The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Federated Learning for Vision-and-Language Grounding Problems

Fenglin Liu,' Xian Wu,> Shen Ge,’ Wei Fan,’ Yuexian Zou'>*
'ADSPLAB, School of ECE, Peking University, Shenzhen, China
2Peng Cheng Laboratory, Shenzhen, China
3Tencent, Beijing, China
{fenglinliu98, zouyx } @pku.edu.cn, {kevinxwu, shenge, davidwfan} @tencent.com

Abstract

Recently, vision-and-language grounding problems, e.g., im-
age captioning and visual question answering (VQA), has at-
tracted extensive interests from both academic and industrial
worlds. However, given the similarity of these tasks, the ef-
forts to obtain better results by combining the merits of their
algorithms are not well studied. Inspired by the recent success
of federated learning, we propose a federated learning frame-
work to obtain various types of image representations from
different tasks, which are then fused together to form fine-
grained image representations. The representations merge
useful features from different vision-and-language grounding
problems, and are thus much more powerful than the original
representations alone in individual tasks. To learn such im-
age representations, we propose the Aligning, Integrating and
Mapping Network (aimNet). The aimNet is validated on three
federated learning settings, which include horizontal feder-
ated learning, vertical federated learning, and federated trans-
fer learning. Experiments of aimNet-based federated learning
framework on two representative tasks, i.e., image captioning
and VQA, demonstrate the effective and universal improve-
ments of all metrics over the baselines. In image captioning,
we are able to get 14% and 13% relative gain on the task-
specific metrics CIDEr and SPICE, respectively. In VQA, we
could also boost the performance of strong baselines by up to
3%.

Introduction

Recently, there is a surge of research interests in vision-and-
language grounding tasks such as image captioning (Chen
et al. 2015) and visual question answering (VQA) (Antol
et al. 2015). In image captioning, an intelligence system
takes an image as input and generates a description in nat-
ural language form. VQA is a more challenging problem
that takes an extra question into account and requires the
model to give an answer depending on both the image and
the question. The deep neural networks (Xu et al. 2015;
Anderson et al. 2018; Kim, Jun, and Zhang 2018) have
achieved great success in advancing the state-of-the-arts of
image captioning and VQA.
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Despite the impressive results, most of the existing deep
learning based frameworks focus on individual tasks. If
these problems are considered together, different knowledge
from different tasks could be learned jointly, and there are
high chances to promote the performance of each task. To
achieve this goal, a multi-task learning framework has been
proposed for vision-and-language grounding tasks (Li et al.
2018; 2017). However, some approaches are trained under
the condition of sharing all downstream task data, which
may cause data leakage. For example, Li et al. (2018) re-
quires a question-answer pair and an identical image as input
to train the visual question answering and visual question
generation tasks together. This approach won’t work when
cross-task datasets are different.

In recent years, federated learning (McMahan et al. 2017,
Konecny et al. 2016a; 2016b; Yang et al. 2019) has been
proposed as an alternative machine learning setting. The
goal is to train a high quality centralized model based on
datasets that are distributed across multiple clients with-
out sharing the clients’ data. For the vision-and-language
grounding tasks, inspired by the success of federated learn-
ing, we can treat each of them as an individual client, en-
abling the design of a federated learning framework with a
centralized model. Such design establishes a bond among
different tasks to learn various types of knowledge, with the
advantage to improve the performance of each downstream
task while preventing data leakage.

In this paper, we mainly study on two representative
vision-and-language grounding tasks, i.e., image caption-
ing and VQA. We bridge the gap between these two tasks
with a federated learning framework (McMahan et al. 2017),
which allows the sharing of the obtained fine-grained im-
age representations instead of direct task data. To this end,
we design an aimNet as the centralized model in the fed-
erated learning framework, which consists of an aligning
module, an integrating module and a mapping module, the
sketch of which are shown in Figure 1. The aligning mod-
ule builds aligned image representations by conducting mu-
tual attention (Liu et al. 2019b) over the extracted visual
and textual features. The resulting image representations
form a clearer semantic description of salient image regions,
benefiting the downstream tasks (Su et al. 2019; Liu et al.



