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Abstract

Text classification is a basic task in natural language process-
ing, but the small character perturbations in words can greatly
decrease the effectiveness of text classification models, which
is called character-level adversarial example attack. There
are two main challenges in character-level adversarial exam-
ples defense, which are out-of-vocabulary words in word em-
bedding model and the distribution difference between train-
ing and inference. Both of these two challenges make the
character-level adversarial examples difficult to defend. In
this paper, we propose a framework which jointly uses the
character embedding and the adversarial stability training to
overcome these two challenges. Our experimental results on
five text classification data sets show that the models based on
our framework can effectively defend character-level adver-
sarial examples, and our models can defend 93.19% gradient-
based adversarial examples and 94.83% natural adversar-
ial examples, which outperforms the state-of-the-art defense
models.

1 Introduction

Text classification is a basic task in natural language pro-
cessing (NLP). In recent years, (Kim 2014; Zhang, Zhao,
and LeCun 2015; Lai et al. 2015) apply deep neural net-
works to improve the text classification models. However,
(Goodfellow, Shlens, and Szegedy 2014) show that small
perturbations in test inputs can fool the state-of-the-art deep
neural networks based classifiers. To improve the robustness
of these deep neural networks based text classification mod-
els, many recent works (Liang et al. 2017; Gao et al. 2018;
Li et al. 2018) have focused on adversarial examples, which
are well-crafted by adding small perturbations to original ex-
amples, to fool the trained text classification models. For
example, as shown in Table 1, we only swap two chars in
the word “never” to generate an adversarial word “enver”.
This small perturbation can cause the well-trained text clas-
sification model to misclassify the entire sentence. In gen-
eral, the generation methods of adversarial examples in text
classification are mainly divided into three categories, which
are character-level (char-level) adversarial examples (Gao et
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Example Input Prediction

Original never coming here again found hair in my to go food . Negative

Adversarial enver coming here again found hair in my to go food. Positive

Original i just called these guys talk about customer service,
they were excellent . Positive

Adversarial i just called these guys talk about customer service,
they were exciellent . Negative

Table 1: The char-level adversarial examples in Yelp Review
Polarity corpus.

al. 2018), word-level adversarial examples (Papernot et al.
2016) and sentence-level adversarial examples (Liang et al.
2017). In this paper, we mainly discuss the char-level adver-
sarial examples, which are the most frequently used method
to fool the state-of-the-art text classification models (Gao et
al. 2018; Li et al. 2018) in recent years. Adversarial exam-
ples of text classification reveal the vulnerability of the text
classification models, and this vulnerability greatly hinders
the application of text classification, such as phishing and
spam detection systems.

However, the defense of char-level adversarial examples
has two main challenges, namely out-of-vocabulary (OOV)
words and distribution differences. The OOV words are
caused by the word embedding mechanism, which is sup-
posed to map the words in the vocabulary to fixed high-
dimensional vectors. But when a word is out of the vocab-
ulary, it will be replaced by the uninformed word UNK. In
actual, there is a high probability that the adversarial words
are OOV words to the word embedding based models, which
brings the loss of many informative words. For example,
as shown in Table 1, we only insert a char i into the word
“excellent”, and we will get an adversarial OOV word “ex-
ciellent” to the word embedding based model. Besides, the
char-level adversarial examples disrupt the intrinsic struc-
ture of word including prefix and suffix, which causes the
distribution difference between the training set and adver-
sarial examples. This distribution difference violates the as-
sumption of independent identical distribution in machine
learning and leads to the poor performance of well-trained
text classification models to adversarial examples.

