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Abstract

Generating temporal action proposals remains a very chal-
lenging problem, where the main issue lies in predicting pre-
cise temporal proposal boundaries and reliable action confi-
dence in long and untrimmed real-world videos. In this paper,
we propose an efficient and unified framework to generate
temporal action proposals named Dense Boundary Genera-
tor (DBG), which draws inspiration from boundary-sensitive
methods and implements boundary classification and action
completeness regression for densely distributed proposals.
In particular, the DBG consists of two modules: Temporal
boundary classification (TBC) and Action-aware complete-
ness regression (ACR). The TBC aims to provide two tem-
poral boundary confidence maps by low-level two-stream
features, while the ACR is designed to generate an action
completeness score map by high-level action-aware features.
Moreover, we introduce a dual stream BaseNet (DSB) to en-
code RGB and optical flow information, which helps to cap-
ture discriminative boundary and actionness features. Exten-
sive experiments on popular benchmarks ActivityNet-1.3 and
THUMOS14 demonstrate the superiority of DBG over the
state-of-the-art proposal generator (e.g., MGG and BMN).

Introduction

Generating temporal action proposals in video is a fun-
damental task, which serves as a crucial step for various
tasks, like action detection and video analysis. In an opti-
mal case, such proposals should well predict action intervals,
with precise temporal boundaries and reliable confidence in
untrimmed videos. Despite the extensive endeavors (Lin et
al. 2018; 2019; Liu et al. 2019), temporal action proposal
generation retains as an open problem, especially when fac-
ing action duration variability, activity complexity, blurred
boundary, camera motion, background clutter and viewpoint
changes in real-world scenarios.

Previous works in temporal action proposals can be
roughly divided into two categories: anchor based (Buch
et al. 2017; Heilbron, Niebles, and Ghanem 2016; Gao
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Figure 1: Overview of our proposed method. Given an
untrimmed video, DBG densely evaluates all proposals by
producing simultaneously three score maps: starting confi-
dence score map, ending confidence score map and action
completeness score map.

et al. 2017; Shou, Wang, and Chang 2016) and boundary
based (Zhao et al. 2017a; Lin et al. 2018; 2019). Anchor-
based methods design a set of anchors at different scale for
each video segment, which are regularly distributed over the
video sequence. These candidate anchors are then evaluated
by a binary classifier. However, anchor-based methods can
not predict precise boundaries and are not flexible to cover
multi-duration actions.

Boundary-based methods evaluate each temporal location
over the video sequence. Such local information helps to
generate proposals with more precise boundaries and more
flexible durations. As one of the pioneering works (Zhao
et al. 2017a) groups continuous high-score regions as pro-
posal by actionness scores. (Lin et al. 2018) adopts a two-
stage strategy to locate locally temporal boundaries with
high probabilities, and then evaluate global confidences of
candidate proposals generated by these boundaries. To ex-
plore the rich context for evaluating all proposals, (Lin et al.
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Figure 2: Boundary prediction comparison of (a) local in-
formation based and (b) global proposal information based
methods.

2019) propose a boundary-matching mechanism for the con-
fidence evaluation of proposals in an end-to-end pipeline.
However, it drops actionness information and only adopts
the boundary matching to capture low-level features, which
can not handle complex activities and clutter background.
Besides, different from our method shown in Fig. 1, it em-
ploys the same methods of (Lin et al. 2018) to generate
boundary probability sequence instead of map, which lacks
a global scope for action instances with blurred boundaries
and variable temporal durations. Fig. 2 illustrates the dif-
ference between local information and our global proposal
information for boundary prediction.

To address the aforementioned drawbacks, we propose
dense boundary generator (DBG) to employ global pro-
posal features to predict the boundary map, and explore
action-aware features for action completeness analysis. In
our framework, a dual stream BaseNet (DSB) takes spatial
and temporal video representation as input to exploit the rich
local behaviors within the video sequence, which is super-
vised via actionness classification loss. DSB generates two
types of features: Low-level dual stream feature and high-
level actionness score feature. In addition, a proposal fea-
ture generation (PFG) layer is designed to transfer these two
types of sequence features into a matrix-like feature. And an
action-aware completeness regression (ACR) module is de-
signed to input the actionness score feature to generate a re-
liable completeness score map. Finally, a temporal boundary
classification (TBC) module is designed to produce tempo-
ral boundary score maps based on dual stream feature. These
three score maps will be combined to generate proposals.