2019b) by injecting more semantic information. Next, the
integrating module focuses on integrating visual and tex-
tual features via a self-attention mechanism (Vaswani et al.
2017), which captures the groupings of salient regions and
the collocations of attributes, generating aspect-describing
image representations (Liu et al. 2019¢). The explored spa-
tial and relational representations of the image serve as a
powerful basis for image captioning task (Yao et al. 2018;
Liu et al. 2019c). Finally, the mapping module consists of
a two-layer non-linear layer, which are used to map the
learned fine-grained image representations to the feature do-
main of specific tasks. Our modules fully exploited all effec-
tive information in the image, and pass it to the decoder as
input to generate meaningful sentences or give an accurate
answer to the question. Experiments on two image caption-
ing datasets and a VQA dataset validate the motivations and
corroborate the effectiveness of our approach.
Overall, our main contributions are as follow:

We propose a federated learning framework. By gen-
erating fine-grained image representations, our frame-
work improves the performance on a variety of vision-
and-language grounding problems, without the sharing of
downstream task data.

We implement the centralized model in our framework
as the designed Aligning, Integrating and Mapping Net-
work (aimNet), which converts the extracted visual and
textual features from image to fine-grained image repre-
sentations, effectively and automatically.

We validate our approach on three federated learning set-
tings. Extensive experiments on the MSCOCO image cap-
tioning dataset, Flickr30k image captioning dataset and
VQA v2.0 dataset demonstrate the effectiveness and the
universality of our approach.

Related Work

The related work are introduced from four aspects: 1)
Vision-and-Language Grounding Problems; 2) Federated
Learning; 3) Multi-Task Learning and 4) Image Represen-
tations.

Vision-and-Language Grounding Problems Vision-
and-language grounding problems, which including image
captioning (Chen et al. 2015), visual question answering
(Antol et al. 2015) and image caption retrieval (Nam, Ha,
and Kim 2017), and others, have drawn remarkable attention
in both natural language processing and computer vision.
These tasks combine image and language understanding
together at the same time, are tough yet practical. However,
these studies deal with one single task at one time. In this
paper, we propose a bonding framework of different tasks to
further improve the performance of each task. At the same
time, our approach avoids data leakage.

Federated Learning Recently, McMahan et al. (2017),
Konecny et al. (2016a) and Konecny et al. (2016b) pro-
pose the concept of federated learning, which can be di-
vided into three categories, i.e., horizontal federated learn-
ing, vertical federated learning and federated transfer learn-
ing, based on the distribution characteristics of the data.
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Due to space limit, please refer Yang et al. (2019) for de-
tailed explanations. Federated learning poses new statistical
and systems challenges in training machine learning mod-
els over distributed networks of devices, and is a key learn-
ing scenario in large-scale applications. In that scenario, a
centralized model is trained based on data originated from
a large number of clients, which may be phones, other mo-
bile devices, or sensors. In this paper, in order to transfer
the success of federated learning, we treat each vision-and-
language grounding task as a client and implement the cen-
tralized model with the proposed aimNet.

Multi-Task Learning It is worth noticing that the goal
of the proposed framework is similar to multi-task learn-
ing (Caruana 1997). Li et al.; Li et al. (2017; 2018) have
achieved early successes in vision-and-language grounding
tasks. However, in their approach, an input is shared by all
the tasks, thus they must create a dataset specially designed
for multi-task learning, where multiple objectives are given
to the identical inputs. Recently, Nguyen and Okatani (2019)
tried to relax the reliance on the dedicated dataset for mul-
tiple tasks. However, the original text information about the
image is still needed as one input (e.g., the captions in im-
age caption retrieval and the questions in VQA). As a result,
the model won’t work when applied to tasks where the in-
puts are only images, e.g., image captioning and visual sto-
rytelling.

