of video dialog in real life.

Introduction

With the advance of artificial intelligence, dialog systems
are introduced to simulate human interaction in real life
and generate a response to previous chat utterances. Early
dialog systems (Sordoni et al. 2015; Lowe et al. 2015;
Serban et al. 2016) are just limited to the application of the
textual dialog in natural language understanding. However,
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Figure 1: The chat history utterances and the following re-
sponse for a dialog usually correspond to a sub-segment of
the long video fragment, as shown in the middle bars.

there are more and more multimedia data in real life. To ex-
pand the applicable scope of dialog systems, Das et al. (Das
et al. 2017) proposed Visual Dialog to help two speakers un-
derstand the static visual information of the image. Alamri
et al. (Alamri et al. 2018) introduced Scene-Aware Dialog
as an application of dialog systems for videos with both
static visual information and dynamic temporal information.
Although Visual Dialog and Scene-Aware Dialog success-
fully introduce visual understanding of images and videos
to dialog systems, they just consider two-speaker dialogs in
the form of question answering. More informative semantic
cues might be exploited via a multi-rounds chatting or dis-
cussing about the video among multiple speakers. As shown
in Figure 1, multiple speakers could provide more various
views for video understanding with more detailed informa-
tion. Besides, Figure 1 also shows that speakers always chat
about a sub-segment of the long video fragment for a pe-
riod of time. Scene-Aware Dialog is directly given the rel-
evant video sub-segment which speakers are chatting about
beforehand. However, it is always hard to accurately spot
the corresponding video sub-segment in practical applica-
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Get rakatic for the free 
kicks <END> The cats 
are cute mat <END>
Matt may i ask why did u 
stop swearing <END> 
Poor winston <END> 
Misssing chris ... 
cracking chrissssss just 
watched tonight's video :) 
<END> Hi mate

Get well soon winston
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Figure 2: The framework of our approach. Firstly, the video encoder, the chat history encoder, and the response encoder extract
frame features for the video fragment, word features for the chat history, and word features for candidate responses, respectively.
Then, we employ the designed selective refinement module to refine these features with the relation among them and produce
the corresponding global features. Finally, the response prediction module and the frame-level temporal localization module
judge the correctness of the input response and localize the relevant video sub-segment in frame level, respectively.

tions, which will cause some limitations of the video dialog
system for practical application. Therefore, adding a tempo-
ral localization function to automatically search the relevant
video sub-segment is desirable for video dialog systems.

In this paper, we introduce a novel task of Multi-
Speaker Video Dialog with frame-level Temporal Local-
ization (MSVD-TL). To evaluate this task, we extend the
Twitch-FIFA dataset (Pasunuru and Bansal 2018) which
provides collected soccer game videos along with multi-
ple users’ live chat conversations about the game. Given a
long video fragment and a set of chat history utterances,
MSVD-TL targets to predict the following response and lo-
calize the relevant video sub-segment in frame level, simul-
taneously. The two parallel sub-tasks of response predic-
tion and temporal localization motivate us to develop a new
multi-task model. As shown in Figure 2, the response pre-
diction module judges whether the triple of the video frag-
ment, the chat history, and the candidate response is positive
or negative. The frame-level temporal localization module
predicts the relevance score of each frame and localizes the
relevant video sub-segment in frame level. Besides, we fo-
cus on the characteristic of the video dialog generation pro-
cess and exploit the relation among the video fragment, the
chat history, and the following response to refine their rep-
resentations. Finally, we evaluate our approach for both the
multi-speaker video dialog without frame-level temporal lo-
calization (MSVD w/o TL) task and the MSVD-TL task.
The experimental results demonstrate that video dialog with
frame-level temporal localization could achieve perfect per-
formance. It also illustrates that MSVD-TL solves the limi-
tation of pre-given video fragments in practical applications.
Besides, the comparison experiments of our model illustrate
that considering the relation among inputs of the video frag-
ment, the chat history, and the following response could en-
hance their representations.