To avoid the OOV words during the text processing, (Gao
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et al. 2018; Li et al. 2018) conduct a spell corrector to correct
adversarial words before inputting the text data into the clas-
sification models. However, traditional spell correctors have
been verified to be ineffective when the edit distance (Lev-
enshtein 1966), a metric that measures the similarity of two
words, between the original word and the adversarial word
exceeds one (Gao et al. 2018). For instance, as shown in Ta-
ble 1, the edit distance between the original word “never”
and the adversarial word “enver” is two. The spell correc-
tor tool autocorrector1 cannot correct the adversarial word
“enver” to “never” successfully. Besides, (Pruthi, Dhingra,
and Lipton 2019) uses semi-character based RNN (ScRNN)
(Sakaguchi et al. 2017) to correct the adversarial words,
which performs very well in most of char-level adversarial
sentences containing less than two adversarial words. But in
our more challenging adversarial examples with many ad-
versarial words, the ScRNN model shows poor performance
when it tries to correct all the adversarial words. In addi-
tion, to ameliorate the distribution difference, (Belinkov and
Bisk 2017; Cheng et al. 2018) propose word-based adver-
sarial stability training, which is to train the model on both
original texts and adversarial texts simultaneously to defend
the char-level perturbations in neural machine translation.
Unfortunately, this model training method does not solve
the OOV words problem under char-level adversarial exam-
ples. Therefore, the spell corrector and word-based adver-
sarial stability training cannot defend char-level adversarial
examples directly.

In this paper, we propose a novel framework as shown
in Figure 1, which jointly utilizes character (char) embed-
ding and adversarial stability training to overcome the two
challenges in char-level adversarial examples. To verify the
effectiveness of our framework, we generate two kinds of
char-level adversarial examples, namely the gradient-based
adversarial examples and the natural adversarial examples,
on five text classification data sets. We implement two mod-
els based on the framework and apply them on these two
kinds of adversarial examples. The experimental results
show that our framework can defend these char-level ad-
versarial examples effectively and greatly outperforms the
state-of-the-art models. To the best of our knowledge, this is
the first work to defend char-level adversarial examples by
jointly using char embedding and adversarial stability train-
ing.

We conclude our contributions as follows:

• We propose a new framework, which jointly utilizes char
embedding and adversarial stability training, to defend
char-level adversarial examples in text classification. This
framework is easily applied to all the word-level text clas-
sification models to enhance their robustness.

• We construct two kinds of char-level adversarial exam-
ples, which can simulate both deliberate attacks and care-
less inputs, to evaluate the robustness of our framework.

• We implement two models based on our framework and
conduct them on five text classification data sets. The ex-
perimental results show that both of these two models get

1https://pypi.org/project/autocorrect/

Figure 1: Our proposed framework to defend char-level ad-
versarial examples.

remarkable defense effectiveness to the char-level adver-
sarial examples.

2 Model

In this section, we will describe our proposed framework in
detail.

Framework

The basic purpose of our framework is to overcome the OOV
words and distribution differences in char-level adversarial
examples. As shown in Figure 1, our framework conducts
char embedding to generate the char-level word represen-
tation ei (i = 1, 2, ..., n) for the word wi in sentence s.
The char-level word representation ei is generated by fine-
grained characters, which not only preserves the information
of word wi but also solves the problem of OOV words. Be-
sides, to overcome the distribution difference, we develop
the adversarial sentence sp, which is obtained by adding
some small perturbations to each word wi in s, and generate
the char-level word representation epi for the word wp

i in sp.
Subsequently, we employ three loss functions, Ldiff (s, s

p),
Ltrue(s, y) and Lnoisy(s

p, y) to generate the char embed-
ding and apply the prior knowledge of adversarial examples
to the classifier to ameliorate the distribution difference be-
tween the training set and adversarial examples. In the fol-
lowing parts, we will introduce the char embedding and the
adversarial stability training in detail.

Char Embedding

Char embedding is to use deep neural network including
Convolutional Neural Networks (CNN) and bi-directional
Long Short-Term Memory (BLSTM) (Hochreiter and
Schmidhuber 1997) to generate the char-level word repre-
sentation through all the chars in the word. (Ling et al. 2015)
has shown that char embedding can extract not only the syn-
tactic and semantic information exactly like typical word
embedding but also the prefix and suffix pattern of words
to keep the information of the words as much as possible.
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Figure 2: The process of generating the char-level word representation of the words “cats” by CharBLSTM and CharCNN.