Image Representations For a variety of vision-and-
language grounding problems, an important goal is to under-
stand the image despite their different application scenarios,
which justifies the acquisition of fine-grained image repre-
sentations. In the literature, to represent images, visual fea-
tures extracted by CNNs or Region-CNNs are most-widely
used (Xu et al. 2015; Anderson et al. 2018), while tex-
tual features consisting of semantic concept vectors are also
proposed (Fang et al. 2015). However, relationships among
the individual parts of representations are not explicitly de-
fined, which in fact should be essential to a deep under-
standing of images. Recently, some works (Yao et al. 2018;
Liu et al. 2019b; 2019c¢) explored the visual relationships
among the individual parts of representations, which pro-
vides a solid basis for downstream vision-and-language
grounding tasks. Specifically, Yao et al. (2018) and Liu et
al.; Liu et al. (2019b; 2019c) attempted to use graph net-
works and attention mechanism to explore visual relation-
ships, respectively. The graph-based approaches explicitly
model the spatial and semantic relationships of image infor-
mation, while the attention-based methods accomplish that
in implicit ways.

Approach

This section includes three parts: 1) The visual and textual
features extractor; 2) The designed centralized model - aim-
Net and 3) The implementations in three federated learn-
ing settings. We first introduce the visual and textual fea-
ture extractors. We then discuss the aligning, integrating and
mapping network (aimNet) in detail (see Figure 1). Finally,
we describe the three federated learning settings (see Fig-
ure 2, 3 and 4).
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Figure 1: The overall framework of the proposed central-
ized model aimNet, which consists of an aligning module,
an integrating module and a mapping module. The proposed
aimNet could acquire fine-grained image representations in
an effective and automatic manner for improved downstream
tasks.

Visual and Textual Features

For vision-and-language grounding tasks, visual features ex-
tracted by deep CNNs are most-widely used. In our exper-
iments, we utilize the RCNN-based features extracted from
the Faster R-CNN (Ren et al. 2015). We denote the extracted
visual features as I = {51,52, e ,ZN} e RY*? Con-
sidering the limited expression capacity of the visual fea-
tures (Wu et al. 2016), textual features have been used to
provide explicit high-level information of an image (Fang
et al. 2015; Wu et al. 2016). In implementation, the tex-
tual features are generated by the predicted semantic con-
cepts in the image, and we adopt a weakly-supervised ap-
proach of Multiple Instance Learning (Zhang, Platt, and Vi-
ola 2006) to build the semantic concepts extractor, follow-
ing Fang et al. (2015). We denote the textual features as
T = {Wy, W, ..., W} € RM>*? \which are the word em-
beddings for a list of semantic concepts. The concepts could
be objects (e.g. dog, frisbee), attributes (e.g. off, electric), or
relationships (e.g. holding, flying). The textual features rep-
resents the image from a semantic perspective, providing a
powerful bias for vision-and-language tasks.

Aligning, Integrating and Mapping Network

In this section, we first introduce the basic module of the
proposed approach. Then we will introduce the proposed
aligning module, integrating module, and mapping module
in detail.

Basic Module In order to extract the relationship be-
tween the intra-modality and inter-modality of visual fea-
tures and textual features, we adapt Multi-Head Attention
(MHA) and Feed-Forward Network (FFN)! (Vaswani et al.
2017), which compute the association weights between dif-
ferent features. The attention mechanism allows probabilis-
tic many-to-many relations instead of monotonic relations,
as in Xu et al. (2015). We take advantage of the multi-head
attention to implement the idea of aligning visual and tex-
tual features for semantic-based representations, as well as

"Please refer to Vaswani et al. (2017) for the detailed introduc-
tion of Multi-Head Attention and Feed-Forward Network.
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Figure 2: Under the setting of horizontal federated learning,
we apply our framework on Flickr30k and MSCOCO im-
age captioning datasets, where the two tasks share the same
task objective (“‘generate captions’) with different input im-
ages. For federated learning based training, we first run an
instance on the task 1, and update the task-specific decoder
of task 1 (update 1) and then the aimNet (update 2) based
on the training loss. After that, we run an instance of task
2, and similarly update the task-specific decoder (update 3)
and aimNet (update 4). In all, the aimNet is able to obtain
various types of image representations from different tasks,
and the learned fine-grained image representations are much
more powerful than the original representations alone in sep-
arate tasks. Besides, it is worth noticing that the source in-
formation between different tasks is not shared. The running
instance of each task runs independently during the training
and inference stage.

learning the groupings of salient region and the collocations
of attributes for aspect-based representations.