The main contributions of this paper are summarized as:

We propose a fast and unified dense boundary genera-
tor (DBG) for temporal action proposal, which evaluates
dense boundary confidence maps for all proposals.

We introduce auxiliary supervision via actionness classifi-
cation to effectively facilitate action-aware feature for the
action-aware completeness regression.

We design an efficient proposal feature generation layer to
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capture global proposal features for subsequent regression
and classification modules.

Experiments conducted on popular benchmarks like
ActivityNet-1.3 (Heilbron et al. 2015) and THUMOS 14
(Idrees et al. 2017) demonstrate the superiority of our net-
work over the state-of-the-art methods.

Related Work

Action recognition. Early methods for video action recog-
nition mainly relied on hand-crafted features such as HOF,
HOG and MBH. Recent advances resort to deep convolu-
tional networks to promote recognition accuracy. These net-
works can be divided into two patterns: Two-stream net-
works (Feichtenhofer, Pinz, and Zisserman 2016; Simonyan
and Zisserman 2014; Wang et al. 2015; 2016), and 3D
networks (Tran et al. 2015; Qiu, Yao, and Mei 2017,
Carreira and Zisserman 2017). Two-stream networks ex-
plore video appearance by passing RGB image and stacked
optical flow through ConvNet pretrained on ImageNet sepa-
rately. Instead, 3D methods directly create hierarchical rep-
resentations with spatio-temporal filters.

Temporal action proposal. Temporal action proposal aims
to detect action instances with temporal boundaries and con-
fidence in untrimmed videos. Anchor-based methods gener-
ate proposals by designing a set of multi-scale anchors with
regular temporal interval. The work in (Shou, Wang, and
Chang 2016) adopts C3D network (Tran et al. 2015) as the
binary classifier for anchor evaluation. (Heilbron, Niebles,
and Ghanem 2016) proposes a sparse learning framework
for scoring temporal anchors. (Gao et al. 2017) proposes to
apply temporal regression to adjust the action boundaries.
Boundary-based methods evaluate each temporal location in
video. (Zhao et al. 2017a) groups continuous high-score
region to generate proposals by temporal watershed algo-
rithm. (Lin et al. 2018) locates locally temporal boundaries
with high probabilities and evaluate global confidences of
candidate proposals generated by these boundaries. (Lin
et al. 2019) proposes a boundary-matching mechanism for
confidence evaluation of densely distributed proposals in an
end-to-end pipeline. MGG (Liu et al. 2019) combines an-
chor based method and boundary based method to accu-
rately generate temporal action proposal.

Temporal action detection. The temporal action detection
includes generating temporal proposal generation and recog-
nizing actions, which can be divided into two patterns, i.e.,
one-stage (Lin, Zhao, and Shou 2017; Long et al. 2019) and
two-stage (Shou, Wang, and Chang 2016; Gao, Yang, and
Nevatia 2017; Zhao et al. 2017b; Xu, Das, and Saenko 2017,
Chao et al. 2018). The two-stage method first generates can-
didate proposals, and then classifies these proposals. (Chao
et al. 2018) improves two-stage temporal action detection
by addressing both receptive field alignment and context fea-
ture extraction. For one-stage method, (Lin, Zhao, and Shou
2017) skips the proposal generation via directly detecting
action instances in untrimmed video. (Long et al. 2019) in-
troduces Gaussian kernels to dynamically optimize temporal
scale of each action proposal.
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Figure 3: (a)Video Representation: Spatial & temporal network is used to encode video visual contents. (b)Dense Boundary
Generator: It contains Dual Stream BaseNet, Action-aware Completeness Regression branch and Temporal Boundary Classi-
fication branch. (c)Post-processing: In this step, three score maps are fused and Soft-NMS is leveraged to generate proposals.

