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Abstract

As machine learning is increasingly used to make real-world
decisions, recent research efforts aim to define and ensure fair-
ness in algorithmic decision making. Existing methods often
assume a fixed set of observable features to define individuals,
but lack a discussion of certain features not being observed
at test time. In this paper, we study fairness of naive Bayes
classifiers, which allow partial observations. In particular, we
introduce the notion of a discrimination pattern, which refers
to an individual receiving different classifications depending
on whether some sensitive attributes were observed. Then a
model is considered fair if it has no such pattern. We propose
an algorithm to discover and mine for discrimination patterns
in a naive Bayes classifier, and show how to learn maximum-
likelihood parameters subject to these fairness constraints. Our
approach iteratively discovers and eliminates discrimination
patterns until a fair model is learned. An empirical evaluation
on three real-world datasets demonstrates that we can remove
exponentially many discrimination patterns by only adding a
small fraction of them as constraints.

1 Introduction

With the increasing societal impact of machine learning
come increasing concerns about the fairness properties of
machine learning models and how they affect decision mak-
ing. For example, concerns about fairness come up in polic-
ing (Mohler et al. 2018), recidivism prediction (Choulde-
chova 2017), insurance pricing (Kusner et al. 2017), hir-
ing (Datta, Tschantz, and Datta 2015), and credit rating (Hen-
derson et al. 2015). The algorithmic fairness literature has
proposed various solutions, from limiting the disparate treat-
ment of similar individuals to giving statistical guarantees
on how classifiers behave towards different populations. Key
approaches include individual fairness (Dwork et al. 2012;
Zemel et al. 2013), statistical parity, disparate impact and
group fairness (Kamishima et al. 2012; Feldman et al. 2015;
Chouldechova 2017), counterfactual fairness (Kusner et al.
2017), preference-based fairness (Zafar et al. 2017a), rela-
tional fairness (Farnadi, Babaki, and Getoor 2018), and equal-
ity of opportunity (Hardt et al. 2016). The goal in these works
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is usually to assure the fair treatment of individuals or groups
that are identified by sensitive attributes.

In this paper, we study fairness properties of probabilis-
tic classifiers that represent joint distributions over the fea-
tures and decision variable. In particular, Bayesian network
classifiers treat the classification or decision-making task as
a probabilistic inference problem: given observed features,
compute the probability of the decision variable. Such models
have a unique ability that they can naturally handle missing
features, by simply marginalizing them out of the distribu-
tion when they are not observed at prediction time. Hence, a
Bayesian network classifier effectively embeds exponentially
many classifiers, one for each subset of observable features.
We ask whether such classifiers exhibit patterns of discrimi-
nation where similar individuals receive markedly different
outcomes purely because they disclosed a sensitive attribute.

The first key contribution of this paper is an algorithm to
verify whether a Bayesian classifier is fair, or else to mine the
classifier for discrimination patterns. We propose two alterna-
tive criteria for identifying the most important discrimination
patterns that are present in the classifier. We specialize our
pattern miner to efficiently discover discrimination patterns
in naive Bayes models using branch-and-bound search. These
classifiers are often used in practice because of their simplic-
ity and tractability, and they allow for the development of
effective bounds. Our empirical evaluation shows that naive
Bayes models indeed exhibit vast numbers of discrimination
patterns, and that our pattern mining algorithm is able to find
them by traversing only a small fraction of the search space.

The second key contribution of this paper is a parameter
learning algorithm for naive Bayes classifiers that ensures that
no discrimination patterns exist in the the learned distribu-
tion. We propose a signomial programming approach to elim-
inate individual patterns of discrimination during maximum-
likelihood learning. Moreover, to efficiently eliminate the ex-
ponential number of patterns that could exist in a naive Bayes
classifier, we propose a cutting-plane approach that uses our
discrimination pattern miner to find and iteratively eliminate
discrimination patterns until the entire learned model is fair.
Our empirical evaluation shows that this process converges
in a small number of iteration, effectively removing millions
of discrimination patterns. Moreover, the learned fair mod-
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Figure 1: Naive Bayes classifier with a sensitive attribute X
and non-sensitive attributes Y1, Y2

els are of high quality, achieving likelihoods that are close
to the best likelihoods attained by models with no fairness
constraints. Our method also achieves higher accuracy than
other methods of learning fair naive Bayes models.

2 Problem Formalization

We use uppercase letters for random variables and lower-
case letters for their assignments. Sets of variables and their
joint assignments are written in bold. Negation of a binary
assignment x is denoted x̄, and x |=y means that x logically
implies y. Concatenation of sets XY denotes their union.