Aligning Module To represent visual features in a more
meaningful way, we need to find the most relevant semantic
concepts from the textual features to summarize the prop-
erties of the visual features. Similarly, we need to provide
visual references for textual features to reduce semantic am-
biguity (e.g., the word mouse can either refer to a mammal
or an electronic device), via providing an image area that is
consistent with current semantic concept (Liu et al. 2019b).

According to the attention theorem, we can adapt the fol-
lowing formula to simulate the above process:

-

I, = FEN(MHA(I, T, T)) (1)
T, = FEN(MHA(T', I, T)) 2)

Through the alignment of visual and textual features, we
can get the semantic-based image representations (Liu et al.
2019b), providing a powerful basis for vision-and-language
grounding tasks, especially for answering the question about
images in VQA (Su et al. 2019).

Integrating Module When describe an image, we often
focus on one specific region and seek for other regions that
often appears in the neighbourhood of that region. Following
this, the integrating module is supposed to learn those spa-
tially or semantically related objects from an inherent group
that we attend to. In this case, each specific region vector in
visual features I and each specific concept vector in textual
features 7' should pay attention to the entire visual features

I and textual features f, respectively, to find the most re-
lated image regions and attribute collocations and generate
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Figure 3: We implement vertical federated learning set-
ting on MSCOCO image captioning dataset and VQA v2.0
dataset. Although their downstream tasks are different, they
share most of the input images.
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aspect-based image representations I; and T;. This process
can be defined as follow:

—

I, = FEN(MHA(L,, I,, I.,))
T’; = FFN(MHA(Ta7 fa? T'a))

3
“

Through the formula, in the visual domain, the integrating
module learns salient region groupings and integrates natu-
rally related image regions for a higher-level representation
of the image. In the textual domain, it learns attribute collo-
cations and have the ability of considering associations and
collocations during sentence phrasing. The acquired aspect-
based image representations are super beneficial for image
captioning task (Yao et al. 2018; Liu et al. 2019c¢).

Mapping Module Different tasks have different data
spaces, so we need to map the fine-grained image represen-
tations into the task space, and allow the proposed frame-
work to adapt to different tasks. In order to do so, we intro-
duce the mapping module, which is defined as:

Mapping(z) = tanh(zWpy + bn) Wom + bom—— (5)

where W, and W,,,, denote matrices for linear transfor-
mation; and b, and b, represent the bias terms. For
each downstream task applied in the framework, we ap-
ply a mapping module to map the fine-grained image rep-
resentations learned from aimNet to the task space, i.e.,

- —

LayerNorm(Mapping(;)+Mapping(7;)), where the Layer-
Norm stands for layer normalization (Ba, Kiros, and Hinton
2016). In this way, we inject rich information into the task
space, so the mapped fine-grained image representations are
expected to be a better start for downstream tasks.

Implementation

In this section, we briefly introduce the three federated learn-
ing settings in our implementation.

Horizontal Federated Learning Horizontal federated
learning is known as sample-based federated learning, which
applies in the cases where datasets share the same feature
space while holding different samples. For example, two
banks in two different cities may have different users, but
their feature spaces may be the same because they share the
same business.

In our applied scenario, we treat two different image
captioning datasets as two banks coming with different
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Figure 4: In federated transfer learning, we conduct the im-
plementation on the Flickr30k image captioning dataset and
VQA v2.0 dataset. They have not only different input images
but also different downstream tasks.
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users, because they have the same “business” (generate cap-
tions) but different “users” (input images). We implement
this scenario on MSCOCO and Flickr30k image captioning
datasets, as shown in Figure 2.