Our contributions of this work are as follows: (1) We in-
troduce a novel task MSVD-TL to enhance the applicabil-

ity of video dialog systems in real life. (2) We develop a
multi-task framework to predict the following response and
localize the relevant video sub-segment in frame level, si-
multaneously. (3) We focus on the characteristic of the video
dialog generation process and exploit the relation among the
video fragment, the chat history, and the following response
to refine their representations.

Related Work

Dialog systems have been studied with the outstanding
achievement in the field of artificial intelligence. However,
early dialog systems (Shaikh et al. 2010; Vinyals and Le
2015; Serban et al. 2017; Luan, Ji, and Ostendorf 2016) are
almost based on textual dialogs, which just focus on seman-
tic understanding of natural language sentences. As more
and more multimedia data appear in real life, dialog sys-
tems for multi-modal comprehension have attracted more re-
searchers. Recently, Das et al. (Das et al. 2017) proposed the
Visual Dialog task, which simulates the communication pro-
cess about an image between a questioner and an answerer.
The goal of Visual Dialog is to predict the response based on
both the visual information of the image, the semantic infor-
mation of the dialog history, and the semantic information
of the current question. To focus on the characteristic of the
dialog generation process, AMAE (Seo et al. 2017), HCIAE
(Lu et al. 2017), SF (Jain, Lazebnik, and Schwing 2018), Co-
att (Wu et al. 2018), and CorefNMN (Kottur et al. 2018) all
utilize the relation among inputs of the image, the dialog his-
tory, the current question, and candidate answers to enhance
their representations. Although the task of Visual Dialog re-
ally extends the application scope of dialog systems with
visual understanding, images just contain the static visual
information while videos own additional dynamic temporal
information. Based on it, Alamr et al. (Alamri et al. 2018) in-
troduced the task of Scene-Aware Dialog for videos. Similar
to Visual Dialog, Scene-Aware Dialog aims to predict the re-
sponse to current question based on the visual information of
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the video and the semantic information of the dialog history.
There are also several methods to solve this task. Nguyen
et al. (Nguyen et al. 2018) used the FiLM block (Perez et al.
2018) to extract features for inputs, which ultimately leads to
the extraction of more relevant features. Besides, Pasunuru
et al. (Pasunuru and Bansal 2019) and Hori et al. (Hori et al.
2018) both employed attention mechanisms to explore the
relation among inputs of the video, the dialog history, and
the question.

Although Visual Dialog and Scene-Aware Dialog
achieved the application of dialog systems for images and
videos, they just considers the two-speaker dialog in the
form of questioning answering. Whereas more informative
semantic cues might be exploited via a multi-rounds chatting
or discussing about the video among multiple speakers. Be-
sides, compared with the Visual Dialog task which needs to
automatically search the relevant regions based on semantic
information, the Scene-Aware Dialog task is directly given
the relevant video sub-segment which speakers are chatting
about beforehand. However, it is always hard to accurately
spot the corresponding video sub-segment in practical appli-
cations. The requirement of the relevant video sub-segment
beforehand will cause some limitations of video dialog sys-
tems for practical application. Therefore, a video dialog sys-
tem with the function of automatical temporal localization is
desirable to enhance its practical applicability.

The Proposed Approach

Formally, given a video fragment V = {ft}Tt=1 and a set of
chat history utterances U = {uk}Kk=1, the goal of MSVD-
TL is to predict the following response R and localize the
relevant video sub-segment Vs = {ft}Et=S in frame level. In
detail, T is the total frame number of the video fragment.
K is the utterance number of the chat history. S and E are
the start frame index and the end frame index of the rel-
evant video sub-segment, respectively. We develop a new
multi-task model with a response prediction module and a
frame-level temporal localization module to solve the two
sub-tasks respectively. Beside, we focus on the characteris-
tic of the video dialog generation process and design a se-
lective refinement module to exploit the relation among the
video fragment, the chat history, and the following response
to refine their representations. In this section, we firstly in-
troduce the data preprocessing process to extract features of
the video fragment, the chat history, and the following re-
sponse. Then, we explain how the selective refinement mod-
ule works. Finally, we devise the response prediction module
and the frame-level temporal localization module to predict
the following response and localize the relevant video sub-
segment in frame level.