Formally, for a word wi, we convert each char in wi to a
dC-dimensional vector cji from char embedding matrix C,
and then wi can be represented as a matrix:

Wi = [c1i , c
2
i , ..., c

m
i ]m×dC

(1)

where m is the num of chars in the word wi. The char em-
bedding use the matrix Wi as the input to generate the char-
level word representation ei for each word wi.

In this paper, we adopt two kinds of char embedding
methods, namely the BLSTM-based char embedding (Char-
BLSTM) and the CNN-Based char embedding (CharCNN),
as shown in Figure 2. For CharBLSTM, the matrix Wi is
the input of BLSTM, whose two final hidden vectors will
be concatenated to generate ei. BLSTM extracts local and
global dependency information from chars in both two direc-
tions. This means that the word representation ei can capture
local and global structure information of words. Besides, the
four gates in BLSTM can selectively preserve information
so that CharBLSTM can defend tiny char-level perturbation
of char-level adversarial words. CharCNN use the matrix
Wi as the input of a convolutional layer and a max-pooling
layer to generate ei. Although CharCNN can only extract
local information because of the single convolutional layer,
the max-pooling layer in CharCNN can abandon unimpor-
tant information so that CharCNN can also defend tiny char-
level perturbation as CharBLSTM.

Adversarial Stability Training

Although char embedding can defend char-level adversar-
ial examples to some extent, the distribution difference be-
tween the training set and adversarial examples is still not
conducive to defend char-level adversarial examples. In this
paper, we utilize adversarial stability training to narrow this
distribution difference. Specifically, for each sentence s in
every training epoch, we add some small perturbation to
each word wi in s to generate its counterpart adversarial
word wp

i in adversarial example sp. We randomly select
one operation from the following four char-level perturba-
tion types to generate wp

i as (Gao et al. 2018):

1. Swap: Swap two adjacent chars in wi.

2. Substitution: Substitute a random char in wi with a ran-
dom char.

3. Deletion: Delete a random char in wi.
4. Insertion: Insert a random char in a random position in

wi.
After generating the new training samples, we also use three
loss functions as (Cheng et al. 2018) to improve the robust-
ness of our framework:
• Ltrue(s, y) promotes the classifier to predict the correct

label given the origin input sentence s.
• Lnoisy(s

p, y) promotes the classifier to predict the correct
label given the noisy input sentence sp.

• Ldiff (s, s
p) encourages the char embedding to generate

similar char-level word representations ei and epi by s and
sp, respectively.

In summary, when given a training set S and its perturbed
training set Sp, the adversarial stability training objective is:

L(θcle, θcla) =
∑

s∈S

Ltrue(s, y; θclm, θcla)+

α
∑

sp∈Sp

Lnoisy(s
p, y; θclm, θcla)+

β
∑

sp∈Sp

Ldiff (s, s
p; θclm)

(2)

where θclm is the parameters of the char embedding, and
θcla is the parameters of the classifier. α and β are the hy-
perparameters and will be discussed in Section 4. As shown
in Figure 1, Ltrue(s, y) and Lnoisy(s

p, y) are generated by
the classifier, and Ldiff (s, s

p) is generated by the similarity
evaluation. We will describe the classifier and the similarity
evaluation in the following sections.

Classifier In this paper, except for the Char-CNN in
(Zhang, Zhao, and LeCun 2015), our classifier is always
BLSTM as shown in Figure 2a and followed by an one-
layer fully connected MLP with a softmax activation func-
tion. The BLSTM takes the word representations as the in-
put. So the loss Ltrue(s, y) and Lnoisy(s

p, y) are binary or
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categorial cross-entropy loss with softmax activation:

Ltrue(S, Y ) =

m∑

i=1

−log(Yi | Si)

Lnoisy(S
P , Y ) =

m∑

i=1

−log(Yi | Sp
i )

(3)

Similarity Evaluation The basic idea of similarity evalu-
ation is to make the char-level word representations ei and
epi as close as possible when inputting with an origin word
wi and its noisy counterpart wp

i . In this paper, we simply
use mean square error loss to evaluate the similarity of two
char-level word representations:

Ldiff (wi, w
p
i ) =

1

n

n∑

i=1

(fcle(wi)− fcle(w
p
i ))

2 (4)

where fcle is the char embedding function and n is the num-
ber of words in the sentence s. The similarity evaluation
essentially promote the end-to-end deep neural networks to
generate similar intermediate results by an extra loss func-
tion Ldiff (s, s

p). Therefore, the similarity evaluation is easy
to be applied to other NLP tasks such as Sequence Labeling,
Neural Machine Translation, Reading Comprehension and
so on to improve their robustness to the char-level adversar-
ial examples.

3 Adversarial Examples

The adversarial example is a reliable approach to evaluate
the robustness of the deep learning based models. Given a
trained classifier C : S → Y , which can map a sentence
s ∈ S to its corresponding label y ∈ Y , the attacker adds
some small perturbations to the sentence s to generate its ad-
versarial example sp, which will be mapped to a wrong label
yp ∈ Y by the classifier C but can be mapped to the correct
label y by humans. In this section, we generate two kinds
of char-level adversarial examples, which are gradient-based
adversarial examples and natural adversarial examples, to
evaluate the robustness of our proposed framework.

Gradient-Based Adversarial Examples

The gradient-based adversarial examples use the cost gra-
dient to select the important chars or words in the sentence
s, i.e. the most influencing words or chars to the classifica-
tion result in s, to craft the char-level adversarial examples.
Specifically, for the word-level models, we sum the absolute
value of the word embedding gradient(Gw) to indicate the
importance of the word w:

Iw =

dW∑

i=1

(|Gwi |) (5)

where dW is the dimension of word embedding in the word-
level model. We randomly select a perturbation type from
the four char-level perturbation types in Section 2 to modify
the words one by one in order of the importance from high to
low until the total edit distance reaches the defense difficulty
controlling hyperparameter ed.

Dataset SST AG DBP Yelp P. Yelp F.

# words 3740 5296 4783 5354 5348

Table 2: The statistic for the words that appear in both the
vocabulary and the look-up table.

For char-level model, we use the same method to de-
fine the importance of the char c by its char embedding
gradient(Gc):

Ic =

dC∑

i=1

(|Gci |) (6)

Subsequently, we sorted all the chars in the sentence s by
their importance, and only use substitution operation as (Gao
et al. 2018) to change the sorted chars one by one until the
total edit distance reaches ed. Besides, for word-level and
char-level adversarial examples, we only modify each word
one time as (Gao et al. 2018).

Natural adversarial examples

When people try to input text by handful typing, they may
generate incorrect words called misspellings because of their
carelessness or confusion. These misspellings are very com-
mon in social networks and various reviews. To further ver-
ify the robustness of our framework, we construct natural
adversarial examples through Birkbeck2, which is a spelling
error corpus taken from native-speaker including 36133 mis-
spellings of 6136 words. Meanwhile, we also use the “as-
pell” file, which contains 531 misspellings of 450 words by
Atkinson3, and the “wikipedia” file, which contains 2455
misspellings of 1922 words by Wikipedia editors. Subse-
quently, we covert all the words in these three misspelling
data sets to lowercase and merge them to generate 38373
misspellings of 7392 words, which is used to build a look-
up table of lexical replacements. We generate the natural ad-
versarial example of sentence s by substituting each word
in s with its random misspelling once the word is found in
the look-up table. Besides, we count the number of words
appearing both in the word vocabulary and look-up table in
each data set as shown in Table 2, which can imply the diffi-
culty of defense to the natural adversarial examples of each
data set to some extent.

Now we have successfully built gradient-based adversar-
ial examples and natural adversarial examples. Gradient-
based adversarial examples can simulate deliberate attacks
and are difficult to defend while natural adversarial exam-
ples can simulate people’s careless inputs and are more com-
mon.

4 Experiments

Setup

Datasets We evaluate our framework on five public data
sets: SST from (Socher et al. 2013), AG, DBPedia, and Yelp

2https://www.dcs.bbk.ac.uk/ ROGER/corpora.html
3http://aspell.net/test/batch0.tab

8387



Dataset SST AG DBP Yelp P. Yelp F.