Each individual is characterized by an assignment to a set
of discrete variables Z, called attributes or features. Assign-
ment d to a binary decision variable D represents a decision
made in favor of the individual (e.g., a loan approval). A set
of sensitive attributes S ⊂ Z specifies a group of entities
protected often by law, such as gender and race. We now
define the notion of a discrimination pattern.

Definition 1. Let P be a distribution over D ∪ Z. Let x and
y be joint assignments to X⊆S and Y⊆Z\X, respectively.
The degree of discrimination of xy is:

ΔP,d(x,y) � P (d |xy)− P (d |y).
The assignment y identifies a group of similar individuals,

and the degree of discrimination quantifies how disclosing
sensitive information x affects the decision for this group.
Note that sensitive attributes missing from x can still appear
in y. We drop the subscripts P, d when clear from context.

Definition 2. Let P be a distribution over D ∪ Z, and
δ ∈ [0, 1] a threshold. Joint assignments x and y form a dis-
crimination pattern w.r.t. P and δ if: (1) X⊆S and Y⊆Z\X;
and (2) |ΔP,d(x,y)| > δ.

Intuitively, we do not want information about the sensi-
tive attributes to significantly affect the probability of getting
a favorable decision. Let us consider two special cases of
discrimination patterns. First, if Y=∅, then a small discrimi-
nation score |Δ(x, ∅)| can be interpreted as an approximation
of statistical parity, which is achieved when P (d |x) = P (d).
For example, the naive Bayes network in Figure 1 satisfies
approximate parity for δ=0.2 as |Δ(x, ∅)|=0.086 ≤ δ and
|Δ(x̄, ∅)|=0.109 ≤ δ. Second, suppose X=S and Y=Z\S.
Then bounding |Δ(x,y)| for all joint states x and y is equiva-
lent to enforcing individual fairness assuming two individuals
are considered similar if their non-sensitive attributes y are
equal. The network in Figure 1 is also individually fair for

Algorithm 1 DISC-PATTERNS(x,y,E)

Input: P : Distribution over D ∪ Z, δ : discrimination threshold
Output: Discrimination patterns L
Data: x← ∅, y← ∅, E← ∅, L← []
1: for all assignments z to some selected variable Z ∈ Z \

XYE do
2: if Z ∈ S then
3: if |Δ(xz,y)| > δ then add (xz,y) to L

4: if UB(xz,y,E) > δ then DISC-PATTERNS(xz,y,E)

5: if |Δ(x,yz)| > δ then add (x,yz) to L

6: if UB(x,yz,E) > δ then DISC-PATTERNS(x,yz,E)

7: if UB(x,y,E ∪ {Z}) > δ then DISC-PATTERNS(x,y,E ∪
{Z})

δ = 0.2 because maxxy1y2
|Δ(x, y1y2)|=0.167 ≤ δ.1 We

discuss these connections more in Section 5.
Even though the example network is considered (approxi-

mately) fair at the group level nor at the individual level with
fully observed features, it may still produce a discrimination
pattern. In particular, |Δ(x̄, y1)|=0.225 > δ. That is, a per-
son with x̄ and y1 observed and the value of Y2 undisclosed
would receive a much more favorable decision had they not
disclosed X as well. Hence, naturally we wish to ensure that
there exists no discrimination pattern across all subsets of
observable features.
Definition 3. A distribution P is δ-fair if there exists no
discrimination pattern w.r.t P and δ.

Although our notion of fairness applies to any distribu-
tion, finding discrimination patterns can be computationally
challenging: computing the degree of discrimination involves
probabilistic inference, which is hard in general, and a given
distribution may have exponentially many patterns. In this
paper, we demonstrate how to discover and eliminate dis-
crimination patterns of a naive Bayes classifier effectively
by exploiting its independence assumptions. Concretely, we
answer the following questions: (1) Can we certify that a
classifier is δ-fair?; (2) If not, can we find the most impor-
tant discrimination patterns?; (3) Can we learn a naive Bayes
classifier that is entirely δ-fair?

3 Discovering Discrimination Patterns and

Verifying δ-fairness

This section describes our approach to finding discrimination
patterns or checking that there are none.

3.1 Searching for Discrimination Patterns

One may naively enumerate all possible patterns and com-
pute their degrees of discrimination. However, this would be
very inefficient as there are exponentially many subsets and
assignments to consider. We instead use branch-and-bound
search to more efficiently decide if a model is fair.

