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Abstract

The process of transporting and synthesizing experimental
findings from heterogeneous data collections to construct
causal explanations is arguably one of the most central and
challenging problems in modern data science. This prob-
lem has been studied in the causal inference literature under
the rubric of causal effect identifiability and transportability
(Bareinboim and Pearl 2016). In this paper, we investigate a
general version of this challenge where the goal is to learn
conditional causal effects from an arbitrary combination of
datasets collected under different conditions, observational or
experimental, and from heterogeneous populations. Specifi-
cally, we introduce a unified graphical criterion that charac-
terizes the conditions under which conditional causal effects
can be uniquely determined from the disparate data collec-
tions. We further develop an efficient, sound, and complete
algorithm that outputs an expression for the conditional ef-
fect whenever it exists, which synthesizes the available causal
knowledge and empirical evidence; if the algorithm is unable
to find a formula, then such synthesis is provably impossible,
unless further parametric assumptions are made. Finally, we
prove that do-calculus (Pearl 1995) is complete for this task,
i.e., the inexistence of a do-calculus derivation implies the
impossibility of constructing the targeted causal explanation.

1 Introduction

In the empirical sciences, experiments are almost invariably
performed with the intent of being used elsewhere (e.g., out-
side the laboratory), where the conditions are likely to be
different. This practice is based on the premise that, owing
to certain commonalities between the source and target en-
vironments, causal claims will be valid even where exper-
iments have never been carried out. In biology, for exam-
ple, many experiments performed on Bonobos are not de-
signed due to an inherent interest in this particular species,
but because of their similarity to Homo Sapiens, and the
hope that the experimental findings would be robust, and
transportable across species. The capability of generalizing
causal knowledge plays a critical role in machine learning
as well; an intelligent system is trained in one environment
— where it is allowed to perform interventions — with the
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goal of operating more efficiently and surgically in a deploy-
ment site, despite their structural differences (Pearl 2000;
Bareinboim and Pearl 2016).

One natural question that arises in these settings is what
makes scientists believe that experimental studies conducted
in one species could, at least in principle, be used to make
causal claims about another different one? Also, how could
AI engineers expect, or perhaps hope, that an intelligent sys-
tem trained in one environment would operate successfully
when deployed in a different location? The key observa-
tion leveraged in these cases is that, while there might exist
glaring differences in the source and target domains, some
mechanisms are shared across domains, and owed to their
invariances, they would act as anchors, allowing knowledge
to be transported and causal learning to take place even-
tually (Pearl 2000; Spirtes, Glymour, and Scheines 2001;
Bareinboim and Pearl 2016; Pearl and Mackenzie 2018).

The fields of machine learning and artificial intelligence
provide the theoretical underpinnings to reason about causal
mechanisms so as to tackle the challenge of synthesizing ex-
perimental findings in a principled and systematic way. In
particular, we build on the framework of structural causal
models (SCMs) (Pearl 2000) to formalize this setting and
systematically leverage the invariant features of the under-
lying data-generating model. An increasingly large class
of problems regarding the generalizability of experimen-
tal findings across domains has been studied in the last
decades within the SCM framework. For instance, the prob-
lem of identifiability of causal effects has been investigated,
which is concerned with the conditions under which the
causal effect of a treatment variable (or set) X on an out-
come variable (or set) Y , usually written as P (Y |do(X)),
can be determined from the combination of the observa-
tional distribution and qualitative understanding about the
domain encoded in the form of a causal diagram. A criterion
known as the backdoor has been introduced in (Pearl 1993),
which provided a formal, graphical justification for when
causal effects can be identified by the adjustment formula,
and then estimated by propensity score methods. There ex-
ist a number of other conditions developed to solve this
problem (Galles and Pearl 1995; Pearl and Robins 1995;
Kuroki and Miyakawa 1999; Halpern 2000; Spirtes, Gly-
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mour, and Scheines 2001). Pearl introduced do-calculus as a
general algebraic solution to this problem, which is applica-
ble when observational and/or experimental distributions are
available (Pearl 1995). Based on this machinery, more gen-
eral graphical and algorithmic identifiability conditions were
derived, which culminated in complete characterizations
(Tian 2002; Tian and Pearl 2002; Shpitser and Pearl 2006b;
Huang and Valtorta 2006; Bareinboim and Pearl 2012a;
Lee, Correa, and Bareinboim 2019).

More recently, the problem of generalizing causal dis-
tributions across heterogeneous domains1 has been studied
under the rubric of transportability (Pearl and Bareinboim
2011). Early work in transportability considered whether the
experiments coming from a source domain can be lever-
aged to answer a query in a target domain, despite the two
domains differing in some of their underlying mechanisms
(Bareinboim and Pearl 2012b). This setting was then gen-
eralized to allow multiple source domains, different set of
manipulable variables per domain, or both (Bareinboim and
Pearl 2014). Transportability has been used in more ap-
plied settings, for example, (Westreich and Edwards 2015;
Westreich et al. 2017; Lesko et al. 2017; Keiding and Louis
2018; Zhou et al. 2018). See also discussions in (Pearl 2015;
Pearl and Mackenzie 2018; Pearl and Bareinboim 2019).