Approach

Suppose there are a set of untrimmed video frames F' =

{ ft}i’;l, where f, is the ¢-th RGB frame and [, is the
number of frames in the video V. The annotation of V'
can be denoted by a set of action instances ¢, = {¢; =

(ts;, te;) Z]-V:gl, where N, is the number of ground truth ac-
tion instances in video V/, and ts;, te; are starting and end-
ing points of action instance ;. The generation of tempo-
ral action proposal aims to predict proposals 1, = {¢; =

(tsi, te;, pi)}f\f:’jl to cover 1, with high recall and overlap,
where p; is the confidence of ;.

Pipeline of our framework

Fig. 3 illustrates the proposed pipeline. In the phrase of
video representation, spatial and temporal network are em-
ployed to encode video visual contents. The output scores of
the two-stream network are used as RGB and flow features
separately, which are fed into our dense boundary generator
(DBG). DBG contains three modules: dual stream BaseNet
(DSB), action-aware completeness regression (ACR) and
temporal boundary classification (TBC). DSB can be re-
garded as a DBG backbone to exploit the rich local behav-
iors within the video sequence. DSB will generate two types
of features: low-level dual stream feature and high-level ac-
tionness score feature. Actionness score feature is learned
under auxiliary supervision of actionness classification loss,
while dual stream feature is generated by late fusion of
RGB and flow information. The proposal feature generation
(PFG) layer transfers these two types of sequence features
into a matrix-like feature. ACR will take actionness score
features as input to produce an action completeness score
map for dense proposals. TBC will produce temporal bound-
ary confidence maps based on the dual stream features. ACR
and TBC are trained by completeness regression loss and
binary classification loss simultaneously. At last, the post-
processing step generates dense proposals with boundaries
and confidence by score map fusion and Soft-NMS.

Video Representation

To explore video appearance and motion information sepa-
rately, we encode the raw video sequence to generate video
representation by (Wang et al. 2016), which contains spa-
tial network for single RGB frame and temporal network
for stacked optical flow field. We partition the untrimmed
video frame sequence F' = { ft}ile into snippets sequence
S = {s:}}, by aregular frame interval J, where [, = I /.
A snippet s, contains 1 RGB frame and 5 stacked optical
flow field frames. We use output scores in the top layer of
both spatial and temporal network to formulate the RGB
feature S; and flow feature 7;. Thus, a video can be rep-
resented by a two-stream feature sequence {5, Tt}fle. We
set [, = L to keep the length of two-stream video feature
sequence a constant.

Dense Boundary Generator

Dual stream BaseNet. The DBG backbone receives the spa-
tial and temporal video feature sequences as input, and out-
puts actionness score feature and dual stream feature for
ACR and TBC separately. DSB serves as the backbone of
our framework, which adopts several one-dimensional tem-
poral convolutional layers to explore local semantic infor-
mation for capturing discriminative boundary and action-
ness features. As show in Tab. 1, we use two stacked one-
dimensional convolutional layers to exploit spatial and tem-
poral video representation respectively, written by sf =
Fconv12(Fconv11(S)), tf = Fconv22 (Fconv21(T))- Then,
following (Li, Qian, and Yang 2017), we fuse sf, tf
by element-wise sum to construct low-level dual stream
feature, denoted by dsf = Fuum(sf,tf). Three con-
volutional layers will be adopted for sf, tf, dsf sepa-
rately to generate three actionness feature sequences P* =
(Fconv13(sf)a Fconv23 (tf); Fconv33 (de)) In training’ we
use three auxiliary actionness binary classification loss to su-
pervise P. In inference, three actionness feature sequence
are averaged to generate high-level actionness score feature,
which can be defined by asf = Fgq(P%).

Proposal feature generation layer. The PFG layer is an ef-
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Table 1: The detail design of dual stream BaseNet (DSB),
action-aware completeness regression (ACR) module and
temporal boundary classification (TBC) module.

