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Abstract

The recently proposed massively multilingual neural machine
translation (NMT) system has been shown to be capable of
translating over 100 languages to and from English within
a single model (Aharoni, Johnson, and Firat 2019). Its im-
proved translation performance on low resource languages
hints at potential cross-lingual transfer capability for down-
stream tasks. In this paper, we evaluate the cross-lingual ef-
fectiveness of representations from the encoder of a mas-
sively multilingual NMT model on 5 downstream classifica-
tion and sequence labeling tasks covering a diverse set of over
50 languages. We compare against a strong baseline, mul-
tilingual BERT (mBERT) (Devlin et al. 2018), in different
cross-lingual transfer learning scenarios and show gains in
zero-shot transfer in 4 out of these 5 tasks.

1 Introduction

English has an abundance of labeled data that can be used
for various Natural Language Processing (NLP) tasks, such
as part-of-speech tagging (POS), named entity recognition
(NER), and natural language inference (NLI). This richness
of labeled data manifests itself as a boost in accuracy in the
current era of data-hungry deep learning algorithms. How-
ever, the same is not true for many other languages where
task specific data is scarce and expensive to acquire. This
motivates the need for cross-lingual transfer learning — the
ability to leverage the knowledge from task specific data
available in one or more languages to solve that task in lan-
guages with little or no task-specific data.

Recent progress in NMT has enabled one to train multi-
lingual systems that support translation from multiple source
languages into multiple target languages within a single
model (Firat, Cho, and Bengio 2016; Johnson et al. 2017;
Aharoni, Johnson, and Firat 2019). Such multilingual NMT
(mNMT) systems often demonstrate large improvements in
translation quality on low resource languages. This positive
transfer originates from the model’s ability to learn repre-
sentations which are transferable across languages. Previous
work has shown that these representations can then be used
for cross-lingual transfer in other downstream NLP tasks -
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albeit on only a pair of language pairs (Eriguchi et al. 2018),
or by limiting the decoder to use a pooled vector represen-
tation of the entire sentence from the encoder (Artetxe and
Schwenk 2018).

In this paper we scale up the number of translation direc-
tions used in the NMT model to include 102 languages to
and from English. Unlike Artetxe and Schwenk (2018), we
do not apply any restricting operations such as pooling while
training mNMT which allows us to obtain token level rep-
resentations making it possible to transfer them to sequence
tagging tasks as well. We find that mNMT models trained
using plain translation losses can out of the box emerge
as competitive alternatives to other methods at the fore-
front of cross-lingual transfer learning (Devlin et al. 2018;
Artetxe and Schwenk 2018)

Our contributions in this paper are threefold:

e We use representations from a Massively Multilingual
Translation Encoder (MMTE) that can handle 103 lan-
guages to achieve cross-lingual transfer on 5 classifica-
tion and sequence tagging tasks spanning more than 50
languages.

e We compare MMTE to mBERT in different cross-lingual
transfer scenarios including zero-shot, few-shot, fine-
tuning, and feature extraction scenarios.

e We outperform the state-of-the-art on zero-shot cross-
lingual POS tagging [Universal Dependencies 2.3 dataset
(Nivre et al. 2018)], intent classification (Schuster et al.
2018), and achieve results comparable to state-of-the-art
on document classification [ML-Doc dataset (Schwenk
and Li 2018)].

The remainder of this paper is organized as follows. Sec-
tion 2 describes our MMTE model in detail and points out its
differences from mBERT. All experimental details, results
and analysis are given in Sections 3 and 4. This is followed
by a discussion of related work. In Section 6, we summa-
rize our findings and present directions for future research.
We emphasize that the primary motivation of the paper is
not to challenge the state-of-the-art but instead to investigate
the effectiveness of representations learned from an mNMT
model in various transfer-learning settings.