Vertical Federated Learning In contrast to horizontal
federated learning, vertical federated learning is a feature-
based learning, which is applicable in the scenarios where
two datasets share the same users but differ in feature space.
For example, consider two different companies in the same
city, one is a bank, and the other is an insurance company.
Their user sets are likely to contain most of the residents
in that area, so the intersection of their user space may be
large. However, due to the largely different business of the
two companies, their feature spaces may be quite different.

Similarly, in applying this case, we treat two different
downstream tasks as two different companies, enjoying the
same “users” (input images). As shown in Figure 3, we
choose the MSCOCO image captioning dataset and VQA
v2.0 dataset to implement the scenario. The reason is that
most of the input images in VQA v2.0 dataset are collected
from the MSCOCO dataset.

Federated Transfer Learning Federated transfer learn-
ing applies to the scenarios that the two datasets differ not
only in samples but also in feature space. Consider the fol-
lowing situation, a bank is located in United States, and an
insurance company is located in Europe. Due to geographi-
cal restrictions and business differences, the intersection be-
tween the user groups and the feature spaces of the two com-
panies will be rather limited.

In order to simulate the above scenario in our implementa-
tion, we treat the image captioning task on Flickr30k dataset
and VQA task on VQA v2.0 dataset as the aforementioned
bank and insurance company, respectively.

Experiments

In this section, we first describe three benchmark datasets
and experimental settings for image captioning and VQA
tasks, and some widely-used evaluation metrics. Next, we
present our evaluation of the proposed framework on three
federated learning settings, i.e., horizontal federated learn-
ing, vertical federated learning and federated transfer learn-
ing.



Table 1: Evaluation of the proposed framework on the Flickr30k and MSCOCO image captioning datasets under the horizontal
federated learning setting. B-4, M, C and S are short for BLEU-4, METEOR, CIDEr and SPICE, respectively. All values are
reported in percentage (%). As we can see, the horizontal federated learning (HFL) promotes the baselines in all metrics,
proving the effectiveness to learn various of knowledge from different tasks in our proposed federated framework.

Training Datasets | Flickr30k | B-4 M C S | Training Datasets | MSCOCO | B-4 M C S

Spatial (Lu et al. 2017)

Flickr30k Baseline | 26.7 21.0 57.1 14.6 | MSCOCO Baseline 335 269 109.8 20.0

Flickr30k+MSCOCO | HFL 27.8 219 633 16.5 | Flickr30k+MSCOCO | HFL 351 27.6 1149 205

NBT (Lu et al. 2017)

Flickr30k Baseline | 27.8 21.7 60.2 15.6 | MSCOCO Baseline 349 274 1107 199

Flickr30k+MSCOCO | HFL 29.6 223 684 16.6 | Flickr30k+MSCOCO | HFL 359 277 1152 20.6
Datasets, Metrics and Baselines Settings

We evaluate our framework on image captioning and VQA.

In image captioning, our reported results are evaluated on
the popular MSCOCO image captioning dataset (Chen et al.
2015) and the Flickr30k image captioning dataset (Young et
al. 2014). The datasets contain 123,287 images and 31,783
images, respectively, with 5 sentences paired to each im-
age. To make fair comparisons, we use the widely-used
splits (Karpathy and Li 2015) to report our results. There
are 5,000 images each in the validation set and the test set
for MSCOCO, and 1,000 images as for Flickr30k. Follow-
ing common practice (Lu et al. 2017; Liu et al. 2018), we
report results with the help of the MSCOCO captioning eval-
uation toolkit (Chen et al. 2015), which includes the evalua-
tion metrics SPICE (Anderson et al. 2016), CIDEr (Vedan-
tam, Zitnick, and Parikh 2015), METEOR (Banerjee and
Lavie 2005) and BLEU (Papineni et al. 2002). Among them,
SPICE and CIDEr are customized metrics for evaluating im-
age captioning systems, based on scene-graph matching and
n-gram matching, respectively. We conduct the experiments
on two strong baselines, i.e., Spatial (Lu et al. 2017) and
NBT (Lu et al. 2018), with cross-entropy optimization.