DSB

layer kernel | output layer kernel output
ConvIDy; | 3 Lx256 ConvlDy; | 3 Lx 256
ConvlDys | 3 Lx128 ConviDas | 3 Lx 128
Sum _ Lx128 ConvlDs3 | 1 Lxl1
ConvlDy3 | 1 Lx1 ConvlDo3 | 1 Lx1
Averaging | _ Lx1

ACR TBC
layer kernel | output layer kernel output
PFG _ LxLx32 | PFG _ LxLx32x128
Conv2Dy; | 1x1 LxLx256 | Conv3Dg; | 1x1x32 | LxLx512
Conv2Dys | 1x1 LxLx256 | Conv2Day | 1x1 LxLx256
Conv2D;3 | 1x1 LxLxl Conv2Ds3 | 1x1 LxLx2

ficient and differentiable layer that is able to generate tem-
poral context feature for each proposal and make our frame-
work be end-to-end trainable. For an arbitrary input feature
fi™ whose shape is L x C, the PFG layer is able to produce
the proposal feature tensor whose shape is L x L x N x C,
which contains L x L proposal features fP whose size is
N x C.

Fig. 4 shows the detail of our PFG layer. First, for each
candidate proposal ¢ = (ts,t.), we sample NN; locations
from the left region r° = [t, — d,/k,ts + dg/k], N, loca-
tions from the center region r* = [t,,t.] and N, locations
from the right region r¢ = [t. — d,/k,t. + d4/k] by linear
interpolation, respectively, where d, = t. — ¢,k = 5 and
N = N;+ N.+ N,.. Then, with these sampling locations, we
concatenate the corresponding temporal location features to
produce the context proposal feature. Therefore, it is obvi-
ous to generate each proposal feature f; +, from the input

feature f" through the following formula:

fti,tem,c wlftl c+watz,",c7 (1)
where
2d,
\_ts J + k(N,71)nJ n < N,
t = Lt—l—N nl, N, <n < N;+ N,
[te — q+k(N _l)nJ n> N+ N,
(2
2d,
tr —ts +Ty_7k(Nl—1) n < N,
wy; = ty —ts — N 77, N <n< N+ N,
tr_te"_dkg_k(%_l) nZNl"_Nc’
3
b= 1+t w, = 1— . @)

When calculating gradient for training PFG layer, ftps 4. 18
differentiable for f in_and its differential formulas are:

aftp Jtem,c w afti,te,n,c
= wy, i
aftl c aftr ,C
In our experiments, we set N; = N, = 8 and N, = 16,
thus N = 32. Note that if t; > t., then the proposal feature

ft. ;. will be zero.
Action-aware completeness regression. The ACR branch

&)

= w,.
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Figure 4: Details of the proposal feature generation layer.
Given a feature sequence, we concatenate the sampled fea-
ture regions to construct proposal context feature map.

receives actionness score feature as input and outputs action
completeness map P¢ to estimate the overlap between can-
didate proposals and ground truth action instances. In ACR,
we employ the PFG layer and several two-dimensional con-
volutional layers for each proposal to explore semantic in-
formation in the global proposal level. As show in Tab.
1, the PFG layer can transfer temporal actionness score
features asf to three-dimensional proposal feature tensors,
which are fed into multi two-dimensional convolutional lay-
ers to generate L. x L action completeness maps, denoted as
pPe = F(Convll,ConleConvl?)) (FPFG(asf))' For each lo-
cation or proposal in the action completeness map, we use a
smooth L1 regression loss to supervise P¢ to generate reli-
able action completeness score.

Temporal boundary classification. The TBC branch re-
ceives dual stream feature as input and outputs boundary
confidence map P*%° to estimate the starting and ending
probabilities for dense candidate proposals. Similar with
ACR, TBC includes the PFG layer, a three-dimensional con-
volutional layer and several two-dimensional convolutional
layers. As show in Tab. 1, dual stream features dsf from
DSB is transfered by the PFG layer to four-dimensional
proposal tensors. Multi convolutional layers are stacked to
generate L x L x2 boundary confidence maps written by
pe = F(Conle,Canv22,Conv23) (FPFG(de)) For each
location or proposal in the boundary confidence map, we
use the binary classification loss to supervise P* ¢ to predict
precise temporal boundaries.