Algorithm 1 finds discrimination patterns. It recursively
adds variable instantiations and checks the discrimination

1The highest discrimination score is observed at x̄ and y1ȳ2,
with Δ(x̄, y1ȳ2) = −0.167.
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score at each step. If the input distribution is δ-fair, the algo-
rithm returns no pattern; otherwise, it returns the set of all
discriminating patterns. Note that computing Δ requires prob-
abilistic inference on distribution P . This can be done effi-
ciently for large classes of graphical models (Darwiche 2009;
Poon and Domingos 2011; Dechter 2013; Rahman, Kothalkar,
and Gogate 2014; Kisa et al. 2014), and particularly for naive
Bayes networks, which will be our main focus.

Furthermore, the algorithm relies on a good upper bound
to prune the search tree and avoid enumerating all possible
patterns. Here, UB(x,y,E) bounds the degree of discrimi-
nation achievable by observing more features after xy while
excluding features E.

Proposition 1. Let P be a naive Bayes distribution over D∪
Z, and let x and y be joint assignments to X⊆S and Y⊆
Z\X. Let x′

u (resp. x′
l) be an assignment to X′=S\X that

maximizes (resp. minimizes) P (d |xx′). Suppose l, u ∈ [0, 1]
such that l ≤ P (d |yy′) ≤ u for all possible assignments y′
to Y′=Z\(XY). Then the degrees of discrimination for all
patterns xx′yy′ that extend xy are bounded as follows:

min
l≤γ≤u

Δ̃
(
P (xx′

l | d), P (xx′
l | d), γ

) ≤ ΔP,d(xx
′,yy′)

≤ max
l≤γ≤u

Δ̃
(
P (xx′

u | d), P (xx′
u | d), γ

)
,

where Δ̃(α, β, γ) � αγ
αγ+β(1−γ) − γ.

Here, Δ̃ : [0, 1]3 → [0, 1] is introduced to relax the
discrete problem of minimizing or maximizing the de-
gree of discrimination into a continuous one. In particular,
Δ̃
(
P (x|d), P (x|d), P (d|y)) equals the degree of discrimi-

nation Δ(x,y). This relaxation allows us to compute bounds
efficiently, as closed-form solutions. We refer to the Appendix
for full proofs and details.

To apply above proposition, we need to find x′
u,x

′
l, l, u by

maximizing/minimizing P (d|xx′) and P (d|yy′) for a given
pattern xy. Fortunately, this can be done efficiently for naive
Bayes classifiers.

Lemma 1. Given a naive Bayes distribution P over
D ∪ Z, a subset V = {Vi}ni=1 ⊂ Z, and an assign-
ment w to W ⊆ Z \V, we have: argmaxv P (d|vw) ={
argmaxvi P (vi|d)/P (vi|d)

}n

i=1
.

That is, the joint observation v that will maximize the
probability of the decision can be found by optimizing each
variable Vi independently; the same holds when minimizing.
Hence, we can use Proposition 1 to compute upper bounds
on discrimination scores of extended patterns in linear time.

3.2 Searching for Top-k Ranked Patterns

If a distribution is significantly unfair, Algorithm 1 may re-
turn exponentially many discrimination patterns. This is not
only very expensive but makes it difficult to interpret the
discrimination patterns. Instead, we would like to return a
smaller set of “interesting” discrimination patterns.

An obvious choice is to return a small number of discrimi-
nation patterns with the highest absolute degree of discrimi-
nation. Searching for the k most discriminating patterns can

be done with a small modification to Algorithm 1. First, the
size of list L is limited to k. The conditions in Lines 3–7 are
modified to check the current discrimination score and upper
bounds against the smallest discrimination score of patterns
in L, instead of the threshold δ.

Nevertheless, ranking patterns by their discrimination
score may return patterns of very low probability. For exam-
ple, the most discriminating pattern of a naive Bayes classifier
learned on the COMPAS dataset2 has a high discrimination
score of 0.42, but only has a 0.02% probability of occur-
ring.3 The probability of a discrimination pattern denotes
the proportion of the population (according to the distribu-
tion) that could be affected unfairly, and thus a pattern with
extremely low probability could be of lesser interest. To ad-
dress this concern, we propose a more sophisticated ranking
of the discrimination patterns that also takes into account the
probabilities of patterns.
Definition 4. Let P be a distribution over D ∪ Z. Let x and
y be joint instantiations to subsets X ⊆ S and Y ⊆ Z \X,
respectively. The divergence score of xy is:

DivP,d,δ(x,y) � min
Q

KL (P ‖ Q) (1)

s.t. |ΔQ,d(x,y)| ≤ δ

P (dz) = Q(dz), ∀ dz �|= xy

where KL (P ‖ Q) =
∑

d,z P (dz) log(P (dz)/Q(dz)).