2 Massively Multilingual Neural Machine
Translation Model

In this section, we describe our massively multilingual NMT
system. Similar to BERT, our transfer learning setup has
two distinct steps: pre-training and fine-tuning. During pre-
training, the NMT model is trained on large amounts of par-
allel data to perform translation. During fine-tuning, we ini-
tialize our downstream model with the pre-trained parame-
ters from the encoder of the NMT system, and then all of the
parameters are fine-tuned using labeled data from the down-
stream tasks.

2.1

We train our Massively Multilingual NMT system using the
Transformer architecture (Vaswani et al. 2017) in the open-
source implementation under the Lingvo framework (Shen
etal. 2019). We use a larger version of Transformer Big con-
taining 375M parameters (6 layers, 16 heads, 8192 hidden
dimension) (Chen et al. 2018), and a shared source-target
sentence-piece model (SPM)! (Kudo and Richardson 2018)
vocabulary with 64k individual tokens. All our models are
trained with Adafactor (Shazeer and Stern 2018) with mo-
mentum factorization, a learning rate schedule of (3.0, 40k)?
and a per-parameter norm clipping threshold of 1.0. The en-
coder of this NMT model comprises approximately 190M
parameters and is subsequently used for fine-tuning.

Model Architecture

2.2 Pre-training

Objective We train a massively multilingual NMT system
which is capable of translating between a large number of
language pairs at the same time by optimizing the transla-
tion objective between language pairs. To train such a mul-
tilingual system within a single model, we use the strategy
proposed in (Johnson et al. 2017) which suggests prepend-
ing a target language token to every source sequence to be
translated. This simple and effective strategy enables us to
share the encoder, decoder, and attention mechanisms across
all language pairs.

Data We train our multilingual NMT system on a massive
scale, using an in-house corpus generated by crawling and
extracting parallel sentences from the web (Uszkoreit et al.
2010). This corpus contains parallel documents for 102 lan-
guages, to and from English, comprising a total of 25 billion
sentence pairs. The number of parallel sentences per lan-
guage in our corpus ranges from around 35 thousand to al-
most 2 billion. Figure 1 illustrates the data distribution for all
204 language pairs used to train the NMT model. Language
ids for all the languages are also provided in supplementary
material.

"https://github.com/google/sentencepiece

The shorthand form (3.0, 40k) corresponds to a learning rate
of 3.0, with 40k warm-up steps for the schedule, which is decayed
with the inverse square root of the number of training steps after
warm-up.
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Figure 1: Per language pair data distribution of the dataset
used for our multilingual NMT model. The y-axis depicts
the number of training examples available per language pair
on a logarithmic scale. Dataset sizes range from 35k for the
lowest resource language pairs to 2 billion for the largest.

Data sampling policy Given the wide distribution of data
across language pairs, we used a temperature based data
balancing strategy. For a given language pair, [, let D; be
the size of the available parallel corpus. Then if we adopt a
naive strategy and sample from the union of the datasets,
the probability of the sample being from language pair [
will be p; %. However, this strategy would starve
low resource language pairs. To control for the ratio of sam-
ples from different language pairs, we sample a fixed num-
ber of sentences from the training data, with the probabil-
ity of a sentence belonging to language pair [ being pro-
1

portional to p;”, where T is the sampling temperature. As
a result, 7' = 1 would correspond to a true data distribu-
tion, and, 7" = 100 yields an (almost) equal number of sam-
ples for each language pair (close to a uniform distribution
with over-sampling for low-resource language-pairs). We set
T = 5 for a balanced sampling strategy. To control the con-
tribution of each language pair when constructing the vocab-
ulary, we use the same temperature based sampling strategy
with 7" = 5. Our SPM vocabulary has a character coverage
of 0.999995.