Training and Inference

To jointly learn action completeness map and boundary con-
fidence map, a unified multi-task loss is further proposed. In
inference, with three score maps generated by DBG, a score
fusion strategy and Soft-NMS can generate dense proposals
with confidence.

Label and Loss

Given the annotation {oi = (tsi,tei)}f.v:gl of a
video V, we compose actionness label g® for auxiliary
DSB actionness classification loss, boundary label ¢°, g¢
for TBC boundary classification loss, and action com-
pleteness label g for ACR completeness regression loss.

For a given ground truth action instance ¢ = (ts,t.),
we define its action region as ry = [t t.], starting



region as 75 = [ts — di,ts + di] and ending region as
re = [te — di,te + di], where d; is the two temporal
locations intervals.

DSB actionness classification. For each temporal location
1 within actionness score feature sequence P“, we denote
its region as 7; = [i — d¢/2,4 + dt/2]. Then, we calculate
maximum overlap ratio IOR for r; with rg, where IoR is
defined as the overlap ratio with ground truth proportional
to the duration of this region. If this ratio is bigger than
an overlap threshold 0.5, we set the actionness label as
gi 1, else we have g 0. With three actionness
probability sequences P?, we can construct DSB actionness
classification loss using binary logistic regression:

3 L
a 1 a aj
Lpsp = 3L ZZ flog(p;”) + (1 — gi)log(1 — p;?).

J: :
(6)

TBC boundary classification. For each location (3, j)
within starting confidence map P° or ending confidence
map P¢, we denote its starting region as 77 ; = [i —d;/2,i+
di/2] and its ending region as r{ ; = [j — d;/2,j + d:/2].
Similar with above actionness label, we calculate the start-
1ng label gl ; for r ; with rg and the ending label g7 ; for
ri; withrg. We also adopt binary logistic regression to con-
struct the classification loss function of TBC for the starting
and ending separately:

Lypc = ﬁ Z Zg”log (05 ;) +(1—=gi Hlog(1—p;;), (D

=1 j=1

L
e 1 e € (= €
Lrpc = 7z ZZgi,jlog(pi,j)+(1_gi,j)log(l_pi,j)~ (8)

i=1 j=1

ACR completeness regression. For each location or pro-
posal (4, j) within action completeness map P¢ , we denote
its region as r; ; = [i, j]. For r; ;, We caculate the maximum
Intersection-over-Union (IoU) with all rj to generate com-
pleteness label g; ;. With the action completeness map P¢
from ACR, we s1mply adopt smooth L1 loss to construct the
ACR loss function:

L L

1 c ¢
5 Z Z smoothri(p; ;j — g5 ;)-

i=1 j=1

©))

(&3
Lacr =

Following BSN, we balance the effect of positive and neg-
ative samples for the above two classification losses during
training. For regression loss, we randomly sample the pro-
posals to ensure the ratio of proposals in different IoU in-
tervals [0,0.2],[0.2,0.6] and [0.6,1] that satisfies 2:1:1. We
use the above three-task loss function to define the training

objective of our DGB as:
Lppe = Ahsp + Lrpo + Lrpo + Lacr,  (10)

where weight term A is set to 2 to effectively facilitate the
actionness score features.
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Prediction and Post-processing

In inference, different from BSN, three actionness probabil-
ity sequences from DSB will not participate in computation
of the final proposal results. Based on three score maps from
ACR and TBC, we adopt post-processing to generate dense
proposals with confidence.

Score map fusion. To make boundaries smooth and robust-
ness, we average boundary probability of these proposals
sharing the same starting or ending location. For starting and
ending score map P*, P¢ from TBC, we compute each lo-
cation or proposal boundary probability P;; and P,

1j:LZP15k7 Py, _Z;PI:J-

For each proposal (4, j) whose starting and ending loca-
tions are ¢ and j, we fuse boundary probability with com-
pleteness score map P¢ to generate the final confidence
score P; ;:

(1)

P, ; = Pf; x PSj x P (12)
For the fact that the starting location is in front of the
ending location, we consider the upper right part of the
score map, and then get the dense candidate proposals set
as vy = {0 = (1,4, Py S0
Proposal retrieving. The above proposal generation will
produce dense and redundant proposals around ground truth
action instances. Subsequently, we need to suppress redun-
dant proposals by Soft-NMS, which is a non-maximum sup-
pression by a score decaying function. After Soft-NMS step,
we employ a confidence threshold to get the final sparse can-
didate proposals set as ¥, = {¢; = (si, e, P;)}Y,, where
N is the number of retrieved proposals.