# Training 6920 120K 560K 560K 650K

# Testing 1821 7.6K 70K 38K 50K

# Classes 2 4 14 2 5

# Avg words 19 47 57 154 155

# Avg characters 86 204 257 593 598

Table 3: The number of examples and length statistics of
each data set.

P., Yelp F. from (Zhang, Zhao, and LeCun 2015). The num-
ber of samples, the average number of words, and the aver-
age number of characters are described in Table 3 in detail.
For SST data set, we removed the samples labeled 2 accord-
ing to (Pruthi, Dhingra, and Lipton 2019).

Model Configuration We first convert all input sentences
into fixed-length sentences by padding and truncating and
set the sentence length of SST, AG, and DBP to 100, the
sentence length of Yelp P. and Yelp F. to 300 according to
(Wang, Huang, and Deng 2018). Similarly, we convert the
input words of all five data sets into words of fixed length
16. For the word-level model, we select 30,000 words with
the highest frequency in the training set to build the word
vocabulary and randomly initialize the word embedding in
a fixed embedding dimension of 256. For the char embed-
ding model, we use 70 characters, including English lower-
case letters, digits, and some special characters, to build the
char vocabulary as (Zhang, Zhao, and LeCun 2015) and ran-
domly initialize the char embedding in a fixed embedding
dimension of 64. Besides, we set the number of hidden units
in CharLSTM to 128 and the number of filters in CharCNN
to 256. Therefore, the word representations generated by all
the experimental models have the same dimension. We set
the number of hidden units in BLSTM classifier to 256, the
loss parameters α and β to 1.0, and the edit distance ed in
gradient-based adversarial examples to 30 for all models.

Training phase setting For all models, we adopt Adam
optimizer (Kingma and Ba 2014) and set the minibatch size
to 32. We set the learning rate of 0.0001 for all models. The
SST data set has the pre-defined training and development
set. For the other four data sets, we split the training set into
a real training set and a development set at the ratio of 4 to
1. The model is tested on the development set every 1000
training steps. The early stopping patience is set to 20.

Models

Comparison Models We select two models, Word-
BLSTM and Char-CNN, in (Gao et al. 2018) and
three state-of-the-art defense models, Word-BLSTM-ATD,
Word-BLSTM-ScRNN-10, and Word-BLSTM-ScRNN-78,
in (Pruthi, Dhingra, and Lipton 2019) as the compari-
son models. In these five models, Char-CNN is a char-
level model and both Word-BLSTM-ScRNN-10 and Word-
BLSTM-ScRNN-78 use the char-level spell corrector.

• Word-BLSTM: A word-level model with bi-directional
LSTM as Figure 2a and an one-layer fully connected MLP
with a softmax activation function.

• Char-CNN: A CNN model in (Zhang, Zhao, and LeCun
2015), which contains a 9-layer convolutional network
and uses one-hot encoding as the input.

• Word-BLSTM-ATD: A Word-BLSTM model followed
by a context-aware spell corrector After the Deadline
(AtD)4.

• Word-BLSTM-ScRNN-10: A Word-BLSTM model fol-
lowed by a deep learning based spell corrector ScRNN
that containing a 10K words vocabulary. Word-BLSTM-
ScRNN-10 is the state-of-the-art defense method to char-
level adversarial examples.

• Word-BLSTM-ScRNN-78: A Word-BLSTM model same
as Word-BLSTM-ScRNN-10 except that the ScRNN con-
tains a 78K words vocabulary.

Our Models We implement two models, CharCNN-
BLSTM-AST and CharBLSTM-BLSTM-AST, based on our
proposed framework to evaluate the robustness of our frame-
work.

• CharCNN-BLSTM-AST: A model that adopts CharCNN
as the char embedding and uses the adversarial stability
training.

• CharBLSTM-BLSTM-AST: Our model that adopts Char-
BLSTM as the char embedding and uses the adversarial
stability training.