The divergence score assigns to a pattern xy the minimum
Kullback-Leibler (KL) divergence between current distribu-
tion P and a hypothetical distribution Q that is fair on the
pattern xy and differs from P only on the assignments that
satisfy the pattern (namely dxy and dxy). Informally, the
divergence score approximates how much the current distri-
bution P needs to be changed in order for xy to no longer be
a discrimination pattern. Hence, patterns with higher diver-
gence score will tend to have not only higher discrimination
score but also higher probabilities.

For instance, the pattern with the highest divergence score
4 on the COMPAS dataset has a discrimination score of 0.19
which is not insignificant, but also has a relatively high prob-
ability of 3.33% – more than two orders of magnitude larger
than that of the most discriminating pattern. Therefore, such
a general pattern could be more interesting for the user study-
ing this classifier.

To find the top-k patterns with the divergence score, we
need to be able to compute the score and its upper bound
efficiently. The key insights are that KLD is convex and
that Q, in Equation 1, can freely differ from P only on one
probability value (either that of dxy or dxy). Then:

DivP,d,δ(x,y) =P (dxy) log

(
P (dxy)

P (dxy) + r

)

+ P (dxy) log

(
P (dxy)

P (dxy)− r

)
, (2)

2https://github.com/propublica/compas-analysis
3The corresponding pattern is x = {White,Married, Female,

>30 y/o},y={Probation, Pretrial}.
4x = {Married, > 30 y/o}, y = {}.
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where r = 0 if |ΔP,d(x,y)| ≤ δ; r =
δ−ΔP,d(x,y)

1/P (xy)−1/P (y) if

ΔP,d(x,y) > δ; and r =
−δ−ΔP,d(x,y)

1/P (xy)−1/P (y) if ΔP,d(x,y) <

−δ. Intuitively, r represents the minimum necessary change
to P (dxy) for xy to be non-discriminating in the new distri-
bution. Note that the smallest divergence score of 0 is attained
when the pattern is already fair.

Lastly, we refer to the Appendix for two upper bounds of
the divergence score, which utilize the bound on discrimina-
tion score of Proposition 1 and can be computed efficiently
using Lemma 1.

3.3 Empirical Evaluation of Discrimination
Pattern Miner

In this section, we report the experimental results on the per-
formance of our pattern mining algorithms. All experiments
were run on an AMD Opteron 275 processor (2.2GHz) and
4GB of RAM running Linux Centos 7. Execution time is
limited to 1800 seconds.

Data and pre-processing. We use three datasets: The
Adult dataset and German dataset are used for predicting
income level and credit risk, respectively, and are obtained
from the UCI machine learning repository5; the COMPAS
dataset is used for predicting recidivism. These datasets have
been commonly studied regarding fairness and were shown
to exhibit some form of discrimination by several previous
works (Luong, Ruggieri, and Turini 2011; Larson et al. 2016;
Tramer et al. 2017; Salimi et al. 2019). As pre-processing,
we removed unique features (e.g. names of individuals) and
duplicate features.6 See Table 1 for a summary.

Q1. Does our pattern miner find discrimination pat-
terns more efficiently than by enumerating all possible
patterns? We answer this question by inspecting the fraction
of all possible patterns that our pattern miner visits during
the search. Table 1 shows the results on three datasets, us-
ing two rank heuristics (discrimination and divergence) and
three threshold values (0.01, 0.05, and 0.1). The results are
reported for mining the top-k patterns when k is 1, 10, and
100. A naive method has to enumerate all possible patterns to
discover the discriminating ones, while our algorithm visits
only a small fraction of patterns (e.g., one in every several
millions on the German dataset).

Q2. Does the divergence score find discrimination pat-
terns with both a high discrimination score and high
probability? Figure 2 shows the probability and discrim-
ination score of all patterns in the COMPAS dataset. The
top-10 patterns according to three measures (discrimination
score, divergence score, and probability) are highlighted in
the figure. The observed trade-off between probability and
discrimination score indicates that picking the top patterns
according to each measure will yield low quality patterns
according to the other measure. The divergence score, how-
ever, balances the two measures and returns patterns that have
high probability and discrimination scores. Also observe that
the patterns selected by the divergence score lie in the Pareto

5https://archive.ics.uci.edu/ml
6The processed data, code, and Appendix are available at https:

//github.com/UCLA-StarAI/LearnFairNB.
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Figure 2: Discrimination patterns with δ = 0.1 for the max-
likelihood NB classifier on COMPAS.

front. This in fact always holds by the definition of this heuris-
tic; fixing the probability and increasing the discrimination
score will also increase the divergence score, and vice versa.