Model quality We use BLEU score (Papineni et al. 2002)
to evaluate the quality of our translation model(s). Our
mNMT model performs worse than the bilingual baseline
on high resource language pairs but improves upon it on low
resource language pairs. The average drop in BLEU score on
204 language pairs as compared to bilingual baselines is just
0.25 BLEU. This is impressive considering we are compar-
ing one multilingual model to 204 different bilingual mod-
els. Table 1 compares the BLEU scores achieved by mNMT
to that of the bilingual baselines on 10 representative lan-
guage pairs.® These scores are obtained on an internal eval-
uation set which contains around 5k examples per language

3We chose a diverse set of language pairs with varying language
families, scripts, and dataset sizes.



baseline* mNMT baseline* mNMT
ur-en 27.84 27.24 | en-bg 31.31 29.36
mr-en 27.81 28.61 en-es 35.23 34.35
be-en 24.23 24.66 | en-sw 18.73 19.79
ru-en 26.54 26.56 | en-pt 37.19 37.41
fr-en 37.49 34.02 en-hi 16.46 16.63

Table 1: BLEU scores on ten language pairs with mNMT.
*baseline refers to a transformer based bilingual NMT
model trained on only one language pair.

pair.

2.3 Fine-tuning mNMT Encoder

Fine-tuning involves taking the encoder of our mNMT
model, named Massively Multilingual Translation Encoder
(MMTE), and adapting it to the downstream task. For tasks
which involve single input, the text is directly fed into the
encoder. For tasks such as entailment which involve input
pairs, we concatenate the two inputs using a separator to-
ken and pass this through the encoder. For each downstream
task, the inputs and outputs are passed through the encoder
and we fine-tune all the parameters end-to-end. The encoder
encodes the input through the stack of Transformer layers
and produces representations for each token at the output.
For sequence tagging tasks, these token level representa-
tions are individually fed into a task-specific output layer.
For classification or entailment tasks, we apply max-pooling
on the token level representations and feed this into the task-
specific output layer.

It should be noted that fine-tuning is relatively inexpen-
sive and fast. All of the results can be obtained within a few
thousand gradient steps. The individual task-specific mod-
eling details are described in detail in section 3. It is also
important to note that while the encoder, the attention mech-
anism, and the decoder of the model are trained in the pre-
training phase, only the encoder is used during fine-tuning.

2.4 Differences with mBERT

We point out some of the major difference between mBERT
and MMTE are:

e mBERT uses two unsupervised pre-training objectives
called masked language modeling (MLM) and next sen-
tence prediction (NSP) which are both trained on mono-
lingual data in 104 languages. MMTE on the other hand
uses parallel data in 103 languages (102 languages to and
from English) for supervised training with negative log-
likelihood as the loss. It should be noted that mBERT uses
clean Wikipedia data while MMTE is pre-trained on noisy
parallel data from the web.

e mBERT uses 12 transformer layers, 12 attention heads,
768 hidden dimensions and has 178M parameters while
MMTE uses 6 transformer layers, 16 attention heads, and
8196 hidden dimensions with 190M parameters. Note
that, the effective capacity of these two models cannot
easily be compared by simply counting number of pa-
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rameters, due to the added characteristic complexity with
depth and width.

e MMTE uses SPM to tokenize input with 64k vocabulary
size while mBERT uses a Wordpiece model (Wu et al.
2016) with 110k vocabulary size.

3 Experiments and Results

As stated earlier, we use MMTE to perform downstream
cross-lingual transfer on 5 NLP tasks. These include 3 clas-
sification tasks: NLI (XNLI dataset), document classifica-
tion (MLDoc dataset) and intent classification, and 2 se-
quence tagging tasks: POS tagging and NER. We detail all
of the experiments in this section.