In VQA, we evaluate the framework on VQA v2.0 dataset,
where the images are collected from the MSCOCO dataset
(Lin et al. 2014). VQA 2.0 is split into train, valida-
tion and test-standard sets. There are 82,783, 40,504 and
81,434 images, (443,757, 214,354 and 447,793 correspond-
ing questions) in the training, validation and test set, re-
spectively. The questions are categorized into three types,
namely Yes/No, Number and other categories. Each ques-
tion is accompanied with 10 answers composed by the an-
notators. Answers with the highest frequency are treated as
the ground-truth. We choose BUTD (Anderson et al. 2018)
and BAN (Kim, Jun, and Zhang 2018) for comparison. The
former is the winner of VQA challenge 2017 and the latter is
the state-of-the-art on VQA v2.0. Following common prac-
tice, these VQA models are trained on the training and val-
idation splits plus extra Visual Genome dataset (Krishna et
al. 2017) (We ensure that any images found in test set of ei-
ther datasets of image captioning and VQA v2.0 are avoided
be contained in the training split in both datasets.). The re-
ported accuracies are calculated by the standard VQA metric
(Antol et al. 2015).
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For fair comparisons, we use the RCNN-based image fea-
tures provided by Anderson et al. (2018), which uses Faster
R-CNN to detect objects. For textual concepts, we use the
textual concepts prediction model pre-trained by Fang et al.
(2015) for 1,000 words. The caption/question words and the
textual concept words share the same embeddings. For our
proposal, d stands for the hidden/model size of the baseline
decoder. The number of both extracted visual and textual
features are 36, which means N = M = 36. Following
Vaswani et al. (2017), we set the number of attention heads
to 8 and the feed-forward network dimension to 2048.

For equipping with our aimNet in baseline models, i.e.,
using the fine-grained image representations learned by aim-
Net in baseline models, we replace the original features with
the refined features directly since our features are considered
to be more powerful. Also our aimNet does not make any
changes in the number or the size of original feature vec-
tors (each of them can be seen as a weighted average of the
original features). We preserve the original settings for all
baselines, and our framework is end-to-end trainable.

Experimental Results

In this section, we briefly introduce the three federated learn-
ing settings in our experiments, followed by the discussion
of the experimental results.

Horizontal Federated Learning As mentioned above, we
experiment with horizontal federated learning setting on
MSCOCO and Flickr30k image captioning datasets, the re-
sults are shown in Table 1. As we can see, all baselines enjoy
comfortable improvements on all metrics. Especially, ap-
plied with with the proposed approach, all the models enjoy
a relative increase of 11%~14% in performance of CIDEr
score on Flickr30k dataset. It is worth noticing that the fed-
erated learning with Flickr30k and MSCOCO is more bene-
ficial for the smaller dataset (Flickr30k) than the larger one
(MSCOCO), e.g., 60.2 — 68.4 in CIDEr vs. 110.7 — 115.2
in CIDEr (NBT), which indicates that the model with small
dataset can learn more useful knowledge from that with big
dataset.

Vertical Federated Learning In vertical federated learn-
ing setting, we experiment on two different downstream



Table 2: Performance on MSCOCO dataset and VQA v2.0
dataset under vertical federated learning setting.

