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Abstract

Automatic phonemic transcription tools are useful for low-
resource language documentation. However, due to the lack
of training sets, only a tiny fraction of languages have phone-
mic transcription tools. Fortunately, multilingual acoustic
modeling provides a solution given limited audio training
data. A more challenging problem is to build phonemic tran-
scribers for languages with zero training data. The difficulty
of this task is that phoneme inventories often differ between
the training languages and the target language, making it in-
feasible to recognize unseen phonemes. In this work, we ad-
dress this problem by adopting the idea of zero-shot learning.
Our model is able to recognize unseen phonemes in the tar-
get language without any training data. In our model, we de-
compose phonemes into corresponding articulatory attributes
such as vowel and consonant. Instead of predicting phonemes
directly, we first predict distributions over articulatory at-
tributes, and then compute phoneme distributions with a cus-
tomized acoustic model. We evaluate our model by training it
using 13 languages and testing it using 7 unseen languages.
We find that it achieves 7.7% better phoneme error rate on
average over a standard multilingual model.

Introduction

Over the last decade, automatic speech recognition (ASR)
has achieved great successes in many rich-resourced lan-
guages such as English, French and Mandarin. On the other
hand, speech resources are still sparse for the majority of
other languages. They cannot thus benefit directly from re-
cent technologies. As a result, there is an increasing interest
in building speech processing systems for low-resource lan-
guages. In particular, phoneme transcription tools are use-
ful for low-resource language documentation by improving
workflow for linguists to analyze those languages (Adams et
al. 2018; Michaud et al. 2018).

A more challenging task is to transcribe phonemes in the
language with zero training data. This task has significant
implications in documenting endangered languages and pre-
serving the associated cultures (Gippert et al. 2006). This
data setup has mainly been studied in the unsupervised
speech processing field (Glass 2012; Versteegh et al. 2015;
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Hermann and Goldwater 2018), which typically uses an un-
supervised technique to learn representations which can be
used towards speech processing tasks.

However, those unsupervised approaches could not gener-
ate phonemes directly and there has been few works study-
ing zero-shot learning for unseen phonemes transcription,
which consist of learning an acoustic model without any au-
dio data or text data for a given target language and unseen
phonemes. In this work, we aim to solve this problem to
transcribe unseen phonemes for unseen languages without
considering any target data, audio or text.

The prediction of unseen objects has been studied for a
long time in the computer vision field. For specific object
classes such as faces, vehicles and cats, a significant num-
ber manually labeled data is usually available, but collecting
sufficient data for every object human could recognize is im-
possible. Zero-shot learning attempts to solve this problem
to classify unseen objects using mid-level side information.
For example, zebra can be recognized by detecting attributes
such as stripped, black and white. Inspired by approaches in
computer vision research, we propose the Universal Phone-
mic Model (UPM) to apply zero-shot learning to acoustic
modeling. In this model, we decompose the phoneme into
its attributes and learn to predict a distribution over various
articulatory attributes. For example, the phoneme /a/ can be
decomposed into its attributes: vowel, open, front and un-
rounded. This can then be used to infer the unseen phonemes
for the test language as the unseen phonemes can be de-
composed into common attributes covered in the training
phonemes.

Our approach is summarized in Figure 1. First, frames are
extracted and a standard acoustic model is applied to map
each frame into the acoustic space (or hidden space)H. Next
we transform it into the attribute space P which reflects the
articulatory distribution of each frame (such as whether it
indicates a vowel or a consonant). Then, we compute the
distribution of phonemes for that frame using a predefined
signature matrix S which describes relationships between
articulatory attributes and phonemes in each language.

To evaluate our UPM approach, we trained the model on
13 languages and tested it on another 7 languages. We also
trained a multilingual acoustic model as a baseline for com-
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Figure 1: Illustration of the proposed zero-shot learning framework. Each utterance is first mapped into acoustic space (or
hidden space) H. Then we transform each point in the acoustic space into attribute space P with a linear transformation V .
Finally phoneme distributions can be obtained by applying a signature matrix S

parison. The result indicates that we consistently outperform
the baseline multilingual model, and we achieve 7.7% im-
provements in phoneme error rate on average.