Experimental Results

Main Experimental Results We evaluate the seven mod-
els on two kinds of char-level adversarial examples of five
data sets and presents the experimental results in Table 4.
As shown in Table 4, CharBLSTM-BLSTM-AST performs
best defense effectiveness among the seven models on both
two kinds of char-level adversarial examples, which only
drop 6.81% on average for gradient-based adversarial ex-
amples and drop 5.17% on average for natural adversarial
examples. The defense effectiveness of CharCNN-BLSTM-
AST is slightly weaker than CharBLSTM-BLSTM-AST but
outperforms other comparison models, which is probably
because CharCNN cannot extract global structure informa-
tion of words compared with CharBLSTM. Through Word-
BLSTM-ScRNN-10 and Word-BLSTM-ScRNN-78 make
great improvement compared with Word-BLSTM, they get
relatively poor results compared with our models as our two
char-level adversarial examples are more complicated and
difficult to defend than the char-level adversarial examples
in (Pruthi, Dhingra, and Lipton 2019).

In detail, Word-BLSTM, Char-CNN, CharCNN-BLSTM-
AST and CharBLSTM-BLSTM-AST perform much better
for the natural adversarial examples than the gradient-based
adversarial examples. However, Word-BLSTM-ATD and
Word-BLSTM-ScRNN-78 perform better for the gradient-
based adversarial examples and Word-BLSTM-ScRNN-10

4https://www.afterthedeadline.com/
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(a) Gradient-Based Adversarial Examples

Dataset
Word-BLSTM Char-CNN Word-BLSTM-ATD Word-BLSTM-ScRNN-10 Word-BLSTM-ScRNN-78 CharCNN-BLSTM-AST CharBLSTM-BLSTM-AST

Ori Grad Dec Ori Grad Dec Ori Grad Dec Ori Grad Dec Ori Grad Dec Ori Grad Dec Ori Grad Dec

SST 81.22 50.36 38.00 70.07 57.28 18.25 80.45 67.55 16.03 79.02 66.83 15.43 79.19 67.82 14.36 77.21 64.80 16.07 74.85 67.22 10.19

AG 92.22 53.41 42.08 90.21 71.38 20.87 92.09 82.74 10.15 91.79 68.84 25.00 90.25 79.89 11.48 92.24 84.34 8.56 90.72 83.74 7.69

DBP 98.84 51.69 47.70 98.67 73.94 25.06 98.92 95.71 3.25 98.82 83.97 15.03 98.66 90.65 8.12 98.92 97.11 1.83 98.93 96.57 2.39

Yelp P. 95.75 82.61 13.72 94.93 84.92 10.54 96.19 92.60 3.73 95.91 91.23 4.88 95.48 91.16 4.52 96.16 92.02 4.31 95.92 92.13 3.95

Yelp F. 64.45 46.59 27.71 61.96 48.31 22.03 65.59 58.14 11.36 64.99 56.73 12.71 64.78 57.00 12.01 65.53 57.82 11.77 66.28 59.77 9.82

Mean - - 33.84 - - 19.35 - - 8.90 - - 14.61 - - 10.10 - - 8.51 - - 6.81

(b) Natural Adversarial Examples

Dataset
Word-BLSTM Char-CNN Word-BLSTM-ATD Word-BLSTM-ScRNN-10 Word-BLSTM-ScRNN-78 CharCNN-BLSTM-AST CharBLSTM-BLSTM-AST

Ori Nat Dec Ori Nat Dec Ori Nat Dec Ori Nat Dec Ori Nat Dec Ori Nat Dec Ori Nat Dec

SST 81.22 56.89 29.96 70.07 65.79 6.11 80.45 64.85 19.39 79.02 69.91 11.53 79.19 67.27 15.05 77.21 68.92 10.74 74.85 68.7 8.22

AG 92.22 82.50 10.54 90.21 84.91 5.88 92.09 84.41 8.34 91.79 85.04 7.35 90.25 81.57 9.62 92.24 89.45 3.02 90.72 88.8 2.12