3.1 XNLI: Cross-lingual NLI

XNLI is a popularly used corpus for evaluating cross-lingual
sentence classification. It contains data in 15 languages
(Conneau et al. 2018). Evaluation is based on classification
accuracy for pairs of sentences as one of entailment, neutral,
or contradiction. We feed the text pair separated by a special
token into MMTE and add a small network on top of it to
build a classifier. This small network consists of a pre-pool
feed-forward layer with 64 units, a max-pool layer which
pools word level representations to get the sentence repre-
sentation, and a post-pool feed-forward layer with 64 units.
The optimizer used is Adafactor with a learning rate sched-
ule of (0.2, 90k). The classifier is trained on English only
and evaluated on all the 15 languages. Results are reported in
Table 2. Please refer to Appedix Table 1 for language names
associated with the codes.

| mBERT* MMTE | SOTAT
en 82.1 79.6 | 850
ar 64.9 649 | 731
bg | 689 704 | 774
de | 711 682 | 778
el 66.4 67.3 | 766
es 74.3 71.6 | 789
fr 73.8 69.5 | 787
hi 60.0 63.5 | 69.6
ru 69.0 66.2 | 753
sw | 504 619 | 684
th 55.8 66.2 | 732
tr 61.6 63.6 | 725
ur 58.0 60.0 | 673
vi 69.5 69.7 | 76.1
zh 69.3 692 | 765
avg | 66.3 67.5 | 751

Table 2: Accuracies on the test set of the XNLI
dataset. *mBERT numbers have been taken from Wu and
Dredze (2019). T SOTA in the last column refers to the MLM
+ translation language modeling (TLM) results reported in
Lample and Conneau (2019).

MMTE outperforms mBERT on 9 out of 15 languages



and by 1.2 points on average. BERT achieves excellent re-
sults on English, outperforming our system by 2.5 points but
its zero-shot cross-lingual transfer performance is weaker
than MMTE. We see most gains in low resource languages
such as ar, hi, ur, and sw. MMTE however falls short of the
current state-of-the-art (SOTA) on XNLI (Lample and Con-
neau 2019). We hypothesize this might be because of 2 rea-
sons: (1) They use only the 15 languages associated with
the XNLI task for pre-training their model, and (2) They use
both monolingual and parallel data for pre-training while we
just use parallel data. We confirm our first hypothesis later
in Section 4 where we see that decreasing the number of
languages in mNMT improves the performance on XNLI.

3.2 MLDoc: Document Classification

MLDoc is a balanced subset of the Reuters corpus cover-
ing 8 languages for document classification (Schwenk and
Li 2018). This is a 4-way classification task of identifying
topics between CCAT (Corporate/Industrial), ECAT (Eco-
nomics), GCAT (Government/Social), and MCAT (Mar-
kets). Performance is evaluated based on classification accu-
racy. We split the document using the sentence-piece model
and feed the first 200 tokens into the encoder for classifi-
cation. The task-specific network and the optimizer used is
same as the one used for XNLI. Learning rate schedule is
(0.2,5k). We perform both in-language and zero-shot evalu-
ation. The in-language setting has training, development and
test sets from the language. In the zero-shot setting, the train
and dev sets contain only English examples but we test on
all the languages. The results of both the experiments are
reported in Table 3.

\ In language \ Zero-shot

| mBERT* MMTE | mBERT* MMTE | SOTAf
en 94.2 94.7 94.2 94.7 89.9
de 93.3 93.4 80.2 77.4 84.8
zh 89.3 90.0 76.9 734 | 719
es 95.7 95.6 72.6 73.0 | 773
fr 93.4 92.7 72.6 712 | 78.0
it 88.0 87.6 68.9 642 | 69.4
ja 88.4 88.1 56.5 69.0 | 60.3
ru 87.5 87.4 73.7 68.9 67.8
avg | 91.2 912 | 745 747 | 749

Table 3: Accuracies on the test set of the MLDoc
dataset. *mBERT numbers have been taken from Wu and
Dredze (2019). mBERT is also the state-of-the-art for in-
language training. { For zero-shot SOTA refers to Artetxe
and Schwenk (2018).