4 Learning Fair Naive Bayes Classifiers

We now describe our approach to learning the maximum-
likelihood parameters of a naive Bayes model from data while
eliminating discrimination patterns. A common approach to
learning naive Bayes models with certain properties is to
formulate it as an optimization problem of certain form, for
which efficient solvers are available (Khosravi et al. 2019).
We formulate the learning subject to fairness constraints as a
signomial program, which has the following form:

minimize f0(x), s.t. fi(x) ≤ 1, gj(x) = 1 ∀ i, j

where each fi is signomial while gj is monomial. A signo-
mial is a function of the form

∑
k ckx

a1k
1 · · ·xa1n

n defined
over real positive variables x1 . . . xn where ck, aij ∈ R;
a monomial is of the form cxa1

1 · · ·xan
n where c > 0 and

ai ∈ R. Signomial programs are not globally convex, but a
locally optimal solution can be computed efficiently, unlike
the closely related class of geometric programs, for which
the globally optimum can be found efficiently (Ecker 1980).

4.1 Parameter Learning with Fairness
Constraints

The likelihood of a Bayesian network given data D is
Pθ(D) =

∏
i θ

ni
i where ni is the number of examples in

D that satisfy the assignment corresponding to parame-
ter θi. To learn the maximum-likelihood parameters, we
minimize the inverse of likelihood which is a monomial:
θml = argminθ

∏
i θ

−ni
i . The parameters of a naive Bayes

network with binary class consist of θd, θd̄, and θz | d, θz | d̄
for all z.

Next, we show the constraints for our optimization prob-
lem. To learn a valid distribution, we need to ensure that
probabilities are non-negative and sum to one. The former
assumption is inherent to signomial programs. To enforce
the latter, for each instantiation d and feature Z, we need
that

∑
z θz | d = 1, or as signomial inequality constraints:∑

z θz | d ≤ 1 and 2−∑
z θz | d ≤ 1.

Finally, we derive the constraints to ensure that a given
pattern xy is non-discriminating.
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Dataset Statistics Proportion of search space explored
Divergence Discrimination

Dataset Size S N # Pat. k δ = 0.01 δ = 0.05 δ = 0.10 δ = 0.01 δ = 0.05 δ = 0.10

COMPAS 48,834 4 3 15K 1 6.387e-01 5.634e-01 3.874e-01 8.188e-03 8.188e-03 8.188e-03
10 7.139e-01 5.996e-01 4.200e-01 3.464e-02 3.464e-02 3.464e-02

100 8.222e-01 6.605e-01 4.335e-01 9.914e-02 9.914e-02 9.914e-02

Adult 32,561 4 9 11M 1 3.052e-06 7.260e-06 1.248e-05 2.451e-04 2.451e-04 2.451e-04
10 7.030e-06 1.154e-05 1.809e-05 2.467e-04 2.467e-04 2.467e-04

100 1.458e-05 1.969e-05 2.509e-05 2.600e-04 2.600e-04 2.597e-04

German 1,000 4 16 23B 1 5.075e-07 2.731e-06 2.374e-06 7.450e-08 7.450e-08 7.450e-08
10 9.312e-07 3.398e-06 2.753e-06 1.592e-06 1.592e-06 1.592e-06

100 1.454e-06 4.495e-06 3.407e-06 5.897e-06 5.897e-06 5.897e-06

Table 1: Data statistics (number of training instances, sensitive features S, non-sensitive features N , and potential patterns) and
the proportion of patterns explored during the search, using the Divergence and Discrimination scores as rankings.

Proposition 2. Let Pθ be a naive Bayes distribution over
D ∪ Z, and let x and y be joint assignments to X ⊆ S
and Y ⊆ Z \ X. Then |ΔPθ,d(x,y)| ≤ δ for a threshold
δ ∈ [0, 1] iff the following holds:

rx =

∏
x θx | d̄∏
x θx | d

, ry =
θd̄

∏
y θy | d̄

θd
∏

y θy | d
,

(
1− δ

δ

)
rxry −

(
1 + δ

δ

)
ry − rxr

2
y ≤ 1,

−
(
1 + δ

δ

)
rxry +

(
1− δ

δ

)
ry − rxr

2
y ≤ 1.