DBP 98.84 75.03 24.09 98.67 85.72 13.12 98.92 90.11 8.91 98.82 88.75 10.19 98.66 87.32 11.49 98.92 96.9 2.04 98.93 97.66 1.28

Yelp P. 95.75 79.86 16.60 94.93 84.43 11.06 96.19 85.65 10.96 95.91 83.34 13.11 95.48 81.41 14.74 96.16 90.15 6.25 95.92 91.6 4.50

Yelp F. 64.45 41.95 34.91 61.96 47.17 23.87 65.59 48.54 25.99 64.99 47.71 26.59 64.78 46.36 28.43 65.53 54.57 16.73 66.28 57.22 13.67

Mean - - 23.22 - - 12.01 - - 14.72 - - 13.75 - - 15.87 - - 6.88 - - 5.17

Table 4: The main results for the gradient-based and natural adversarial examples. “Ori”, “Grad”, and “Nat” indicate the classi-
fication accuracy for the original test examples, the gradient-based adversarial examples and the natural adversarial examples,
respectively. “Dec” indicates the accuracy reduction between the original test examples and the adversarial examples.
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Figure 3: The experiment results for the gradient-based ad-
versarial examples with different edit distance in AG dataset.

performs almost the same on those two kinds of adversarial
examples. This is because the words in the gradient-based
adversarial examples are allowed to change at most once,
which is easy to correct by spell correctors because the edit
distance between the original word and the counterpart ad-
versarial word is only one or two. But the edit distance be-
tween the misspelling and the original word in natural ad-
versarial examples is probably greater than 2, which causes
the spell correctors to fail to correct the misspellings.

Experimental Result under Different Edit Distance To
further demonstrate the robustness of our proposed model,

we evaluate the classification accuracy of the seven models
for the char-level adversarial examples in different edit dis-
tances. The experimental results are shown in Figure 3. Ac-
cording to Figure 3, our two models show good results at all
edit distances. Furthermore, with the increase of the edit dis-
tance, our two models can still maintain ideal classification
accuracy. In contrast, the classification accuracy of the other
models decreases remarkably as the edit distance increases.
Besides, to demonstrate the aggressiveness of our gradient-
based adversarial examples, we generate some adversarial
examples called Random Word by randomly changing the
words and evaluate the classification accuracy of Word-
BLSTM on these adversarial examples. The experimental
results of Random Word are shown in Figure 3.

Experimental Results under Different Loss Parameters
According to the training objective of Equation 2 in Section
2, the parameters α and β controls the weight of Lnoisy and
Ldiff in the training phase and greatly affects the classifi-
cation accuracy and robustness of our models. We conduct
a grid parameter experiment to evaluate the interaction be-
tween the two parameters, where both α and β take 0, 0.5,
1.0, 2.0. We adopt AG as the data set and set the edit distance
as 30 to evaluate the classification accuracy of CharCNN-
BLSTM-AST model for the original examples and gradient-
based adversarial examples, respectively. As shown in Fig-
ure 4, for both original and adversarial examples, our model
performs unsatisfactorily when α takes a small value. When
we set both α and β as 1, the model performs best for the
original examples and shows competitive result for the ad-
versarial examples. The robustness of the models reaches the
highest when α takes 1 and β takes 2. Based on the exper-
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Figure 4: The classification accuracy of CharCNN-BLSTM-
AST with different α and β for char-level adversarial exam-
ples.

imental results, we set both α and β as 1 for our models to
perform best for the original examples because the original
examples are the most common examples in practice.

Incremental Experiments We conduct incremental ex-
periments to verify the robustness of various parts of our
framework to char-level adversarial examples. Same as the
loss parameters experiment, we adopt AG as the data set and
set edit distance as 30. Based on the former experimental re-
sults, we set both α and β to 1. The experimental results
are presented in Table 5. According to Table 5, CharCNN-
BLSTM gets better results on both two kinds of char-level
adversarial examples than Word-BLSTM. The results indi-
cate using char embedding alone can improve the robustness
of word-level models to char-level adversarial examples be-
cause char embedding can solve OOV words in word-level
models to keep the information of words as much as possi-
ble. Using Ldiff or Lnoisy alone both can further improve
the robustness of CharCNN-BLSTM. Finally, CharCNN-
BLSTM-AST gets the best results on the original examples
and the natural adversarial examples and very competitive
result on the gradient-based adversarial examples.