Despite the many advances achieved in the transporta-
bility literature throughout the past decade, each work ad-
dressed some of the following specific dimensions: 1. (con-
ditional) a causal query can be of a conditional interven-
tional probability instead of only marginal; 2. (specification)
available data can be of an arbitrary collection of observa-
tional and experimental distributions instead of a restricted
class (e.g., all combinations of experiments); and 3. (het-
erogeneity) the data can come from a number of heteroge-
neous domains. While it lies outside our scope here to pro-
vide a survey of this body of literature, for the sake of clar-
ity, we provide a short summary of the relationship between
the main settings in Appendix A.1 (Lee, Correa, and Barein-
boim 2020).

We will account for these three aspects simultaneously,
and ultimately provide a solution to the most general version
of transportability. Cohesively combining the disparate ma-
chinery (e.g., concepts, conditions, algorithms) developed
for these different instances of the transportability problem
turns out to be a non-trivial task since they capture different
aspects of the problem, operating at distinct levels of ab-
straction. The main goal of this paper, technically speaking,
will be to put these results together under a general, uni-
fying umbrella. More specifically, our contributions are as
follows: (1) We derive a necessary and sufficient graphical
criterion for determining whether conditional interventional
distributions (including unconditional and observational dis-
tributions) in a target domain can be uniquely determined
from a set of observational and experimental distributions

1Some general tasks found in the sciences can be seen
as instances of transportability theory, including external valid-
ity (Campbell and Stanley 1963; Manski 2007), meta-analysis
(Hedges and Olkin 1985), quasi-experiment (Shadish, Cook, and
Campbell 2002), or heterogeneity (Morgan and Winship 2007).

spread throughout heterogeneous domains; (2) We develop
a sound and complete algorithm for this problem. (3) We
then prove that do-calculus (Pearl 1995) is complete for the
task of general transportability.

1.1 Preliminaries

We use uppercase letters for variables and lowercase for the
corresponding values. We denote by XV the state space of V
where v ∈ XV . A bold letter represents a set. Calligraphic
letters are for mathematical structures such as graphs and
models. We use familial notation for relationships among
vertices in a graph: Pa(·), An(·), and De(·) represent par-
ents, ancestors, and descendants of variables (including its
argument as well). In this paper, we are interested in graphs,
induced from a SCM (to be defined formally), with both di-
rected and bidirected edges. The root set of a graph is a set
of vertices with no outgoing edge. Given a graph G, we use
V to represent the set of vertices in G in the current scope
if no ambiguity arises. Otherwise, we denote by V(G′) the
set of observed variables in G′. We denote by G[W] a sub-
graph induced on G by W, which consists of W and edges
among them. We define G \ Z as G[V \ Z]. We denote by
GX and GX edge-subgraphs of G with incoming edges onto
X and outgoing edges from X, respectively, removed. We
adopt set-related symbols for graphs, e.g., G′ ⊆ G denotes
G′ being a subgraph of G, or T ∪ H stands for the union of
two graphs T andH.

As mentioned, we use the language of SCMs (Pearl
2000, Ch. 7) as our basic semantical framework, which al-
lows us to represent observational and interventional dis-
tributions as well as different domains. Formally, a tuple
〈U,V,F, P (U)〉 defines a SCMM where i) U is a set of
unobserved variables; ii) V is a set of observed variables; iii)
F is a set of deterministic functions {fV }V ∈V for observed
variables, e.g., v ← fV (paV ,uV ) where PAV ⊆ V \ {V }
and UV ⊆ U; and iv) P (U) is a joint probability dis-
tribution over U. Intervening on X by fixing it to x, de-
noted by do(X = x) = do(x), in M creates a submodel
Mx = 〈U,V,Fx, P (U)〉 where Fx is F with fX replaced
by a constant x for every X ∈ X. The submodel Mx in-
duces an interventional distribution Px, which is also de-
noted by P (· | do(x)). A SCM induces a causal diagram
where its vertices correspond to V, directed edges represent
functional relationships as specified in F, and each of bidi-
rected edges portrays the existence of an unobserved con-
founder (UC) between the two vertices pointed by the edge.
We will make extensive use of the do-calculus, which is a
set of three rules that allow one to reason about invariances
across observational and experimental distributions. For all
the proofs and appendices, please refer to the full technical
report (Lee, Correa, and Bareinboim 2020).

2 Towards General Transportability

In this section, we introduce some basic results needed to
formalize and solve the problem of general transportability.