Data Preprocessing

During the phase of data preprocessing, we firstly extract
frame features for the video fragment, word features for the
chat history, and word features for the following response.
Then, we process these features through three independent
recurrent neural networks (RNN) to learn the temporal char-
acteristic, respectively.

Video Encoder For the video fragment V , we firstly
extract the static feature for each frame with pre-trained
Inception-v3 (Szegedy et al. 2016) convolutional neural net-
work (CNN) model. Then we add the dynamic temporal in-
formation with a RNN. The output video fragment feature is
denoted as Hv = {hv

i }Tt=1, where T is the total frame num-
ber of the video fragment and hv

i is the i-th frame feature
with both static frame information and dynamic temporal
information.

Chat History Encoder For the set of chat history utter-
ances U , we firstly join all chat history utterances with an
END token to generate a sequence of words. After that, we
use GloVe (Pennington, Socher, and Manning 2014) as the
embedding matrix to embed each independent word in the
sequence. Then, we employ a RNN to add the sequential in-
formation to word features. The output chat history feature
is denoted as Hu = {hu

i }Mi=1, where M is the maximum
word number of the joint chat history and hu

i is the i-th word
feature.

Response Encoder For the following response R, we
firstly use GloVe (Pennington, Socher, and Manning 2014)
as the embedding matrix to embed each independent word in
the sentence. Then, we employ a RNN to add the sequential
information to word features. The output response feature is
denoted as Hr = {hr

i }Ni=1, where N is the maximum word
number of the following response and hr

i is the i-th word
feature.

Selective Refinement Module

In consideration of the characteristic of video dialog genera-
tion process, we design a selective refinement module to en-
hance representation of the video fragment, the chat history,
and the following response by adding supplement informa-
tion for them. Specifically, the video fragment is the refer-
ence of the chat history and the following response. There-
fore, the video fragment does not need supplement informa-
tion. However, the visual information of the video fragment
could be the supplement information for the chat history and
the following response. Besides, the following response is
not only based on the video fragment but also relevant to the
chat history. Therefore, the supplement information of the
following response also contains the semantic information
of the chat history.

Video Feature Refinement Although the video fragment
contains complete information, different frames play dif-
ferent roles in video understanding. We apply the self-
attention mechanism to select important frames and produce
the global video feature. Firstly, we calculate the importance
score αv

i for the i-th frame in the video fragment, and nor-
malize the importance score over all frames to produce the
corresponding important weight βv

i . Then, the global video
feature v is formulated as the dynamic weighted summation
of all frame features.

αv
i = WT

v hv
i (1)

βv
i =

exp(αv
i )∑T

i=1 exp(α
v
i )

(2)
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v =

T∑

i=1

βv
i · hv

i (3)

where Wv is a trainable parameter, and T is the total number
of frames in the video fragment.

Chat History Feature Refinement Since the visual infor-
mation of the video fragment could be the supplement in-
formation for the chat history, we employ a cross-attention
mechanism to add relevant visual information to word rep-
resentations of the chat history. Besides, different words in
the chat history also play different roles in semantic under-
standing. Therefore, we apply a self-attention mechanism to
select important words to product the global chat history fea-
ture, respectively.

Firstly, we calculate the relevance score αv→u
i,j for the pair

of i-th word in the chat history and the j-th frame in the
video fragment, and normalize the relevance score over all
video frames to produce the relevant weight βv→u

i,j . Then,
the weighted summation of all video frame features are re-
garded as the supplement feature for the i-th word in the chat
history.

αv→u
i,j = WT

u1
tanh(Wuuh

u
i +Wuvh

v
j ) (4)

βv→u
i,j =

exp(αv→u
i,j )

∑T
j=1 exp(α

v→u
i,j )

(5)

ev→u
i =

T∑

j=1

βv→u
i,j · hv

j (6)

where Wu1 , Wuu, and Wuv are trainable parameters. T is
the total frame number of the video fragment.