Datasets |Methods C S |Datasets |Methods test-std
Spatial BUTD

MSCOCO |Baseline 109.8 20.0| VQA Baseline 67.5

+VQA [+ BUTD 115.4 20.7 |+ MSCOCO |+ Spatial  69.1

+VQA |+BAN 116.1 20.8 |+ MSCOCO |+ NBT 69.3

NBT BAN

MSCOCO |Baseline 110.7 19.9| VQA Baseline 69.8

+VQA [+BUTD 116.3 21.0|+ MSCOCO |+ Spatial 70.4

+VQA |[+BAN 117.5 21.2|+ MSCOCO |+ NBT 70.6

tasks with the most of the same input images. As shown
in Table 2, our approach successfully boosts all baselines,
with the most significant improvement up to relatively 6%
and 3% in terms of SPICE for image captioning and ac-
curacies for VQA, verifying the effectiveness of our ap-
proach. Specifically, we achieve the best performance on the
MSCOCO and VQA v2.0 datasets in all of our experiments.
Vertical federated learning allows the sharing of most input
images, which directly helps the baseline models to learn a
broader knowledge of the identical images.

Federated Transfer Learning As shown in Table 3, our
approach can still bring improvements to the strong base-
lines under the federated transfer learning settings, prov-
ing the effectiveness and the generalization ability of the
proposed framework. Besides, Table 3 shows similar phe-
nomenon as in Table 1, i.e., federated learning framework is
more beneficial for the smaller dataset rather than the larger
dataset. Nonetheless, both of them can get performance im-
provements from our approach.

We further compare our framework with the multi-task
framework recently proposed in Nguyen and Okatani (2019)
on VQA v2.0 dataset. Specifically, Nguyen and Okatani
(2019) adopt the DCN (Nguyen and Okatani 2018) as their
VQA decoder, and their performance of DCN is promoted
from 68.9% to 69.6% overall accuracy (+0.7% overall accu-
racy gain). In our work, our best results (see Table 2) show
that our framework can promote the performance of BAN,
which is an even stronger baseline than DCN, from 69.8%
to 70.6% overall accuracy (+0.8% overall accuracy gain).
Moreover, we attempt to experiment with the DCN (joint
training with NBT) on vertical federated learning setting in
our framework for fair comparisons. The results show that
our framework performs better than Nguyen and Okatani
(2019) (70.1% overall accuracy vs. 69.6% overall accuracy),
which strongly demonstrated the performance promoting ca-
pability of our proposed framework.

In all, our framework successfully promotes all baseline
models in all metrics across the board, regardless of their
downstream tasks. In image captioning, it has brought im-
provements up to 14% and 13% in terms of CIDEr and
SPICE, respectively. In VQA, an overall improvement up to
3% is achieved when applying our framework to the base-
lines. These results validate that our framework general-
izes well to different tasks and indicates its effectiveness in
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Table 3: Results of the Flickr30k dataset and VQA v2.0
dataset under the federated transfer learning setting.

Datasets |Methods C S |Datasets |Methods test-std
Spatial BUTD

Flickr30k | Baseline 57.1 14.6| VQA Baseline  67.5
+VQA |+BUTD 61.2 15.3|+ Flickr30k |+ Spatial ~ 68.7
+ VQA +BAN 60.7 15.4 |+ Flickr30k | + NBT 68.8
NBT BAN

Flickr30k | Baseline 60.2 15.6| VQA Baseline  69.8
+VQA |+BUTD 64.2 15.8 ]|+ Flickr30k |+ Spatial ~ 70.1
+ VQA + BAN 64.8 16.1 |+ Flickr30k | + NBT 70.2

learning fine-grained image representations for vision-and-
language grounding tasks.

Analysis

In this section, we first give some intuitive examples to
demonstrate the strength of our approach. Next, we analyze
the contribution of each component in the proposed method.
The following analyses are conducted on two baselines, i.e.,
Spatial on MSCOCO image captioning dataset and BUTD
on VQA v2.0 dataset.

Qualitative Analysis

In Figure 5, we list some intuitive examples to show the
differences between the models. We can see that the align-
ing module learns to extend its focus of a specific object
and look for related attributes, which assists the image cap-
tioning baseline models to generate captions that are more
detailed in attributes and colors. The aligning module also
helps the VQA baseline models to answer the questions
more accurately, such as “what” and “where” object that be-
long to the “Other” category. The integrating module per-
forms well in integrating related objects in the image, which
results in more comprehensiveness in objects for image cap-
tioning, as well as more accurate answer generation, espe-
cially in answering the “Number” category. The Full Model
(w/ Aligning + Integrating) helps the baselines to maintain
good balances. By including more objects as well as many
informative and detailed attributes, such as the quantity and
the color, the image captioning models could generate the
captions with best quality.