Defense Examples Table 6 shows some natural adversar-
ial examples in Yelp P.. We find that our models can defend
char-level adversarial examples effectively comparing with
Word-BLSTM.

5 Related Work

Adversarial examples are first proposed in the field of im-
age processing (Goodfellow, Shlens, and Szegedy 2014;
Carlini and Wagner 2017) to study the robustness of the deep
neural networks based models. Subsequently, (Papernot et
al. 2016) start to generate word-level adversarial examples
in text classification. (Liang et al. 2017) also consider ad-
versarial examples in text classification. They exploit multi-
level perturbations simultaneously to fool the text classifica-
tion models. In recent years, (Gao et al. 2018; Li et al. 2018;
Ebrahimi et al. 2017) start to generate char-level adversarial
examples to fool the state-of-the-art text classification mod-
els.

Contrasted to the adversarial example generation, there is
less research of adversarial examples defense in NLP (Wang
et al. 2019). (Gao et al. 2018; Li et al. 2018) propose using
the spell corrector to defend adversarial examples, but (Gao
et al. 2018) show that the spell corrector only works for tiny

Model Original Gradient Natural

Word-BLSTM 92.22 53.41 82.50

CharCNN-BLSTM 91.96 70.99 87.88

CharCNN-BLSTM+Ldiff 91.70 76.04 88.25

CharCNN-BLSTM+Lnoisy 91.88 84.44 89.39

CharCNN-BLSTM+AST 92.24 84.34 89.45

Table 5: The experimental results of the incremental experi-
ments.

perturbed words, whose edit distance from the original word
is only one. (Miyato, Dai, and Goodfellow 2016) add pertur-
bation to the word embedding to improve the effectiveness
of deep learning based text classification models. (Belinkov
and Bisk 2017; Cheng et al. 2018) study the char-level per-
turbations in Neural Machine Translation(NMT). They both
incorporate adversarial stability training with word embed-
ding to defend the char-level perturbations. (Pruthi, Dhingra,
and Lipton 2019) use ScRNN to defend char-level adversar-
ial examples in text classification, but they only test their
effectiveness on very simply adversarial examples, which is
only allowed to change two words in a sentence at most.

In the area of char embedding, (Ling et al., 2016) first
propose char embedding for both language models and
part-of-speech tagging. (Ma and Hovy 2016; Lample et al.
2016) use CNN and BLSTM to construct char embedding
for sequence labeling. (Seo et al. 2016; Tay et al. 2018;
Wang et al. 2017) use char embedding in reading compre-
hension to capture char-level information.

6 Conclusion

In this paper, we propose a novel framework to defend char-
level adversarial examples by jointly using char embedding
and adversarial stability training, which can solve both the
OOV words in char-level adversarial examples and the dis-
tribution difference between the training set and the adver-
sarial examples. Experiment results on five text classifica-
tion data sets show that the models based on our frame-
work can both get competitive results on original test sets
and defend gradient-based adversarial examples and natural
adversarial examples effectively, which greatly outperform
the state-of-the-art defense models to char-level adversarial
examples. Besides, our framework does not use the special
design for text classification, so it has the potential to be ap-
plied to any NLP tasks to improve their robustness to char-
level adversarial examples.
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Example Input Word-BLSTM CharCNN-BLSTM-AST

Original very helpful and knowledgeable staff. Positive Positive

Adversarial veyr helpfull are knowlegeable staff. Negative Positive

Original terrible service! Negative Negative

Adversarial terriable survice! Positive Negative

Original horrible customer service. they only care money! Negative Negative

Adversarial horible costomer servise. thy onle cerer moeny! Positive Negative

Table 6: Natural adversarial examples in Yelp Review polarity corpus.
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