In this work, we consider the set of heterogeneous do-
mains (i.e., environments, studies, or populations) Π =
{π1, π2, . . . , πn}, where each domain associates with a
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SCM compatible with a common causal diagram G. We fix
π1 as a target domain in which we are interested in answer-
ing a causal query, and the others are considered source do-
mains. Through out this paper, let ∗ = 1 to emphasize the
target domain, e.g., π∗ or P ∗. The distributions associated
with πi under do(x) will be denoted by P i

x. Following the
construction in (Bareinboim and Pearl 2012b), we formally
characterize structural heterogeneity across domains:

Definition 1 (Domain Discrepancy). Let πa and πb be do-
mains associated, respectively, with SCMs Ma and Mb

conforming to a causal diagram G. We denote by Δa,b ⊆ V
a set of variables such that, for every V ∈ Δa,b, there
might exist a discrepancy; either fa

V 	= f b
V or P a(UV ) 	=

P b(UV ).

Further, the differences between the target and each of the
source domains is represented in G:

Definition 2 (Selection Diagram). Given a collection of do-
main discrepancies Δ = {Δ∗,i}ni=1 with regard to G =
〈V,E〉, let S = {SV | ∃ni=1V ∈ Δ∗,i} be selection vari-
ables. Then, a selection diagram GΔ is defined as a graph
〈V ∪ S,E ∪ {SV → V }SV ∈S〉.

We shorten Δ∗,i as Δi to represent the differences
between the target and each source domain. We denote
domain-specific selection variables by Si = {SV }V ∈Δi ,
and the rest by S−i = S \ Si. Selection variables work like
switches selecting the domain of interest. The state space
of SV ∈ S is {1} ∪ {i | V ∈ Δi ∈ Δ}. Therefore, a
selection diagram can be viewed as the causal diagram for
a unifying SCM2 representing heterogeneous SCMs where
Px(y | w, si = i, s−i = 1) = P i

x(y | w).
For example, we illustrate in Figs. 1a to 1c a common

causal graph G among three domains with different colors
to highlight the discrepancies between the target and source
domains. This corresponds to Δ = {∅, {X,Y }, {X}},
which entails the selection diagram GΔ in Fig. 1d. We are
now ready to define the most general transportability in-
stance that will be investigated in this paper, namely:

Definition 3 (g-Transportability). Let GΔ be a selection di-
agram relative to domains Π = {πi}ni=1 with a target do-
main π∗. Let Z = {Zi}ni=1 be a specification of available
experiments, where Z

i is the collection of sets of variables
for πi in which experiments on each set of variables Z ∈ Z

i

can be conducted. Given disjoint sets of variables X, Y, and
W, the conditional causal effect P ∗

x (y|w) is said to be g-
transportable given 〈GΔ,Z〉 if P ∗

x (y|w) is uniquely com-
putable from P

Π
Z

= {P i
z | z ∈ XZ,Z ∈ Z

i ∈ Z} in any
collection of models that induce GΔ.

This problem can be seen as asking about the existence of
a functor g that outputs a universal formula given 〈GΔ,Z〉,
which takes PΠ

Z
and returns P ∗

x (y | w), i.e., ∃gP ∗
x (y | w) =

2One can construct a SCM M = 〈∪iU
i,V ∪

S,F,
∏

i P
i(Ui)〉 where F is the same as the one in M1

except X ∈ V such that SX ∈ S. For such a variable X ,
adopt X = fSX

X (PAX ,USX
X ), which selects the given domain’s

function as specified by SX .

W

X Y

(a) π1

W

X Y

(b) π2

W

X Y

(c) π3

W

X Y

SYSX

(d) GΔ

Figure 1: Causal graphs colored to depict the discrepancies
between (a) a target domain; (b,c) two source domains where
Δ = {∅, {X,Y }, {X}}, which induces S = {SX , SY },
where S2 = {SX , SY }; S3 = {SX} and (d) a selection
diagram GΔ.

g(GΔ,Z)(PΠ
Z
). Again, considering the selection diagram in

Fig. 1d with Z = {∅, {{Y }}, {{X}}}, one can show that

P ∗
x (y|w) =

P ∗
x (y, w)

P ∗
x (w)

=
P 3
x (y, w)

P ∗
x (w)

=
P 3
x (y, w)

P 2
y (w)

(1)

Specifically, note that the first equality follows from the def-
inition of conditional probability, the second one is due to
the irrelevance of the different X mechanisms between π∗
and π3 under do(x), and the last one is based on Rule 3
(removing do(x) and adding do(y)) together with W being
indifferent to the disparities on fX and fY between π∗ and
π2. The following lemma provides a declarative way to de-
termine whether a query P ∗

x (y|w) is g-transportable given
〈GΔ,Z〉 based on the selection diagram.
Lemma 1. A causal effect P ∗

x (y|w) is g-transportable with
respect to 〈GΔ,Z〉 if the expression Px(y|w,S) is reducible
to an expression in which every term of the form Pa(b|c,S′)
satisfies (S \ S′ ⊥⊥ B | C) in GΔ \ A, Si ∩ S′ = ∅, and
A ∈ Z

i for some domain πi ∈ Π.