Experiments
Evaluation Datasets

ActivityNet-1.3. It is a large-scale dataset containing 19,994
videos with 200 activity classes for action recognition, tem-
poral proposal generation and detection. The quantity ratio
of training, validation and testing sets satisfies 2:1:1.
THUMOS14. This dataset has 1,010 validation videos and
1,574 testing videos with 20 classes. For the action proposal
or detection task, there are 200 validation videos and 212
testing videos labeled with temporal annotations. We train
our model on the validation set and evaluate on the test set.

Implementation Details

For video representation, we adopt the same two-stream
network (Xiong et al. 2016) pretrained on ActivityNet-
1.3 and parameter setting by following (Lin et al. 2019;
2018) to encode video features. For ActivityNet-1.3, we re-
size video feature sequence by linear interpolation and set
L = 100. For THUMOS14, we slide the window on video
feature sequence with overlap = 0.5 and L = 128. When
training DBG, we use Adam for optimization. The batch size
is set to 16. The learning rate is set to 10~2 for the first 10
epochs, and we decay it to 10~* for another 2 epochs. For
Soft-NMS, we set the threshold 0.8 on the ActivityNet-1.3
and 0.65 on the THUMOS14. € in Gaussian function is set
to 0.75 on both temporal proposal generation datasets.



Table 2: Comparison between our approach and other state-of-the-art temporal action generation approaches on validation set
and test set of ActivityNet-1.3 dataset in terms of AR@AN and AUC.

Method TCN MSRA Prop-SSAD CTAP BSN MGG BMN Ours
AR@100 (val) - - 73.01 73.17 7416 7454 7501 76.65
AUC (val) 59.58  63.12 64.40 65.72 66.17 6643 67.10 68.23
AUC (test) 61.56  64.18 64.80 - 66.26 6647 67.19 68.57

Table 3: Comparison between DBG with other state-of-the-
art methods on THUMOS 14 in terms of AR@AN.

Feature Method @50 @100 @200 @500 @1000
C3D SCNN-prop 17.22 26.17 37.01 51.57 58.20
C3D  SST 19.90 28.36 37.90 51.58 60.27
C3D TURN 19.63 27.96 38.34 53.52 60.75
C3D MGG 29.11 36.31 44.32 54.95 60.98
C3D BSN+NMS  27.19 35.38 43.61 53.77 59.50
C3D BSN+SNMS 29.58 37.38 45.55 54.67 59.48
C3D BMN+NMS 29.04 37.72 46.79 56.07 60.96
C3D BMN+SNMS 32.73 40.68 47.86 56.42 60.44
C3D OurstNMS  32.55 41.07 48.83 57.58 59.55
C3D  Ours+SNMS 30.55 38.82 46.59 56.42 62.17
2Stream TAG 1855 29.00 39.61 - -

Flow TURN 21.86 31.89 43.02 57.63 64.17
2Stream CTAP 3249 4261 5197 - -

2Stream MGG 39.93 47.75 54.65 61.36 64.06
2Stream BSN+NMS  35.41 43.55 52.23 61.35 65.10
2Stream BSN+SNMS 37.46 46.06 53.21 60.64 64.52
2Stream BMN+NMS  37.15 46.75 54.84 62.19 65.22
2Stream BMN+SNMS 39.36 47.72 54.70 62.07 65.49
2Stream Ours+NMS _ 40.89 49.24 55.76 61.43 61.95
2Stream Ours+SNMS 37.32 46.67 54.50 62.21 66.40

Table 4: Efficiency comparison among DBG and BMN and
BSN in validation set of ActivityNet-1.3. e2e means the
method is able to be trained end-to-end.