MMTE performance is on par with mBERT for in-
language training on all the languages. It slightly edges over
mBERT on zero-shot transfer while lagging behind SOTA
by 0.2 points. Interestingly, MMTE beats SOTA on Japanese
by more than 8 points. This may be due to the different na-
ture and amount of data used for pre-training by these meth-
ods.
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3.3 Cross-lingual Intent Classification

Schuster et al. (2018) recently presented a dataset for multi-
lingual task oriented dialog. This dataset contains 57k anno-
tated utterances in English (43k), Spanish (8.6k), and Thai
(5k) with 12 different intents across the domains weather,
alarm, and reminder. The evaluation metric used is classifi-
cation accuracy. We use this data for both in-language train-
ing and zero-shot transfer. The task-specific network and the
optimizer used is the same as the one used for the above two
tasks. The learning rate schedule is (0.1,100k). Results are
reported in Table 4. MMTE outperforms both mBERT and
previous SOTA in both in-language and zero-shot setting on
all 3 languages and establishes a new SOTA for this dataset.

| In language | Zero-shot

| mBERT* MMTE SOTA | mBERT* MMTE SOTA'
en 99.3 994 99.1 99.3 994 99.1
es 98.4 988 986 69.2 93.6 854
th 97.0 976 974 43.4 89.6 959
avg | 982 986 984 | 706 942 935

Table 4: Accuracies on the test set of the intent classifi-
cation dataset. *mBERT numbers are from our own im-
plementation using the publicly available mBERT check-
point. T SOTA refers to the numbers reported in Schuster
et al. (2018).

3.4 POS Tagging

We use universal dependencies POS tagging data from the
Universal Dependency v2.3 (Nivre et al. 2018; Zeman et al.
2018). Gold segmentation is used for training, tuning and
testing. The POS tagging task has 17 labels for all languages.
We consider 48 different languages. These languages are
chosen based on intersection of languages for which POS la-
bels are available in the universal dependencies dataset and
the languages supported by our mNMT model. The task-
specific network consists of a one layer feed-forward neu-
ral network with 784 units. Since MMTE operates on the
subword-level, we only consider the representation of the
first subword token of each word. The optimizer used is
Adafactor with learning rate schedule (0.1,40k). The eval-
uation metric used is F1-score, which is same as accuracy in
our case since we use gold-segmented data. Results of both
in-language and zero-shot setting are reported in Table 5.

While mBERT outperforms MMTE on in-language train-
ing by a small margin of 0.16 points, MMTE beats mBERT
by nearly 0.6 points in the zero-shot setting. Similar to re-
sults in XNLI, we see MMTE outperform mBERT on low
resource languages. Since mBERT is SOTA for zero-shot
cross-lingual transfer on POS tagging task (Wu and Dredze
2019), we also establish state-of-the-art on this dataset by
beating mBERT in this setting.

3.5 Named Entity Recognition
For NER, we use the dataset from the CoNLL 2002 and

2003 NER shared tasks, which when combined have 4 lan-
guages (Sang 2002; Sang and De Meulder 2003). The label-



\ In language \ Zero-shot

| mBERT* MMTE | mBERT* MMTE
ar 97.25 96.72 58.67 66.87
bg 98.86 98.93 86.65 87.61
de 96.21 95.92 91.63 89.22
en 96.11 96.34 96.16 96.34
es 97.70 97.79 87.56 85.11
fr 97.87 97.83 89.05 86.22
hi 97.39 97.53 72.00 74.48
mr 84.15 85.10 60.23 68.40
nl 97.82 97.27 90.30 88.40
pt 98.04 97.74 90.33 88.60
o 97.52 97.43 79.44 78.80
Y 97.35 96.92 91.60 89.95
te 93.66 93.73 81.12 83.40
ur 94.43 94.42 65.88 69.36
zh 96.25 95.87 67.38 67.51
48L | 95.65 9549 | 74.87 75.43

Table 5: F1 scores on the dev set of the POS tagging dataset.
*mBERT numbers are from our own implementation using
the publicly available mBERT checkpoint. For readability,
we only report results on 15 select languages and the 48 Lan-
guage average (48L).

ing scheme is IOB with 4 types of named entities. The task-
specific network, optimizer, and the learning rate schedule
is the same as in the setup for POS tagging. The evaluation
metric is span-based F1. Table 6 reports the results of both
in-language and zero-shot settings.