Proof. The condition implies that Px(y|w, s=1)
can be written as an expression with terms, e.g.
Pa(b|c, s′=1), and further entails that Pa(b|c, s′=1) =
Pa(b|c, s−i=1, si=i) = P i

a(b|c) for any πi such that
Si ∩ S′ = ∅. Since P i

a ∈ P
Π
Z

, the expression uniquely
computes P ∗

x (y|w) with P
Π
Z

.

The previous example in Eq. (1) on Fig. 1 can be rewritten
by explicitly employing the selection variables to articulate
the applications of do-calculus and the axioms of probabil-
ity:

Px(y|w,S) =
Px(y, w|S)
Px(w|S)

=
Px(y, w|SY )

Px(w)
=

P 3
x (y, w)

P 2
y (w)

For instance, Px(y, w|SY ) = P 3
x (y, w) due to {SY } ⊆

S−3 = {SX , SY } \ {SX}. We next characterize non-g-
transportability of a conditional causal effect:
Lemma 2. A causal effect P ∗

x (y|w) is not g-transportable
with respect to 〈GΔ,Z〉, if there exist two SCMs compati-
ble with GΔ where both agree on P

Π
Z

while disagreeing on
P ∗
x (y|w).
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Proof. Having two different values for the query P ∗
x (y|w)

rules out the existence of a valid function mapping from
〈GΔ,Z〉 to the conditional causal effect.

The conditional causal effect P ∗
x (y|w) shown in Fig. 1

would not be g-transportable if π3 associates with an ob-
servational distribution without an experiment on X , i.e.,
Z
3 = {∅}; or if its mechanism on W disagrees with π∗,

i.e., Δ3 = {W}. We will provide a graphical criterion
for the non-g-transportability of a query in Sec. 3 based
on Lemma 2, and devise a sound and complete algorithm
for the problem of g-transportability in Sec. 4 grounded on
Lemma 1 and the results in Sec. 3.

3 A Graphical Criterion for

Non-g-transportability

We present a graphical criterion which can tell whether
a conditional causal effect is not g-transportable. We start
by examining the case of an unconditional causal effect
(Sec. 3.1). These results will be leveraged to investigate con-
ditional effects (Sec. 3.2).

3.1 Non-g-transportability of an Unconditional
Interventional Distribution

We investigate a graphical characterization of non-g-
transportability of an unconditional causal effect given
〈GΔ,Z〉. We formally introduce essential notions devised in
the identifiability literature (Tian and Pearl 2002; Shpitser
and Pearl 2006b) with slight revisions. A subgraph of G is
called a C-component (Tian 2002; Tian and Pearl 2002) if
its bidirected edges form a spanning tree over all vertices
in the subgraph. A graph G can be decomposed into a set
of maximal C-components. We denote by C(G) the decom-
position of V with respect to maximal C-components. An
R-rooted C-forest is a C-component whose root set is R
and edges are minimal such that every vertex other than R
has one child and bidirected arcs form a spanning tree. A
pair of C-forests with an inclusive relationship, often de-
noted by 〈F ,F ′〉 such that F ′ ⊆ F , sharing the same roots
is called a hedge. If there exists an R-rooted hedge 〈F ,F ′〉
in G with R ⊆ An(Y)G\X, X ∩ F 	= ∅, and X ∩ F ′ = ∅,
then we say that 〈F ,F ′〉 is formed for P ∗

x (y), which im-
plies that the same effect is not identifiable in G from P
(Shpitser and Pearl 2006b). For example, Fa in Fig. 2b is
a {Y1, R, Y2}-rooted C-forest. The subgraph made of this
root-set alone is also a {Y1, R, Y2}-rooted C-forest. That is,
the pair 〈Fa,Fa[{Y1, R, Y2}]〉 is a hedge, which is formed
for P ∗

x1
(y1, y2) in G (but not for P ∗

x1
(y1)).

Thicket is a graphical structure that precludes the non-
identifiability of P ∗

x (y) with 〈G{∅}, {Z∗}〉 (i.e., a single do-
main with an arbitrary collection of experiments) (Lee, Cor-
rea, and Bareinboim 2019). We introduce the notion of s-
thicket, a generalization of a thicket to a heterogeneous set-
ting by taking selection variables into account:

Definition 4 (s-Thicket). Given 〈GΔ,Z〉, an s-thicket T is
a minimal non-empty R-rooted C-component of G such that
for each Z ∈ Z

i ∈ Z, either (a) Δi ∩R 	= ∅, (b) Z∩R 	= ∅,
or (c) there exists F ⊆ T \Z where 〈F , T [R]〉 is a hedge. If

R ⊆ An(Y)G\X and every hedgelet of the hedges intersects
with X, we say an s-thicket T is formed for P ∗

x (y) in GΔ
with respect to Z.

Definition 5 (hedgelet decomposition). The hedgelet de-
composition H(〈F ,F ′〉) of a hedge 〈F ,F ′〉 is the collec-
tion of hedgelets {F(T)}T∈C(F\F ′) where each hedgelet
F(T) is a subgraph of F made of (i) F [V(F ′) ∪ T] and
(ii) F [De(T)F ] without bidirected edges.