Note that above equalities and inequalities are valid signo-
mial program constraints. Thus, we can learn the maximum-
likelihood parameters of a naive Bayes network while ensur-
ing a certain pattern is fair by solving a signomial program.
Furthermore, we can eliminate multiple patterns by adding
the constraints in Proposition 2 for each of them. However,
learning a model that is entirely fair with this approach will
introduce an exponential number of constraints. Not only
does this make the optimization more challenging, but listing
all patterns may simply be infeasible.

4.2 Learning δ-fair Parameters

To address the aforementioned challenge of removing an
exponential number of discrimination patterns, we propose
an approach based on the cutting plane method. That is, we
iterate between parameter learning and constraint extraction,
gradually adding fairness constraints to the optimization. The
parameter learning component is as described in the previous
section, where we add the constraints of Proposition 2 for
each discrimination pattern that has been extracted so far. For
constraint extraction we use the top-k pattern miner presented
in Section 3.2. At each iteration, we learn the maximum-
likelihood parameters subject to fairness constraints, and find
k more patterns using the updated parameters to add to the set
of constraints in the next iteration. This process is repeated
until the pattern miner finds no more discrimination pattern.

In the worst case, our algorithm may add exponentially
many fairness constraints whilst solving multiple optimiza-
tion problems. However, as we will later show empirically,
we can learn a δ-fair model by explicitly enforcing only a

small fraction of fairness constraints. The efficacy of our ap-
proach depends on strategically extracting patterns that are
significant in the overall distribution. Here, we again use a
ranking by discrimination or divergence score, which we also
evaluate empirically.

4.3 Empirical Evaluation of δ-fair Learner

We will now evaluate our iterative algorithm for learning
δ-fair naive Bayes models. We use the same datasets and
hardware as in Section 3.3. To solve the signomial programs,
we use GPkit, which finds local solutions to these problems
using a convex optimization solver as its backend.7 Through-
out our experiments, Laplace smoothing was used to avoid
learning zero probabilities.

Q1. Can we learn a δ-fair model in a small number of
iterations while only asserting a small number of fairness
constraints? We train a naive Bayes model on the COMPAS
dataset subject to δ-fairness constraints. Fig. 3a shows how
the iterative method converges to a δ-fair model, whose likeli-
hood is indicated by the dotted line. Our approach converges
to a fair model in a few iterations, including only a small frac-
tion of the fairness constraints. In particular, adding only the
most discriminating pattern as a constraint at each iteration
learns an entirely δ-fair model with only three fairness con-
straints.8 Moreover, Fig. 3b shows the number of remaining
discrimination patterns after each iteration of learning with
k = 1. Note that enforcing a single fairness constraint can
eliminate a large number of remaining ones. Eventually, a
few constraints subsume all discrimination patterns.

We also evaluated our δ-fair learner on the other two
datasets; see Appendix for plots. We observed that more
than a million discrimination patterns that exist in the un-
constrained maximum-likelihood models were eliminated
using a few dozen to, even in the worst case, a few thousand
fairness constraints. Furthermore, stricter fairness require-
ments (smaller δ) tend to require more iterations, as would
be expected. An interesting observation is that neither of
the rankings consistently dominate the other in terms of the
number of iterations to converge.

7We use Mosek (www.mosek.com) as backend.
8There are 2695 discrimination patterns w.r.t. unconstrained

naive Bayes on COMPAS and δ = 0.1.
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(a) Log-likelihood (b) Number of remaining patterns

Figure 3: Log-likelihood and the number of remaining discrimination patterns after each iteration of learning on COMPAS
dataset with δ = 0.1.

Dataset Unconstrained δ-fair Independent

COMPAS -207,055 -207,395 -208,639
Adult -226,375 -228,763 -232,180
German -12,630 -12,635 -12,649

Table 2: Log-likelihood of models learned without fairness
constraints, with the δ-fair learner (δ = 0.1), and by making
sensitive variables independent from the decision variable.