The main contributions of this paper are as the followings:
1. We propose the Universal Phonemic Model (UPM) that

can recognize unseen phonemes during training by incor-
porating knowledge from the phonetics/phonology do-
main.

2. We introduce a sequence prediction model to integrate
a zero-shot learning framework for sequence prediction
problem.

3. We show that our model is effective for 7 different lan-
guages, and our model gets 7.7% better phoneme error
rate over the baseline on average.

Approach

This section explains the details of our Universal Phonemic
Model (UPM). In the first section, we describe how we con-
structed a proper set of articulatory attributes for acoustic
modeling. Next, we demonstrate how to assign attributes to
each phoneme by giving an algorithm to parse X-SAMPA
format. Finally we show how we integrate the phonetic in-
formation into the sequence model with a CTC loss (Graves
et al. 2006).

Articulatory Attributes

Unlike attributes in the computer vision field, attributes of
phonemes are independent of the corpus and dataset, they
are well investigated and defined in the domain of artic-
ulatory phonetics (Ladefoged and Johnson 2014). Articu-
latory phonetics describes the mechanism of speech pro-
duction such as the manner of articulation and placement
of articulation, and it tends to describe phones using dis-
crete features such as voiced, bilabial (made with the two

lips) and fricative. These articulatory features have been
shown to be useful in speech recognition (Kirchhoff 1998;
Stüker et al. 2003b; Müller et al. 2017), and are a good
choice for attributes for our purpose. We provide some cate-
gories of articulatory attributes below.
Consonants. Consonants are formed by obstructing the
airstream through the vocal tract. They can be categorized in
terms of the placement and the manner of this obstruction.
The placements can be largely divided into three classes:
labial, coronal, dorsal. Each of the class have more fine-
grained classes. The manners of articulation can be grouped
into: stop, fricative, approximant etc.
Vowel. In the production of vowels, the airstream is rela-
tively unobstructed. Each vowel sound can be specified by
the positions of lips and tongue (Ladefoged and Johnson
2014). For instance, the tongue is at its highest point in the
front of the mouth for front vowels. Additionally, vowels can
be characterized by properties such as whether the lips are
rounding or not (rounded, unrounded).
Diacritics. Diacritics are small marks to modify vowels and
consonants by attaching to them. For instance, nasalization
marks a sound for which the velopharyngeal port is open
and air can pass through the nose. To make the articulatory
attribute set manageable, we assign attributes of diacritics to
some existing consonants attributes if they share similar ar-
ticulatory property. For example, nasalization is treated as
the nasal attribute in consonants.

In addition to articulatory attributes mentioned above, we
note that we also need to allocate an special attribute for
blank in order to predict blank labels in CTC model, and
backpropagate their gradients into the acoustic model. Thus,
our articulatory attribute set Aphone is defined as the union
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Figure 2: Illustration of the sequence model for zero-shot learning. The input layer is first processed with a Bidirectional LSTM
acoustic model, and produces a distribution over articulatory attributes. Then it is transformed into a phoneme distribution by a
language dependent signature matrix S

of these three domain attributes as well as the blank label,

Aphone = Aconsonants ∪Avowels

∪Adiacritics ∪
{
blank

}

Attribute Assignment Next, we need to assign each
phoneme with appropriate attributes. There are multiple
approaches to retrieve articulatory attributes. The simplest
one is to use tools to collect articulatory features for each
phoneme (Mortensen et al. 2016). However, those tools only
provide coarse-grained phonological features but we expect
more fine-grained and customized articulatory features. In
this section, we propose a naive but useful approach for at-
tribute assignment. We note that we use X-SAMPA format
to denote each IPA in this work. X-SAMPA was devised to
produce a computer-readable representation for IPA. Each
IPA segment can be mapped to X-SAMPA with appropriate
rule-based tools (Mortensen, Dalmia, and Littell 2018). For
example, IPA /@/ can be represented as /@/ in X-SAMPA.

input : X-SAMPA representation of phoneme p
output: Articulatory attribute set A ⊆ Aphone for p