An s-thicket is a superimposition of hedges sharing a
common root-set, where each hedge is also a superimpo-
sition of hedgelets. Intuitively speaking, if we encounter an
s-thicket T for P ∗

x′(y′) in G, g-transporting P ∗
x′(r), where

X′ = X∩T , is hindered because every existing experimen-
tal distribution either (a) exhibits discrepancies, (b) is based
on an intervention on the variables we wish to measure,
or (c) is not sufficient to pinpoint P ∗

x′(r). Further, P ∗
x (y)

is not g-transportable since the negative result for P ∗
x′(r)

can be mapped to that for P ∗
x′(y′) where Y′ ⊆ Y and

R ⊆ An(Y′)G\X.
Consider, for example, the causal graph G in Fig. 2a where

Δ = {∅, {B}} and Z = {{{C}}, {{X1}, {X3, R}}}. G
without R → Y2 is an s-thicket for P ∗

x (y) with respect to
〈GΔ,Z〉. First, an experiment on {X3, R} matches (b) in
Def. 4. Since the other two experiments do not match (a) nor
(b) in Def. 4, there should be two hedges which do not inter-
sect with C and X1, respectively (Fig. 2b and Fig. 2c). The
former, which disjoints with {C}, is also its only hedgelet.
The latter, which does not contain {X1}, is composed of
two hedgelets based on the C-component decomposition of
its top (i.e., the subgraph induced by removing its root-
set) C(Fb[{B,C,D,X2, X3}]) = {{B,C,X3}, {D,X2}}.
Now, we formally establish a connection between an s-
thicket and the non-g-transportability of a query:

Lemma 3. With respect to GΔ and Z, a causal effect P ∗
x (y)

is not g-transportable if there exists an s-thicket T formed
for the causal effect.

Proof sketch. Treating multiple domains as if they are ho-
mogeneous, the existence of T entails the existence of
two models witnessing the non-g-transportability of P ∗

x′(r),
for some X′ ⊆ X, from G{∅} and {

⋃
i Z

i} (Lee, Cor-
rea, and Bareinboim 2019). However, the same models will
not necessarily agree on some of distributions available in
source domains. We incorporate selection variables into the
parametrization to make the two models agree on P

Π
Z

while
still disagreeing on P ∗

x′(r). The parametrization (Lee, Cor-
rea, and Bareinboim 2019) is designed to produce the same
distributions for the two models if at least one R ∈ R be-
comes independent to the UCs among R, which isn’t the
case for do(x). We modify each function for R ∈ R to re-
turn 0 when SR 	= 1.3 Consequently, the two models witness
the non-g-transportability of P ∗

x′(r), and the result will en-
tail the same for P ∗

x′(y′) in T ′, a graph where T is extended
by adding directed paths from R to Y′ ⊆ Y.

3One can replace the constant 0 to an R-specific unobserved
variables, which can be an (un)fair coin.
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Y1 R Y2

X1 X2 X3

DB C

(a) G

Y1 R Y2

X1 X3

DB

(b) Fa

Y1 R Y2

X1 X2 X3

DB C

(c) Fb

Y1 R Y2

X1 X2 X3

B C

(d) Fb({B,C,X3})

Y1 R Y2

X1 X2 X3

D

(e) Fb({D,X2})

Figure 2: (a) A causal graph G, which, without R → Y2, forms an s-thicket for P ∗
x (y) given Δ = {∅, {B}} and Z =

{{{C}}, {{X1}, {X3, R}}}. The s-thicket is the superimposition of two hedges (b, c) where the latter further decomposed into
two hedgelets (d, e).

At this point, the non-existence of an s-thicket is a neces-
sary condition for the g-transportability of an unconditional
causal effect. We will further show in Sec. 4 that this is suffi-
cient too, which will be done by presenting an algorithm that
returns a valid formula for the target effect whenever no s-
thicket exists (Thm. 3). For the sake of a better presentation
of the completeness of the graphical criterion for the con-
ditional case in the next section, we put a corollary below
based on Lemma 3 and Thm. 3:
Corollary 1. With respect to GΔ and Z, a causal effect
P ∗
x (y) is not g-transportable if and only if there exists an

s-thicket T formed for the causal effect.

3.2 Non-g-transportability of a Conditional
Interventional Distribution

We proceed to the graphical criterion for the g-transportation
of P ∗

x (y|w). We will assume that the query under consider-
ation is conditionally minimal in the sense that there is no
W ∈ W such that P ∗

x (y|w) = P ∗
x∪{w}(y|w \ {w}) by

virtue of Rule 2 of do-calculus. Otherwise, we can repeat-
edly apply Rule 2 and obtain an equivalent minimal expres-
sion P ∗

x,w′(y|w \w′) (Cor. 1 (Shpitser and Pearl 2006a)).
The conditional minimality is graphically translated to the
existence of an active backdoor path from each of W ∈W
to some Y ∈ Y given W \ {W}. We present a major theo-
retical result which authorizes the delegation of the charac-
terization of a conditional causal effect to that of an uncon-
ditional one:
Theorem 1. Let every W∈W have a backdoor path to
Y in G\X active given W\{W}. A query P ∗

x (y|w) is g-
transportable if and only if P ∗

x (y,w) is g-transportable with
respect to 〈GΔ,Z〉.