\ In language \ Zero-shot

‘ mBERT* MMTE ‘ mBERT* MMTE
en 92.0 87.8 92.0 87.8
es 874 78.6 75.0 52.0
de 82.8 78.7 69.6 51.8
nl 90.9 81.7 77.6 50.8
ave | 883 817 | 785 606

Table 6: F1 scores on the test set of the NER task. *mBERT
numbers have been taken from Wu and Dredze (2019).
mBERT is also the state-of-the-art for zero-shot setting.

MMTE performs significantly worse than mBERT on
the NER task in all languages. On average, mBERT beats
MMTE by 7 F1 points in the in-language setting and by
more than 18 points in the zero-shot setting. We hypothe-
size that this might be because of two reasons: (1) mBERT
is trained on clean Wikipedia data which is entity-rich while
MMTE is trained on noisy web data with fewer entities,
and (2) the translation task just copies the entities from the
source to the target and therefore might not be able to accu-
rately recognize them. This result points to the importance of
the type of pre-training data and objective on down-stream
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task performance. We plan to investigate this further in fu-
ture work.

4 Analysis

In this section, we consider some additional settings for
comparing mBERT and MMTE. We also investigate the im-
pact of the number of languages and the target language to-
ken on MMTE performance.

Feature-based Approach In this setting, instead of fine-
tuning the entire network of mBERT or MMTE, we only
fine-tune the task-specific network which only has a small
percentage of the total number of parameters. The rest of the
model parameters are frozen. We perform this experiment on
POS tagging task by fine-tuning a single layer feed-forward
neural network stacked on top of mBERT and MMTE. We
report the results in Table 7. While the scores of the feature-
based approach are significantly lower than those obtained
via full fine-tuning (5), we see that MMTE still outperforms
mBERT on both in-language and zero-shot settings by an
even bigger margin. This is particularly interesting as the
feature-based approach has its own advantages: 1) it is ap-
plicable to downstream tasks which require significant task-
specific parameters on top of a transformer encoder, 2) it is
computationally cheaper to train and tune the downstream
model, and 3) it is compact and scalable since we only need
a small number of task-specific parameters.

| Inlanguage | Zero-shot

| mBERT MMTE | mBERT MMTE
ar | 87.65 9150 | 61.08  60.35
bg | 9582 9672 | 88.08  83.48
de | 90.68 9334 | 8510  89.52
en | 9273 9215 | 9273 9233
es | 93.03 9245 | 7695  83.66
fr | 9220 9341 | 77.64  83.58
hi | 89.86 9215 | 6421 7329
mr | 8350 8449 | 5227 6636
nl | 9287 9400 | 8638  87.32
pt | 93.14 9384 | 8595  86.86
ro | 9076  89.68 | 7192  71.77
sv | 93.67 9435 | 8598  87.82
te | 9057 9275 | 70.09  81.12
ur | 90.02 9032 | 5898  67.90
zh | 8629 8434 | 60.82 5650
avg | 90.85 9170 | 7455  78.52

Table 7: F1 scores on dev set of POS tagging dataset using
both mBERT and MMTE as feature extractor.