Secondly, we fuse the supplement feature ev→u
i and the

original feature hu
i by a concatenation operation. The result

is regarded as the new feature for the i-th word of the chat
history. After that, we calculate the importance score αu

i for
the i-th word in the chat history, and normalize the impor-
tance score over all words to produce the important weight
βu
i . Then, the global chat history feature u is formulated as

the dynamic weighted summation of all new word features.

ĥu
i = [hu

i ; e
v→u
i ] (7)

αu
i = WT

u ĥu
i (8)

βu
i =

exp(αu
i )∑M

i=1 exp(α
u
i )

(9)

u =
M∑

i=1

βu
i · ĥu

i (10)

where Wu is a trainable parameter and M is the max number
of words in the joint sentence of the chat history. [; ] is the
concatenation operation.

Response Feature Refinement As the visual information
of the video fragment could be the supplement information
for the chat history, the visual information of the video frag-
ment and the semantic information of the chat history both

could provide the supplement information for the following
response. Therefore, we utilize two cross-attention mecha-
nisms to capture relevant visual information of the video
fragment and semantic information of the chat history, re-
spectively. Besides, similar to word selection for the chat
history, we also apply a self-attention mechanism to select
important words to product the global response feature.

Firstly, we calculate the relevance score αv→r
i,j for the pair

of i-th word in the following response and the j-th frame in
the video fragment, and normalize the relevance score over
all video frames to produce the relevant weight βv→r

i,j . Then,
the weighted summation of all video frame features are re-
garded as the visual supplement feature for the i-th word in
the following response.

Secondly, we calculate the relevance score αu→r
i,j for the

pair of i-th word in the following response and the j-th word
in the chat history, and normalize the relevance score over
all words of the chat history to produce the relevant weight
βu→r
i,j . Then, the weighted summation of all word features

of the chat history are regarded as the semantic supplement
feature for the i-th word in the following response.

Thirdly, we fuse the visual supplement feature ev→r
i , the

semantic supplement feature eu→r
i , and the original feature

hr
i by a concatenation operation. The result is regarded as

the new feature for the i-th word of the following response.
After that, we calculate the importance score αr

i for the i-th
word in the following response, and normalize the impor-
tance score over all words to produce the important weight
βr
i . Then, the global response feature r is formulated as the

dynamic weighted summation of all word features.

Multi-Task Prediction Module

We design a multi-task prediction module for MSVD-TL
with multiple subtasks. Specifically, the response prediction
module judge the correctness of the input response, and the
frame-level temporal localization module localize the rele-
vant video sub-segment in frame level.

Response Prediction Module Our model targets to pre-
dict the correctness of the following response. The following
response is based on both the visual information of the video
fragment and the semantic information of the chat history.
Given the global features of the video fragment, the chat his-
tory, and the following response, we calculate the relevance
score x among them and normalize the relevance score to
the relevant probability p(v, u, r) by the sigmoid function.

x = Wpvv � r +Wpuu� r (11)

p(v, u, r) = σ(WT
p x+ b) (12)

where Wpv , Wpu, and Wp are trainable parameters. � is the
element-wise product operation. σ is the sigmoid function.

Frame-Level Temporal Localization Module Our
model aims to localize the relevant video sub-segment
which is corresponding to the chat history and the following
response in frame level. Given frame features of the video
fragment, the global feature of the chat history, and the
global feature of the following response, we firstly use
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the global features of the chat history and the following
response as the semantic guidance to calculate the relevance
score zi of each frame feature. Then, the relevance score is
normalized to the relevant probability p(fi|v, u, r) using the
sigmoid function.

zi = Wlvh
v
i �Wluu+Wlvh

v
i �Wlrr(13)

p(fi|v, u, r) = σ(WT
l zi + b) (14)

where Wlv , Wlu, Wlr, and Wl are trainable parameters. � is
the element-wise product operation. σ is the sigmoid func-
tion.