The sufficiency holds true since P ∗
x (y|w) =

P ∗
x (y,w)/

∑
y P

∗
x (y,w). As for the necessity, sup-

pose P ∗
x (y,w) is not g-transportable. If P ∗

x (w) is
g-transportable, then P ∗

x (y|w) must be non-g-transportable,
otherwise a contradiction arises since P ∗

x (y,w) would be
g-transportable as P ∗

x (y|w)P ∗
x (w). Then, it remains to

prove that P ∗
x (y|w) is not g-transportable whenever P ∗

x (w)
is not g-transportable with respect to 〈GΔ,Z〉. Indeed, that
is the case, as follows:
Theorem 2. Let every W ∈W have a backdoor path to Y
in G \ X active given W \ {W}. A query P ∗

x (y|w) is not

V

W2

X1

X2

W1

Y

(a) G

V

W2

X1

X2

W1

Y

(b) T
V

W2

X1

X2

W1

Y

(c) T ′ = T ∪ E

V

W2

X1

X2

W1

Y

(d) T ′′ = T ∪ E ∪ P

Figure 3: A causal diagram G, and causal diagrams illustrat-
ing the phases of a non-g-transportability parametrization
for P ∗

x (y|w). (b) an s-thicket for P ∗
x (w) given P ∗, (c) the

s-thicket with an extension in red, and (d) a path-witnessing
subgraph (blue) augmented extended s-thicket.

g-transportable if P ∗
x (w) is not g-transportable with respect

to 〈GΔ,Z〉.

Proof sketch. Let T ′ be a subgraph of G parametrized to
demonstrate the non-g-transportability of P ∗

x′(w′) given
〈GΔ,Z〉 (Lemma 3). Pick some W ∈ W′ that is also in
the root-set of T ′, and fix a minimal subgraph P ⊆ G \X
witnessing an active backdoor path from W to some Y ∈ Y
given W \ {W}. P also includes any directed path from an
active collider in P to its descendant in W \ {W}. We con-
struct two models for T ′ ∪ P while preserving the mech-
anisms in Lemma 3. We augment the exclusive-or-based
parametrization for variables in P so that W and Y are cor-
related given (W ∩ P) \ {W}. In the augmented models,
the value of W is determined as the exclusive-or of two W s
computed in T ′ and in P . The resultant models will disagree
on P ∗

x′(y|w′′) where W′′ is the subset of W in T ′ ∪ P .
Therefore, P ∗

x (y|w) is not g-transportable with respect to
〈GΔ,Z〉.

We provide an illustrative example in Fig. 3. For the
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Algorithm 1 GTR and GTRU, sound and complete g-
transportability algorithms.
1: function GTR(y,x,w,G,Δ)

input: y, x, w: values for a query P ∗
x (y|w); G: causal dia-

gram; Δ: domain discrepancies.
output: an estimator computing P ∗

x (y|w).
2: if ∃W∈W(W ⊥⊥ Y |W \ {W})(G\X)W then

return GTR(y,x ∪ {w},w \ {w},G,Δ).
3: else

return Q/
∑

y Q where Q← GTRU(y ∪w,x,G,Δ).

4: function GTRU(y,x,G,Δ)
output: an estimator computing P ∗

x (y).
5: if ∃Z∈Zi∈Z(X = Z ∩V) ∧ (Si ⊥⊥ Y)GΔ\X then

return P i
z\V,x(y).

6: if (V′ ← V \An(Y)G) �= ∅ then

return GTRU(y,x \V′,G \V′, {Δi \V′ | Δi ∈Δ}).
7: if (V′ ← (V \X) \An(Y)G

X
) �= ∅ then

return GTRU(y,x ∪ v′,G,Δ).
8: if |C(G \X)| > 1 then

return
∑

v\(y∪x)

∏
C∈C(G\X) GTRU(c,v \ c,G,Δ).

9: for πi ∈ Π such that (Si ⊥⊥ Y)GΔ\X, for Z ∈ Z
i such that

Z ∩V ⊆ X do
10: return ID(y,x\Z, P i

z\V,x∩Z,G \ (Z∩X)) unless FAIL
is returned.

11: throw FAIL

sake of brevity, we assume a single domain setting with
P ∗ available. Given a causal graph G (Fig. 3a) and P ∗,
an s-thicket T is formed for P ∗

x (w) (Fig. 3b). Two mod-
els are first constructed to disagree on P ∗

x (v, w1). Then,
the result is mapped to P ∗

x (w) via a graph E (red), result-
ing in a parametrization for T ′ = T ∪ E (Fig. 3c). Pick
W1 ∈ W, which is the only W in the root set of T ′, then
find a backdoor path to Y given W \ {W1}. The path-
witnessing subgraph P ∈ G is shown in blue (Fig. 3d). A
separate parametrization for P is merged with that for T ′
via an exclusive-or on W1. Then, the two models disagree
on P ∗

x (y|w).