Few Shot Transfer While zero-shot transfer is a good
measure of a model’s natural cross-lingual effectiveness, the
more practical setting is the few-shot transfer scenario as we
almost always have access to, or can cheaply acquire, a small



amount of data in the target language. We report the few-shot
transfer results of mBERT and MMTE on the POS tagging
dataset in 8. To simulate the few-shot setting, in addition to
using English data, we use 10 examples from each language
(upsampled to 1000). MMTE outperforms mBERT in few-
shot setting by 0.6 points averaged over 48 languages. Once
again, we see that the gains are more pronounced in low re-
source languages.

| mBERT MMTE | | mBERT MMTE

ar 85.20 85.53 nl 90.01 90.26
bg | 93.27 92.13 pt 92.18 92.29
de | 92.24 91.57 ro 84.58 84.68
en | 96.07 96.29 sV 91.61 92.11
es 92.52 92.12 te 83.84 84.74
fr 92.54 91.12 ur 81.38 82.94
hi 86.29 87.32 zh 81.14 76.32
mr | 66.59 79.32 | 48L | 83.97 84.58

Table 8: F1 scores on dev set of POS tagging dataset in few-
shot setting using 10 examples from each language in addi-
tion to English data.

One Model for all Languages Another setting of impor-
tance is the in-language training where instead of training
one model for each language, we concatenate all the data and
train one model jointly on all languages. We perform this
experiment on the POS tagging dataset with 48 languages
and report results in Table 9. We observe that MMTE per-
formance is on par with mBERT. We also find that the 48
language average improves by 0.2 points as compared to the
one model per language setting in Table 5.

| mBERT MMTE | | mBERT MMTE

ar 97.09 96.92 nl 97.60 97.59
bg 98.83 98.94 pt 98.42 98.02
de 95.94 95.68 ro 97.48 97.47
en 96.04 96.28 Y 97.27 97.22
es 97.71 97.77 te 94.86 94.81
fr 97.74 97.86 ur 94.39 94.77
hi 97.34 97.62 zh 96.01 95.84
mr | 84.70 86.13 | 48L | 95.67 95.69

Table 9: F1 scores on dev set of POS tagging dataset in one
model for all language setting.

Number of Languages in mNMT We perform an abla-
tion where we vary the number of languages used in the pre-
training step. Apart from the 103 language setting, we con-
sider 2 additional settings: 1) where we train mNMT on 4
languages to and from English, and 2) where we use 25 lan-
guages. The results are presented in Table 10. We see that as
we scale up the languages the zero-shot performance goes

8859

down on both POS tagging and XNLI tasks. These losses
align with the relative BLEU scores of these models sug-
gesting that the regressions are due to interference arising
from the large number of languages attenuating the capacity
of the NMT model. Scaling up the mNMT model to include
more languages without diminishing cross-lingual effective-
ness is a direction for future work.

| POS | XNLI

| 4x4  25x25  102x102 | 4x4 25x25  102x102
en | 9630 9625 9628 |80.1 80.0  79.6
es | 86.61 — 8513 | 742 — 716
fr | 86.62 8581 8523 |729 721 695
de | 9052 89.84 8857 | 714 TL1 682
zh| — 6783 6751 | — 727 692

Table 10: Effect of number of languages used for mNMT
training on downstream zero-shot performance. XNLI num-
bers are accuracies. POS numbers are F1 scores. —- indicate
that the language was not present in the subset that mNMT
was trained on.

Effect of the Target Language Token During the pre-
training step, when we perform the translation task using the
mNMT system, we prepend a <2xx> token to the source
sentence, where xx indicates the target language. The en-
coder therefore has always seen a <2en> token in front of
non-English sentences and variety of different tokens de-
pending on the target language in front of English sentence.
However, when fine-tuning on downstream tasks, we do not
use this token. We believe this creates a mismatch between
the pre-training and fine-tuning steps. To investigate this
further, we perform a small scale study where we train an
mNMT model on 4 languages to and from English in two
different settings: 1) where we prepend the <2xx> token,
and 2) where we don’t prepend the <2xx> token but in-
stead encode it separately. The decoder jointly attends over
both the source sentence encoder and the <2xx> token en-
coding. The BLEU scores on the translation tasks are com-
parable using both these approaches.

| POS | XNLI

| with <2xx>  without | with <2xx>  without
en 96.3 96.4 80.1 80.5
es 85.1 86.6 74.2 74.5
fr 86.6 87.8 72.9 73.7
de 90.5 91.1 714 72.9
ave | 896 905 | 746 754

Table 11: Effect of <2xx> token on zero-shot cross-lingual
performance. XNLI numbers are accuracies. POS numbers
are F1 scores.