Method e2e AR@100 AUC T,., Ty
BSN X 74.16 66.17 0.624  0.629
BMN v 75.01 67.10 0.047 0.052
DBG v 76.65 68.23 0.008 0.013

Temporal Proposal Generation

To evaluate the proposal quality, we adopt different IoU
thresholds to calculate the average recall (AR) with aver-
age number of proposals (AN). A set of IoU thresholds
[0.5:0.05:0.95] is used on ActivityNet-1.3, while a set of
IoU thresholds [0.5:0.05:1.0] is used on THUMOS14. For
ActivityNet-1.3, area under the AR vs. AN curve (AUC) is
also used as the evaluation metrics.

Comparison experiments. We further compare our DBG
with other methods on the validation set of ActivityNet-
1.3. Tab. 2 lists a set of proposal genearation methods in-
cluding TCN (Dai et al. 2017), MSRA (Yao et al. 2017),
Prop-SSAD (Lin, Zhao, and Shou 2017), CTAP (Gao,
Chen, and Nevatia 2018), BSN (Lin et al. 2018), MGG
(Liu et al. 2019) and BMN (Lin et al. 2019). Our method
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Figure 5: Ablation study of effectiveness of modules in DBG

on validation set of ActivityNet-1.3 in terms of AR@AN
curve.

Table 5: Performance analysis of PFG layer.

Ni/N./N, 4/8/4 6/12/6 8/16/8 10/20/10 0/16/0 8/0/8
AR@10 5722 57.29 5729 57.09 5574 56.85
AR@50 7113 71.57 7159 7136 7029 71.17
AR@100 76.14 7627 76.65 7650 75.53 76.13
AUC 6791 68.14 68.23 68.11 6694 67.83

achieves state-of-the-art performance and improves AUC
from 67.10% to 68.23%, which demonstrates that our DBG
can achieve an overall performance promotion of action pro-
posal generation. Especially, with multiple video representa-
tion networks and multi-scale video features, our ensemble
DBG achieves 73.05% AUC, which ranks top-1 on Activi-
tyNet Challenge 2019 on temporal action proposals.

Tab. 3 compares proposal generation methods on the test-
ing set of THUMOSI14. To ensure a fair comparison, we
adopt the same video feature and post-processing step. Tab.
3 shows that our method using C3D or two-stream video
features outperforms other methods significantly when the
proposal number is set within [50,100,200,500,1000].

We conduct a more detailed comparison on the validation
set of ActivityNet-1.3 to evaluate the effectiveness and effi-
ciency among BSN, BMN, and DBG. As shown in Tab. 4,
for a 3-minute video processed on Nvidia GTX 1080Ti, our
inference speed accelerates a lot. And our proposal feature
generation is reduced from 47ms to 8ms, while the total in-
ference time decreases to 13ms.

Ablation study. We further conduct detailed ablation study
to evaluate different components of the proposed frame-
work, including DSB, ACR, and TBC, include the following
DBG w/o DSB: We discard DSB and feed concatenated spa-



Table 6: Generalization evalation on ActivityNet-1.3.

Seen Unseen
Training Data AR@100 AUC AR@I100 AUC
Seen+Unseen 73.30 66.57 67.23 64.59
Seen 72.95 66.23 64.77 62.18

Table 7: Action detection results on testing set of THU-
MOS14 in terms of mAP@tloU.

Method classifier 0.7 0.6 0.5 04 0.3
SST SCNN-cls - - 230 - -
TURN  SCNN-cls 7.7 146 25.6 332 44.1
BSN SCNN-cls 150 224 294 36.6 43.1
MGG SCNN-cls 15.8 23.6 299 378 449
BMN SCNN-cls 17.0 245 322 402 457
Ours SCNN-cls 184 253 329 404 459
SST UNet 4.7 10.9 20.0 315 412
TURN  UNet 6.3 14.1 245 353 463
BSN UNet 20.0 284 369 450 535
MGG UNet 213 295 374 46.8 539
BMN UNet 20.5 29.7 388 474 56.0
Ours UNet 21.7 30.2 398 494 57.8

tial and temporal features into the BSN-like BaseNet.