4 A Sound and Complete Algorithm for

g-Transportability

In this section, we introduce GTR (Alg. 1), which is a sound
and complete algorithm for solving any g-transportability
instance, i.e., outputs an estimator for a given conditional
interventional query P ∗

x (y|w) in a target domain with re-
spect to 〈GΔ,Z〉, when it exists. This algorithm smoothly
and effectively combines the results underlying previous
identification-transportability algorithms found in the lit-
erature, including (Tian 2002; Shpitser and Pearl 2006b;
2006a; Bareinboim and Pearl 2014; Lee, Correa, and Barein-
boim 2019). The experiment specification Z and the corre-
sponding distributions P

Π
Z

are defined globally, and do not
change with the specific invocation of the algorithm. In con-
trast, variables V and selection variables S reflect graph G
and discrepancies Δ, respectively, relative to the arguments
passed to the current execution of the procedure.

We provide a line by line description where symbols such

V

W2

X1

X2

W1

Y

(a) GΔ

V

W2

W1

Y

X1

X2

(b) G \X
V

W2

X1

X2

W1WW

Y

(c) GΔ[An(W2)G ]

V

W2

X1

W1

Y
X2

(d) GΔ \ {X2}

Figure 4: (a) A selection diagram GΔ where Δ =
{∅, {W1, Y }, {W2}} and Z = {∅, {∅}, {{X2}}}. (b,c,d)
Graphs encountered during the execution of GTR to g-
transport P ∗

x (y|w).

as G, V, X, Y, and W are to be interpreted relative to the
current arguments of the algorithm. At Line 2, GTR, re-
cursively transforms the given query using Rule 2 of do-
calculus to guarantee it is conditionally minimal (and sat-
isfies the requirement for Thm. 1). With this guarantee, the
algorithm (Line 3) delegates the identification of the query,
based on the definition of conditional probability, to GTRU,
which handles unconditional queries. Overall, GTRU trans-
forms the given unconditional query and divides the prob-
lem into the identification of (simpler) subqueries. Each sub-
problem is delegated to ID with a distribution P i

z under
some constraints on the domain πi and the experiments on
Z ∈ Z

i. Line 5, which is optional, checks whether an avail-
able distribution can be used to answer the query directly,
i.e., P i

z(y) = P ∗
x (y), so as to return an estimator at an early

stage. Line 6 narrows the scope of the problem by excluding
variables that do not affect Y (Rule 3). Domain discrepan-
cies are updated accordingly, since selection variables out-
side the scope have no effect on Y. Line 7 maximizes the
intervention set, which helps solving the problem, based on
Rule 3. Line 8 breaks down the query into queries where
Y in each subquery forms a C-component (Tian and Pearl
2002). Line 9 examines whether some experimental distri-
bution P i

z ∈ P
Π
Z

can be used to identify the query. If valid,
GTRU passes the query to ID with a slight modification of
it and graph, taking into account the shared intervention be-
tween Z and X. GTR runs in O(v4z) where v = |V| and
z =

∑
i|Zi| (see Appendix for details).

We offer a running example regarding the identifica-
tion of P ∗

x (y|w) with a causal graph G (Fig. 3a), Δ =
{∅, {W1, Y }, {W2}} (see GΔ in Fig. 4a with S2 and S3

in blue and red), and Z = {∅, {∅}, {{X2}}}, i.e., the tar-
get domain has no distribution available while π2 and π3

provide an observational distribution and an experiment on
X2, respectively. Given a query P ∗

x (y|w), GTR investigates
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whether there exists any W ∈ W that can be moved to
the interventional part of the query. Fig. 4b shows G \ X
where the existence of a backdoor path between W and Y
is figured out. Since W2 ← V ↔ Y and W1 ↔ V ↔ Y
given W2 as a descendant of the collider (V ), it proceeds to
identify P ∗

x (y,w). GTRU attempts to refine the given graph
with the ancestors of {Y,W1,W2} (Line 6). Then, it checks
whether the intervention {X1, X2} is maximal. Next, it in-
vestigates the C-components of G \ X (Fig. 4b). There are
two C-components involving {W2} and {Y, V,W1}. Hence,
it factorizes the query to P ∗

y,x,v,w1
(w2) and P ∗

x,w2
(y, v, w1).

The first query encounters Line 6 and it is refined, i.e.,
P ∗
y,x,v,w1

(w2) = P ∗
v (w2) (Rule 3) with the graph in

Fig. 4c. The query will reach Line 10 since {SW2} ⊆
S−2 (Lemma 1) and, eventually, ID identifies P ∗

v (w2) =
P 2(w2|v), which corresponds to Rule 2. The second query
passes conditions in Lines 5 to 9 since ({Y, V,W1} ⊥⊥ SW2

)
in GΔ \ {X2} (Fig. 4d). Then, it makes use of P 3

x2
, since

{X2} ⊆ X ∪ {W2}, to identify P ∗
x,w2

(y, v, w1), which cor-
responds to identifying Q∗

x1,w2
(y, v, w1) with Q3 = P 3

x2
in

GΔ \ {X2} (Bareinboim and Pearl 2012a).