The results on cross-lingual zero-shot transfer in both set-
tings are provided in Table 11. Removing the <2xx> to-



ken from the source sentence during mNMT training im-
proves cross-lingual effectiveness on both POS tagging and
XNLI task. Training a massively multilingual NMT model
that supports translation of 102 languages to and from En-
glish without using the <2xx> token in the encoder is an-
other direction for future work.

5 Related Work

We briefly review widely used approaches in cross-lingual
transfer learning and some of the recent work in learning
contextual word representations (CWR).

Multilingual Word Embeddings For cross-lingual trans-
fer, the most widely studied approach is to use multilin-
gual word embeddings as features in neural network mod-
els. Several recent efforts have explored methods that align
vector spaces for words in different languages (Faruqui and
Dyer 2014; Upadhyay et al. 2016; Ruder, Vuli¢, and Sggaard
2017).

Unsupervised CWR More recent work has shown that
CWRs obtained using unsupervised generative pre-training
techniques such as language modeling or cloze task (Tay-
lor 1953) have led to state-of-the-art results beyond what
was achieved with traditional word type representations on
many monolingual NLP tasks (Peters et al. 2018; Devlin et
al. 2018; Howard and Ruder 2018; Radford et al. ) such as
sentence classification, sequence tagging, and question an-
swering. Subsequently, these contextual methods have been
extended to produce multilingual representations by training
a single model on text from multiple languages which have
proven to be very effective for cross lingual transfer (Wu
and Dredze 2019; Mulcaire, Kasai, and Smith 2019; Pires,
Schlinger, and Garette 2019). Lample and Conneau (2019)
show that adding a translation language modeling (TLM)
objective to mBERT’s MLM objective utilizes both mono-
lingual and parallel data to further improve the cross-lingual
effectiveness.

Representations from NMT The encoder from an NMT
model has been used as yet another effective way to con-
textualize word vectors (McCann et al. 2017). Additionally,
recent progress in NMT has enabled one to train multilin-
gual NMT systems that support translation from multiple
source languages into multiple target languages within a sin-
gle model (Johnson et al. 2017). Our work is more closely
related to two very recent works which explore the encoder
from multilingual NMT model for cross-lingual transfer
learning (Eriguchi et al. 2018; Artetxe and Schwenk 2018).
While Eriguchi et al. (2018) also consider multilingual sys-
tems, they do so on a much smaller scale, training it on
only 2 languages. Artetxe and Schwenk (2018) uses a large
scale model comparable to ours with 93 languages but they
constrain the model by pooling encoder representations and
therefore only obtain a single vector per sequence. Neither
of these approaches have been used on token level sequence
tagging tasks. Further, neither concern themselves with the
performance of the actual translation task whereas we our
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mNMT model performs comparable to bilingual baselines
in terms of translation quality.

6 Conclusion and Future Work

We train a massively multilingual NMT system using paral-
lel data from 103 languages and exploit representations ex-
tracted from the encoder for cross-lingual transfer on various
classification and sequence tagging tasks spanning over 50
languages. We find that the positive language transfer visible
in improved translation quality for low resource languages
is also reflected in the cross-lingual transferability of the ex-
tracted representations. The gains observed on various tasks
over mBERT suggest that the translation objective is com-
petitive with specialized approaches to learn cross-lingual
embeddings.

We find that there is a trade off between the number of
languages in the multilingual model and efficiency of the
learned representations due to the limited capacity. Scaling
up the model to include more languages without diminish-
ing transfer learning capability is a direction for future work.
Finally, one could also consider integrating mBERT’s ob-
jective with the translation objective to pre-train the mNMT
system.
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