A← empty set ;

while p �∈ Pbase do
find the longest suffix ps ∈ Pbase ;
Add f

∣
∣
Pbase

(ps) to A ;
Remove suffix ps from p ;

end

Add f
∣
∣
Pbase

(p) to A

Algorithm 1: A simple algorithm to assign attributes to
phonemes

The assignment can be formulated as the problem to con-
struct an assignment function f : Pxsampa → 2Aphone

where the domain Pxsampa is the set of all valid X-SAMPA
phonemes, and the range 2Aphone is a subset of articula-
tory attributes for each phoneme . The assignment func-
tion should map each phoneme into its corresponding subset
of Aphone. To construct the function in the entire domain
Pxsampa, we first manually map a small subset Pbase ⊂
Pxsampa and construct a restricted assignment function
f
∣
∣
Pbase

: Pbase → 2Aphone . The mapping is customizable
and has been verified with the IPA handbook (Decker and
others 1999). Then for every phoneme p ∈ Pxsampa, we
continue to remove diacritics suffix from it until it could be
found in Pbase. For example, to recognize /ts >/, we can first
match the suffix, / >/ as an ejective, and then recognize /ts/
as a consonant defined in Pbase. The Algorithm 1 summa-
rizes our approach.

Sequence model for zero-shot learning

Zero-shot learning has rarely been applied to speech se-
quence prediction problems. Zero-shot translation is an ex-
ample of applying zero-shot learning to a different type of
sequence problems(Johnson et al. 2017). In the standard set-
tings, the zero-shot translation means that the target lan-
guage pair is not in the training dataset. However, both lan-
guages should be already seen in other training pairs. In con-
trast, we assume a harder problem here: there is no available
training audio or text for the target language at all.

In this section we describe a novel sequence model archi-
tecture for zero-shot learning. We adapt a modified ESZSL
architecture from (Romera-Paredes and Torr 2015). While
the original architecture is devised to solve the classifica-
tion problem with CNN(DECAF) features, our model aims
to optimize a CTC loss over a sequence model as shown in
Figure 2. We note our architecture is a general model, and it
can also be used for other sequence prediction problems in
zero-shot learning.
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Language Corpus Name # Utterances Language Corpus Name # Utterances

English TED 268k Mandarin Hkust 197k
English Switchboard 251k Mandarin OpenSLR 18 13k
English Librispeech 281k Mandarin LDC98S73 36k
Amharic OpenSLR 25 10k Bengali OpenSLR 37 196k
Cebuano IARPA-babel301b-v2.0b 43k Dutch Voxforge 8k
Italian Voxforge 10k Javanese OpenSLR35 185k
Kazakh IARPA-babel302b-v1.0a 48k Kurmanji IARPA-babel205b-v1.0a 46k
Lao IARPA-babel203b-v3.1a 66k Turkish IARPA-babel105b-v0.4 82k
Sinhala openSLR52 185k

German Voxforge 41k Mongolian IARPA-babel401b-v2.0b 45k
Russian Voxforge 8k Spanish Callhome Hub4 31k
Swahili OpenSLR 25 10k Tagalog IARPA-babel106b-v0.2g 93k
Zulu IARPA-babel206b-v0.1e 60k

Table 1: Corpora of the training set and the test set used in the experiment. Both baseline model and proposed model are trained
with 17 corpus across 13 languages, and tested on 7 corpus in 7 languages.

Given the training set {(xn,yn, φn), n = 1...N} where
each input xn ∈ X is an utterance, φn is its language, and
yn ∈ Y is the corresponding phoneme transcription. Sup-
pose that xn = (x1

n, ..., x
T
n ) is the input sequence where xt

n
is the frame of time step t, and T is the length of xn. Each
frame xt

n is first projected into a feature vector ht
n ∈ R

d in
the hidden spaceH with a Bidirectional LSTM model.