Quantitative Analysis

In Table 4, we conduct the ablation analysis to investigate
the contribution of each component in the proposed aim-
Net. From the table, we can see that the aligning module
could achieve greater improvements on the VQA than the
integrating module. This could be illustrated in Figure 6,
because the semantic-based image representations learned
by the aligning module is more informative than the aspect-
based features learned by integrating module. However, in
image captioning tasks, the integrating module could bring
more increase in scores than the aligning module, which
is due to the fact that the integrating modules are better at
exploring the visual and textual relationships, making the



w/ Aligning:

orange

w/ Integrating: pineapple

Reference: a pineapple and some oranges sit on a table.

Baseline: some oranges and cup sit on a table.

w/ Aligning: some oranges and red cups sit on a wooden table.

w/ Integrating: some oranges and cups next to a pineapple sit on a table.

Full Model: some oranges and red cups next to a pineapple on a wooden table.

Q1: Whatis on the plate?
Baseline: pineapple

---orange : Q2: How types of fruit are there? ---2
| Baseline: 1

1 w/ Aligning: 1

! w/ Integrating: 2

| Full Model: 2

Figure 5: Examples of the generated captions / predicted answers by different methods. The color Blue denotes the ground
truth, the color Green denotes the examples when image captioning model generates better captions than the baseline or when
the VQA model gives the correct answer, while Red denotes unfavorable results.
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Figure 6: Illustration of the semantic-based image representations (left) and aspect-based image representations (right) learned
by the proposed aligning module and integrating module, respectively. For the left plot, we show the process of aligning three
typical visual features with textual features. For the right plot, the example comes from the input is cake.

Table 4: Ablation analysis of aimNet. We perform the anal-
ysis for the Spatial and BUTD model on the MSCOCO and
VQA v2.0. VFL stands for vertical federated learning. Bold
numbers are best before applying full model and VFL.

Methods MSCOCO  VQA
C S | test-dev
Baseline 109.8 20.0 | 67.3
w/ Aligning 1127 202 | 68.1
w/ Integrating 113.1 204 | 67.8
w/ Aligning + Integrating (Full Model) 114.2 20.5 | 68.3
Full Model w/ VFL 116.1 208 | 69.0

image captioning decoder to generate more comprehensive
and accurate captions. In our aimNet, all components bring
about fine-grained image representations, yet from different
perspectives to the model. As a result, their advantages are
unified to produce abundant and enriched image informa-
tion. By doing this, we could achieve a deep image under-
standing, producing an overall improvement regardless of
the downstream vision-and-language grounding tasks. The
introduction of the federated learning framework further im-
proves the performance.

Visualization

Figure 6 shows an example of semantic-based and aspect-
based image representations learned by the aligning module
and integrating module according to the attention weights
in the Multi-Head Attention, respectively. Please view in
color. As we can see, the aligning module provides a clearer
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semantic information of image by aligning the visual and
textual features. The integrating module generates intrin-
sic combinations among the individual parts of representa-
tions, which models the spatial and semantic relationships
of image regions. The semantic-based and aspect-based im-
age representations are both beneficial for deep and seman-
tic understanding of images, which provides a solid bias for
downstream vision-and-language grounding tasks.

Conclusion

We propose a federated learning framework and an Align-
ing, Integrating and Mapping Network (aimNet), which ex-
tract the fine-grained image representations by bonding dif-
ferent downstream vision-and-language tasks while avoid
the data sharing of the downstream tasks. The proposed fed-
erated framework with aimNet is validated by experiments
on three federated learning settings. Extensive experiments
on two representative tasks show that our approach success-
fully boosts all baselines in all metrics, demonstrating the
effectiveness and universality of our approach.
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