Multi-Task Loss

To optimize our model, we use a multi-task loss L, includ-
ing Lpred for response prediction and Lloc for temporal lo-
calization. We minimize the objective function over all the
training set.

L = Lpred + λLloc (15)

where λ is a hyper-parameter to balance two losses and it is
set to 1.0 in our experiments.

We use the max-margin loss function (Mao et al. 2016;
Yu et al. 2017) as Lpred for response prediction. Given a
positive training triple (v, u, r), we use the corresponding
negative training triples of (v

′
, u, r), (v, u

′
, r), and (v, u, r

′
)

which replace a correct input with a wrong input at a time for
each of v, u, and r. And p(v, u, r) represents the probability
that the triple (v, u, r) is positive.

Lpred =
∑

max(0, ρ+ log p(v, u, r)− log p(v
′
, u, r)) (16)

+max(0, ρ+ log p(v, u, r)− log p(v, u
′
, r)) (17)

+max(0, ρ+ log p(v, u, r)− log p(v, u, r
′
)) (18)

where the summation is over all the training triples. ρ is a
hyper-parameter to tune the margin between positive and
negative training triples. We set ρ to 0.1 in our experiments.

We use the cross-entropy loss function as Lloc for tem-
poral localization. p(fi|v, u, r) is the probability that i-th
frame is belong to the relevant video sub-segment, and
gt(fi|v, u, r) ∈ {0, 1} is the ground truth label to present i-
th frame is or not belong to the relevant video sub-segment.

Lloc = −
∑ T∑

i=1

gt(fi|v, u, r)log p(fi|v, u, r) (19)

+(1− gt(fi|v, u, r))log (1− p(fi|v, u, r)) (20)

where the summation is over all the training triples, and T is
the total frame number of the video fragment.

Experiments

To solve the MSVD-TL task, we build a new dataset on top
of Twitch-FIFA dataset (Pasunuru and Bansal 2018) which
provides collected soccer game videos along with users’ live

chat conversations about the game. We firstly divide the
whole video into several 50-second video fragments. Then
we randomly select users’ live chat conversations in a 20-
second video sub-segment as the chat history. And we regard
the most relevant utterance in the following 10-second video
clip as the ground truth of the following response. There are
49 game videos totally, which are divided into 33 videos for
training, 8 videos for validation, and 8 videos for testing.
And each video is several hours long, which provides a great
amount of data. After processing, there are 10510 samples in
the training set, 2153 samples in the validation set, and 2780
in the test set, respectively. For each sample, there are a set
of candidate responses and only one is positive while the
others are negative. The number of candidate responses in
the training set, validation set, and test set are 2, 10, and 10,
respectively.

Evaluation Metrics

Since the original Twitch-FIFA dataset (Pasunuru and
Bansal 2018) has provided a set of candidate responses for
each chat history, we use the retrieval metric R@k (the per-
centage of the response in top-k ranked responses) to evalu-
ate the performance of response prediction instead of BLEU
(Papineni et al. 2002), CIDEr (Vedantam, Lawrence Zitnick,
and Parikh 2015), and METEOR (Denkowski and Lavie
2014) in other language generation tasks. And higher R@k
is better for response prediction.

Experimental Settings

Before training the model, we randomly select three frames
for each second in the video fragment to extract static frame
features. The total frame number of each video fragment
T is 150. And the maximum word number of the chat his-
tory M is 70 while the maximum word number of the fol-
lowing response N is 10. During the training phase, the
embedding size of words is 100. All RNNs in our model
are bidirectional single-layer Long short-term memory net-
works (LSTM) (Schuster and Paliwal 1997; Hochreiter and
Schmidhuber 1997). The size of hidden states in RNNs
is 256. Therefore, the dimension of frame features for the
video fragment, word features for the chat history, and word
features for the following response are all 512. We rely on
the Adam (Kingma and Ba 2014) algorithm to update all pa-
rameters in our model with the learning rate of 10−5. The
experimental hardware environment is 1080ti GPU. During
the training process, the batch size is set to 16 and the model
is trained for 30,000 iterations.