DBG w/o ACR: We discard action-aware feature and aux-
iliary actionness classification loss, and adopt dual stream
feature for action-aware completeness regression like TBC.
DBG w/o TBC: We discard the whole temporal boundary
classification module, and instead predict boundary proba-
bility sequence like actionness feature sequence in DSB.

As illustrated in Fig. 5, the proposed DBG outperforms
all its variants in terms of AUC with different IoU thresh-
olds, which verifies the effectiveness of our contributions.
The DBG w/o ACR results demonstrate that action-aware
feature using auxiliary supervision is more helpful than dual
stream feature for action completeness regression. The DBG
w/o TBC results explain the remarkable superiority of dense
boundary maps for all proposals. When the IoU threshold is
strict and set to be 0.9 for evaluation, a large AUC gap be-
tween DBG (blue line) and DBG w/o TBC (red line) shows
TBC can predict more precise boundaries. Fig. 6 shows
more examples to demonstrate the effects of DBG on han-
dling actions with various variations.

Analysis of PFG layer. To confirm the effect of the PFG
layer, we conduct experiments to examine how different
sampling locations within features affect proposal gener-
ation performance. As shown in Tab. 5, The experiments
that sampling 8, 16, 8 locations from left region, center re-
gion and right region respectively within proposal features
achieves the best performance. The 0/16/0 results indicate
that context information around proposals are necessary for
better performance on proposal generation. The 8/0/8 exper-
iment that only adopting left or right local region features for
TBC to predict starting or ending boundary confidence map
shows the importance of the global proposal information.

Generalizability. Following BMN, we choose two different
action subsets on ActivityNet-1.3 for generalizability anal-
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Figure 6: Visualization examples of proposals generated by
DBG on ActivityNet-1.3 dataset.

ysis: “Sports, Exercise, and Recreation” and “Socializing,
Relaxing, and Leisure” as seen and unseen subsets, respec-
tively. We employ I3D network (Carreira and Zisserman
2017) pretrained on Kinetics-400 for video representation.
Tab. 6 shows the slight AUC drop when testing the unseen
subset, which clearly explains that DBG works well to gen-
erate high-quality proposals for unseen actions.

Temporal Proposal Detection

To evaluate the proposal quality of DBG, we put propos-
als in a temporal action detection framework. We adopt
mean Average Precision (mAP) to evaluates the temporal
action detection task. We adopt a set of IoU thresholds
{0.3,0.4,0.5,0.6,0.7} for THUMOS 14.

We follow a two-stage “detection by classifying pro-
posals” framework in evaluation, which feeds the detected
proposals into the state-of-the-art action classifiers SCNN
(Shou, Wang, and Chang 2016) and UntrimmedNet (Wang
et al. 2017). For fair comparisons, we use the same classi-
fiers for other proposal generation methods, including SST
(Buch et al. 2017), TURN (Gao et al. 2017), CTAP (Gao,
Chen, and Nevatia 2018), BSN (Lin et al. 2018), MGG (Liu
et al. 2019) and BMN (Lin et al. 2019). The experimental
results on THUMOS 14 are shown in Tab. 7, which demon-
strates that DBG based detection significantly outperforms
other state-of-the-art methods in temporal action detection
methods. Especially, with the same IOU threshold 0.7, our
DBG based detection achieves an mAP improvements of
1.4% and 1.2% for two types of classifiers separately from
BMN based methods.

Conclusion

This paper introduces a novel and unified temporal ac-
tion proposal generator named Dense Boundary Genera-
tor (DBG). In this work, we propose dual stream BaseNet
to generate two different level and more discriminative
features. We then adopt a temporal boundary classifica-
tion module to predict precise temporal boundaries, and an
action-aware completeness regression module to provide re-
liable action completeness confidence. Comprehensive ex-
periments are conducted on popular benchmarks including
ActivityNet-1.3 and THUMOS14, which demonstrates the
superiority of our proposed DBG compared to state-of-the-
art methods.
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