Q2. How does the quality of naive Bayes models from
our fair learner compare to ones that make the sensitive
attributes independent of the decision? and to the best
model without fairness constraints? A simple method to
guarantee that a naive Bayes model is δ-fair is to make all sen-
sitive variables independent from the target value. An obvious
downside is the negative effect on the predictive power of
the model. We compare the models learned by our approach
with: (1) a maximum-likelihood model with no fairness con-
straints (unconstrained) and (2) a model in which the sensitive
variables are independent of the decision variable, and the
remaining parameters are learned using the max-likelihood
criterion (independent). These models lie at two opposite
ends of the spectrum of the trade-off between fairness and
accuracy. The δ-fair model falls between these extremes, bal-
ancing approximate fairness and prediction power.

We compare the log-likelihood of these models, shown in
Table 2, as it captures the overall quality of a probabilistic
classifier which can make predictions with partial observa-
tions. The δ-fair models achieve likelihoods that are much
closer to those of the unconstrained models than the indepen-
dent ones. This shows that it is possible to enforce the fairness
constraints without a major reduction in model quality.

Dataset λ =0.5 λ =0.9 λ =0.95 λ =0.99 λ =1.0

COMPAS 2,504 2,471 2,470 3,069 0
Adult >1e6 661 652 605 0
German >1e6 3 2 0 0

Table 3: Number of remaining patterns with δ=0.1 in naive
Bayes models trained on discrimination-free data, where λ
determines the trade-off between fairness and accuracy in the
data repair step (Feldman et al. 2015).

Q3. Do discrimination patterns still occur when learn-
ing naive Bayes models from fair data? We first use the
data repair algorithm proposed by Feldman et al. (2015) to
remove discrimination from data, and learn a naive Bayes
model from the repaired data. Table 3 shows the number of
remaining discrimination patterns in such model. The results
indicate that as long as preserving some degree of accuracy
is in the objective, this method leaves lots of discrimination
patterns, whereas our method removes all patterns.

dataset Unconstrained 2NB Repaired δ-fair

COMPAS 0.880 0.875 0.878 0.879
Adult 0.811 0.759 0.325 0.827

German 0.690 0.679 0.688 0.696

Table 4: Comparing accuracy of our δ-fair models with two-
naive-Bayes method and a naive Bayes model trained on
repaired, discrimination-free data.

Q4. How does the performance of δ-fair naive Bayes
classifier compare to existing work?

Table 4 reports the 10-fold CV accuracy of our method
(δ-fair) compared to a max-likelihood naive Bayes model
(unconstrained) and two other methods of learning fair
classifiers: the two-naive-Bayes method (2NB) (Calders
and Verwer 2010), and a naive Bayes model trained on
discrimination-free data using the repair algorithm of Feld-
man et al. (2015) with λ = 1. Even though the notion of
discrimination patterns was proposed for settings in which
predictions are made with missing values, our method still
outperforms other fair models in terms of accuracy, a measure
better suited for predictions using fully-observed features.
Moreover, our method also enforces a stronger definition
of fairness than the two-naive-Bayes method which aims to
achieve statistical parity, which is subsumed by the notion of
discrimination patterns. It is also interesting to observe that
our δ-fair NB models perform even better than unconstrained
NB models for the Adult and German dataset. Hence, remov-
ing discrimination patterns does not necessarily impose an
extra cost on the prediction task.
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5 Related Work

Most prominent definitions of fairness in machine learning
can be largely categorized into individual fairness and group
fairness. Individual fairness is based on the intuition that
similar individuals should be treated similarly. For instance,
the Lipschitz condition (Dwork et al. 2012) requires that the
statistical distance between classifier outputs of two individ-
uals are bounded by a task-specific distance between them.
As hinted to in Section 2, our proposed notion of δ-fairness
satisfies the Lipschitz condition if two individuals who differ
only in the sensitive attributes are considered similar, thus
bounding the difference between their outputs by δ. How-
ever, our definition cannot represent more nuanced similarity
metrics that consider relationships between feature values.

Group fairness aims at achieving equality among popula-
tions differentiated by their sensitive attributes. An example
of group fairness definition is statistical (demographic) parity,
which states that a model is fair if the probability of getting a
positive decision is equal between two groups defined by the
sensitive attribute, i.e. P (d|s) =P (d|s̄) where d and S are
positive decision and sensitive variable, respectively. Approx-
imate measures of statistical parity include CV-discrimination
score (Calders and Verwer 2010): P (d|s)−P (d|s̄); and dis-
parate impact (or p%-rule) (Feldman et al. 2015; Zafar et
al. 2017b): P (d|s̄)/P (d|s). Our definition of δ-fairness is
strictly stronger than requiring a small CV-discrimination
score, as a violation of (approximate) statistical parity cor-
responds to a discrimination pattern with only the sensitive
attribute (i.e. empty y). Even though the p%-rule was not ex-
plicitly discussed in this paper, our notion of discrimination
pattern can be extended to require a small relative (instead
of absolute) difference for partial feature observations (see
Appendix for details). However, as a discrimination pattern
conceptually represents an unfair treatment of an individual
based on observing some sensitive attributes, using relative
difference should be motivated by an application where the
level of unfairness depends on the individual’s classification
score.