Experimental Results for MSVD w/o TL

Firstly, we directly utilize the 20-second relevant video sub-
segment to predict the following response without frame-
level temporal localization. Therefore, inputs of our model
are a 20-second relevant video sub-segment, the chat history,
and the candidate response. “C” represents that we just ex-
plore the semantic information of the chat history to predict
the following response. “V” represents that we just use the
visual information of the relevant video sub-segment to pre-
dict the following response. “C+V” represents that we utilize
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both the semantic information of the chat history and the vi-
sual information of the relevant video sub-segment to pre-
dict the following response. We compare our approach with
the state-of-the-art methods for the MSVD w/o TL task on
Twitch-FIFA dataset (Pasunuru and Bansal 2018). “Dual En-
coder” and “Triple Encoder” (Pasunuru and Bansal 2018) di-
rectly fuse features of inputs and use the joint representation
to predict the correctness of the input triple. “TriDAF+self
Attn” (Pasunuru and Bansal 2018) apply several bidirec-
tional attentions and self attentions to enable attention flows
across all three modalities of the relevant video sub-segment,
the chat history, and the candidate response.

Table 1: Experimental results compared with the state-of-
the-art methods for MSVD w/o TL (20s).

Models R@1 R@2 R@5

Dual Encoder (C)
(Pasunuru and Bansal 2018) 17.1 30.3 61.9

Dual Encoder (V)
(Pasunuru and Bansal 2018) 16.3 30.5 61.1

Triple Encoder (C+V)
(Pasunuru and Bansal 2018) 18.1 33.6 68.5

TriDAF+self Attn (C+V)
(Pasunuru and Bansal 2018) 20.7 35.3 69.4

SelRef (C) 17.9 32.3 67.0
SelRef (V) 19.5 33.5 68.7

SelRef (C+V) 21.4 36.0 69.7

The experimental results are shown in Table 1. “Dual En-
coder” and “Triple Encoder” (Pasunuru and Bansal 2018)
do not consider the relation among inputs of the relevant
video-segment, the chat history, and the following response.
Although “TriDAF+self Attn” (Pasunuru and Bansal 2018)
enables attention flows across all three modalities directly
and ignores the relation among inputs during the video dia-
log generation process. Our approach “SelRef (C+V)” out-
performs “Triple Encoder (C+V)” with the improvement of
3.3% in R@1 score. It demonstrates that the relation among
inputs really enhances representations of inputs. Besides,
Our approach “SelRef(C+V)” outperforms “TriDAF+self
Attn (C+V)” with the improvement of 0.70% in R@1 score.
It illustrates that considering the characteristic of video di-
alog generation process really helps to enhance representa-
tions of inputs.

Table 2: Experimental results compared with the state-of-
the-art methods for MSVD w/o TL (50s).

Models R@1 R@2 R@5

TriDAF+self Attn (C+V)
(Pasunuru and Bansal 2018) 20.3 34.6 68.2

SelRef (C) 17.4 32.9 67.0
SelRef (V) 20.2 34.2 67.6

SelRef (C+V) 20.9 35.9 69.1

Additionally, in order to show the necessity of the tem-

poral localization phase in video dialog, we utilize the 50-
second video fragment to predict the following response
without the temporal localization phase. Therefore, the in-
puts of our model are a 50-second video fragment, the chat
history, and the candidate response. And we compare our
approach with the state-of-the-art method (Pasunuru and
Bansal 2018) for MSVD w/o TL on Twitch-FIFA dataset.
The experimental results are shown in Table 2. Compared
with experimental results in Table 1, the performance of
“TriDAF+self Attn (C+V)” is reduced by 1.2% in R@5
score. The performance of “SelRef (C+V)” is reduced by
0.6% in R@5 score. It further demonstrates the necessary of
temporal localization in video dialog.