Theorem 3. GTRU is sound and complete.

Proof. (soundness) Let a subscript � denote variables and
values local to the function. The soundness of the algorithm
is partially proved (Lee, Correa, and Bareinboim 2019) ex-
cluding the case where distributions from the heterogeneous
source domains are utilized. It is sufficient to prove that
P ∗
x�
(y�) = P i

x�
(y�) for Lines 5 and 9 where the identifi-

cation of P ∗
x�
(y�) is delegated to that of P i

x�
(y�) with P i

z for
some Z ∈ Z

i. By Lemma 1, P ∗
x�
(y�) = Px�

(y� | S = 1).
Since (Si

� ⊥⊥ Y�) in GΔ�

� \X� implies (Si ⊥⊥ Y�) in
GΔ \X�, the equality Px�

(y� | S = 1) = Px�
(y� | S−i =

1) holds true. Therefore, the soundness follows.
(completeness) We show that whenever GTRU fails to g-

transport a given query P ∗
x (y), there exists an s-thicket for

the given query (Lemma 3). Given that GTRU imposes one
more condition (Si

�⊥⊥Y�) in GΔ�

� \X� at Line 9 compared
to GID, those qualified experiments Z ∈ Z

i ∈ Z can be
considered as experiments conducted in the target domain so
that the identification is reducible to GID given G with the
qualified experiments (Lee, Correa, and Bareinboim 2019).
Hence, when the algorithm fails to identify the query, there
exists a thicket for P ∗

x (y) (Thm. 3 (Lee, Correa, and Barein-
boim 2019)). If every experiment Z satisfies items (b) and
(c) in Def. 4, then the thicket is an s-thicket. Otherwise, we
map the existence of a thicket T † to that of an s-thicket T
— it remains to show Δi ∩ R 	= ∅ (item (a) in Def. 4).
First, there exists an R†-rooted thicket T † ⊆ G� for P ∗

x�
(y�),

which is also for P ∗
x (y). Since R† ⊆ An(Y�)G�\X�

=
V� \ X� and G�[V� \ X�] is a C-component (Line 8), the
thicket T † with its root set replaced with V� \X� is a valid
thicket. Then, due to Prop. 1 (below), the modified thicket is
an s-thicket for P ∗

x (y) with respect to 〈GΔ,Z〉.

Proposition 1. (Si ⊥⊥ Y)GΔ\X at Line 9 is equivalent to
Δi ∩ (V \X) = ∅.

Corollary 2. GTR is sound and complete.

Proof. The soundness of GTR follows from the soundness
of GTRU (Thm. 3) and Rule 2. Its completeness follows
from the completeness of GTRU (Thm. 3) and Thm. 1.

Corollary 3. The rules of do-calculus together with stan-
dard probability manipulations are complete for establish-
ing g-transportability of conditional interventional distribu-
tions.

Proof. This is due to: (i) Rule 2 of do-calculus and the defi-
nition of conditional probability under intervention for tran-
sitioning a conditional query to an unconditional one; and
(ii) Rule 1 of do-calculus to determine whether to utilize the
source domains (n.b. the selection variables as a condition
as in Lemma 1 is implicit) along with the completeness of
do-calculus with respect to GID.

5 Conclusions

We studied the challenge of learning conditional causal ef-
fects through generalizing and synthesizing experimental
findings from heterogeneous domains, which unified many
threads in the causal identifiability and transportability lit-
erature (Tian and Pearl 2002; Shpitser and Pearl 2006b;
Huang and Valtorta 2006; Shpitser and Pearl 2006a; Barein-
boim and Pearl 2013b; 2013a; 2012a; 2014; Lee, Correa,
and Bareinboim 2019). This setting has been called g-
transportability (Def. 3). Concretely, we developed a gen-
eral treatment to the g-transportability problem in two ways.
First, we introduced a complete graphical criterion, which
leads to a novel parametrization strategy characterizing the
g-transportability of any causal query (Lemma 3, Thm. 1,
and Thm. 2). Second, we developed an efficient algorithm
(GTR, Alg. 1, Thm. 3, and Cor. 2) that synthesizes heteroge-
neous datasets under the guidance of qualitative and trans-
parent assumptions about the domain encoded as a causal
graph. Further, we proved that Pearl’s do-calculus is com-
plete for this task (Cor. 3), which means that the inexis-
tence of a derivation in this language implies that the in-
tended causal explanation cannot be articulated based on the
available evidence. We hope these new analytical tools can
help lower the barrier for the broader research community
to advance science through collaborative synthesis of shared
datasets and knowledge (Pearl and Mackenzie 2018).
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