Moreover, statistical parity is inadequate in detecting bias
for subgroups or individuals. We resolve such issue by elimi-
nating discrimination patterns for all subgroups that can be
expressed as assignments to subsets of features. In fact, we
satisfy approximate statistical parity for any subgroup de-
fined over the set of sensitive attributes, as any subgroup can
be expressed as a union of joint assignments to the sensitive
features, each of which has a bounded discrimination score.
Kearns et al. (2018) showed that auditing fairness at this arbi-
trary subgroup level (i.e. detecting fairness gerrymandering)
is computationally hard.

Other notions of group fairness include equalized true pos-
itive rates (equality of opportunity), false positive rates, or
both (equalized odds (Hardt et al. 2016)) among groups de-
fined by the sensitive attributes. These definitions are “oblivi-
ous” to features other than the sensitive attribute, and focus on
equalizing measures of classifier performance assuming all
features are always observed. On the other hand, our method
aims to ensure fairness when classifications may be made
with missing features. Moreover, our method still applies
in decision making scenarios where a true label is not well

defined or hard to observe.
Our approach differs from causal approaches to fair-

ness (Kilbertus et al. 2017; Kusner et al. 2017; Russell et
al. 2017) which are more concerned with the causal mech-
anism of the real world that generated a potentially unfair
decision, whereas we study the effect of sensitive information
on a known classifier.

There exist several approaches to learning fair naive Bayes
models. First, one may modify the data to achieve fairness
and use standard algorithms to learn a classifier from the
modified data. For instance, Kamiran and Calders (2009)
proposed to change the labels for features near the decision
boundary to achieve statistical parity, while the repair algo-
rithm of Feldman et al. (2015) changes the non-sensitive at-
tributes to reduce their correlation with the sensitive attribute.
Although these methods have the flexibility of learning differ-
ent models, we have shown empirically that a model learned
from a fair data may still exhibit discrimination patterns. On
the other hand, Calders and Verwer (2010) proposed three
different Bayesian network structures modified from a naive
Bayes network in order to enforce statistical parity directly
during learning. We have shown in the previous section that
our method achieves better accuracy than their two-naive-
Bayes method (which was found to be the best of three meth-
ods), while ensuring a stricter definition of fairness. Lastly,
one may add a regularizer during learning (Kamishima et
al. 2012; Zemel et al. 2013), whereas we formulated to
problem as constrained optimization, an approach often
used to ensure fairness in other models (Dwork et al. 2012;
Kearns et al. 2018).

6 Discussion and Conclusion
In this paper we introduced a novel definition of fair proba-
bility distribution in terms of discrimination patterns which
considers exponentially many (partial) observations of fea-
tures. We have also presented algorithms to search for dis-
crimination patterns in naive Bayes networks and to learn a
high-quality fair naive Bayes classifier from data. We empiri-
cally demonstrated the efficiency of our search algorithm and
the ability to eliminate exponentially many discrimination
patterns by iteratively removing a small fraction at a time.

We have shown that our approach of fair distribution im-
plies group fairness such as statistical parity. However, en-
suring group fairness in general is always with respect to a
distribution and is only valid under the assumption that this
distribution is truthful. While our approach guarantees some
level of group fairness of naive Bayes classifiers, this is only
true if the naive Bayes assumption holds. That is, the group
fairness guarantees do not extend to using the classifier on an
arbitrary population.

There is always a tension between three criteria of a prob-
abilistic model: its fidelity, fairness, and tractability. Our
approach aims to strike a balance between them by giving
up some likelihood to be tractable (naive Bayes assumption)
and more fair. There are certainly other valid approaches:
learning a more general graphical model to increase fairness
and truthfulness, which would in general make it intractable,
or making the model less fair in order to make it more truthful
and tractable.
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Lastly, real-world algorithmic fairness problems are only
solved by domain experts understanding the process that
generated the data, its inherent biases, and which modeling
assumptions are appropriate. Our algorithm is only a tool to
assist such experts in learning fair distributions: it can provide
the domain expert with discrimination patterns, who can then
decide which patterns need to be eliminated.
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