Experimental Results for MSVD-TL

To evaluate our approach for the MSVD-TL task, we con-
struct several experiments, which utilize the 50-second
video fragment to predict the following response with the
temporal localization phase. Therefore, the inputs of our
model are a 50-second video fragment, the chat history, and
the candidate response. “C” represents that we just explore
the semantic information of the chat history to predict the
following response, while the semantic of both the chat his-
tory and the following response are used to localize the rel-
evant video sub-segment. “V” represents that we just ex-
plore the visual information of the video fragment to pre-
dict the following response and localize the relevant video
sub-segment based on the following response. “C+V” repre-
sents that both the semantic information of the chat history
and the visual information of the video fragment are used
for response prediction, while the semantic information of
both the chat history and the following response are used to
localize the relevant video sub-segment.

Table 3: Experimental results compared with the state-of-
the-art methods for MSVD-TL (50s).

Models R@1 R@2 R@5

TriDAF+self Attn (C+V)
(Pasunuru and Bansal 2018) 20.40 35.0 69.17

SelRef (C) 17.3 32.1 66.7
SelRef (V) 19.5 35.3 68.4

SelRef (C+V) 21.5 36.1 70.1

The experimental results are shown in Table 3. Compared
with the experimental results in Table 1, the performance
of our approach for MSVD-TL (50s) is similar to the per-
formance of our approach for MSVD w/o TL (20s). Com-
pared with the experimental results in Table 2, the perfor-
mance of our approach for MSVD-TL (50s) is better than
the performance of our approach for MSVD w/o TL (50s).
It further demonstrates that the temporal localization mod-
ule in our model could accurately localize the relevant video
sub-segment, which could improve the applicability of video
dialog in practice.
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Figure 3: Examples in the MSVD w/o TL (20s) task, the MSVD w/o TL (50s) task, and the MSVD-TL (50s) task. For each
sample, the top shows some frames of the video including both the relevant frames (larger) and the irrelevant frames (smaller).
The left-bottom shows the chat history, the ground truth response, and the predicted response for different tasks. And the
right-bottom shows the result of temporal localization for the relevant video sub-segment in the MSVD-TL (50s) task.

Examples of Experimental Results

In Figure 3, we show some examples in the MSVD w/o TL
(20s) task, the MSVD w/o TL (50s) task, and the MSVD-
TL (50s) task. For each sample, the top shows some frames
of the video including both the relevant frames (larger) and
the irrelevant frames (smaller). The left-bottom shows the
chat history, the ground truth response, and the predicted re-
sponse for different tasks. And the right-bottom shows the
result of temporal localization for the relevant video sub-
segment in the MSVD-TL (50s) task. In the result of tem-
poral localization, the green area corresponds to the ground
truth of the relevant video sub-segment, while each point in
the blue line represents the probability that the correspond-
ing frame is belong to the relevant video sub-segment. We
can see that the predicted response is correct when we di-
rectly use the relevant video sub-segment in the MSVD w/o
TL (20s) task. The predicted response is wrong when we ex-
pand the video length and directly use the video fragment in
the MSVD w/o TL (50s) task. And the predicted response is
correct again when we expand the video length and apply the
frame-level temporal localization simultaneously. Besides,
the results of temporal localization shows that frames with
more than 0.5 relevance score are consistent with the corre-

sponding ground truth. It illustrates that the frame-level tem-
poral localization really learn the ability to search the rele-
vant video sub-segment automatically. And it will be more
applicable in practice without the requirement of the given
relevant video sub-segment in advance.

Conclusions

In this paper, we firstly introduce a novel task of Multi-
Speaker Video Dialog with frame-level Temporal Localiza-
tion (MSVD-TL). Given a long video fragment and the chat
history, MSVD-TL targets to predict the following response
and localize the relevant video sub-segment in frame level,
simultaneously. We develop a new multi-task model to solve
the two sub-tasks of response prediction and temporal lo-
calization. In additional, we design a selective refinement
module to exploit the relation among the video fragment, the
chat history, and the following response to refine their rep-
resentations. Finally, we construct a series of experiments to
evaluate our approach on MSVD-TL. The experimental re-
sults demonstrate that the added temporal localization mod-
ule could help to select relevant video sub-segment within a
longer video, which is more applicable in the real life.
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