ht
n = θ(xt

n;WLSTM) (1)

where WLSTM is the parameter of the Bidirectional LSTM
model. We assume that our phoneme inventory of φn con-
sists of z phonemes in the training set, each of them having
a signature of a attributes constructed as mentioned above.
We can first represent our attributes in a constant signature
matrix S ∈ {0, 1}z×a of φn. The (i, j) cell in the signature
matrix is 1 if the i-th phoneme has been assigned the j-th at-
tribute, otherwise it is assigned to 0. We note that while the
signature matrix is constructed automatically in this work,
it can be refined by linguists using phonology in each lan-
guage. Then, we transform ht

n into articulatory logits with
the transformation matrix V ∈ R

a×d. Then it is further pro-
cessed into the phoneme logits ltn with S.

ltn = SV ht
n (2)

The logits ln = (l1n, ..., l
T
n ) are then combined with yn to

compute the CTC loss (Graves et al. 2006). Additionally,
regularizing V has been proved to be useful in the original
ESZSL architecture (Romera-Paredes and Torr 2015). Even-
tually our target is to minimize the following loss function:

minimize
V,WLSTM

CTC(xn,yn;V,WLSTM) + Ω(V ) (3)

where Ω(V ) is an simple �2 regularization. This objective
can be easily optimized using standard gradient descent
methods.

At the inference stage, we usually consider a new lan-
guage φtest with a new phoneme inventory. Suppose that

the new inventory is composed of z′ phonemes, then we
can automatically create a new signature matrix S′ ∈
{0, 1}z′×a, and estimate probability distribution of each
phoneme Pacoustic(p|xt

n) from logits using S′ instead of S.

Experiments

Dataset

We prepare two datasets for this experiment. The training set
consists of 17 corpora from 13 languages, and the test set is
composed of corpora from 7 different languages. They are
used by both our model and the baseline described later. De-
tails regarding each corpus and each language are provided
in Table 1.

We briefly describe our strategy of corpus selection in the
experiment. To select the training corpus, the rich-resourced
languages should be taken into account firstly to make sure
the acoustic model can be fully trained. Therefore, we add
three English corpora and three Mandarin corpora to the
training set. Additionally, we expect both the baseline and
our Universal Phonemic Model should be trained to recog-
nize a variety of phonemes from different languages. There-
fore we collect a number of corpora from different language
families and diverse regions. Finally, we attempt to make
the acoustic model robust to various channels and speech
styles. For example, TED (Rousseau, Deléglise, and Esteve
2012) is the conference style, Switchboard (Godfrey, Holli-
man, and McDaniel 1992) is the spontaneous conversation
style and Librispeech is the reading style (Panayotov et al.
2015). We note that 5 percent of the entire corpus was used
as the validation set. The test corpora are selected in a similar
style. They are selected from a variety of languages: not only
from rich-resourced languages, but also low-resourced lan-
guages with stable audio alignments and reliable g2p mod-
els.
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Language # unseen phoneme Baseline PER% UPM PER% Baseline Substitution% UPM Substitution%

German 2 68.0 64.9 51.9 46.9
Mongolian 18 87.8 77.5 44.1 35.8

Russian 19 74.5 54.4 63.5 34.5
Swahili 2 55.7 48.9 27.4 26.6
Tagalog 0 60.7 57.0 27.2 20.1
Spanish 2 48.6 44.4 31.0 26.2

Zulu 8 73.1 67.9 36.2 33.5

Average 7.3 66.9 59.2 40.2 31.9

Table 2: Phoneme error rate and phoneme substitution rate of the baseline, and our approach. Our model (UPM) outperforms
the baseline for all languages, by 7.7% (absolute) in phoneme error rate, and 8.3% in phoneme substitution error rate.

Experimental Settings

We use the EESEN framework for the acoustic model-
ing (Miao, Gowayyed, and Metze 2015). All the transcripts
are transcribed into phonemes with Epitran (Mortensen,
Dalmia, and Littell 2018). The input feature is 40 dimension
high-resolution MFCCs, the encoder is a 5 layer Bidirec-
tional LSTM model, each layer having 320 cells. The sig-
nature matrix is designed as we discussed above, different
signature matrices are used for different languages. We train
the acoustic model with stochastic gradient descent, using
a learning rate of 0.005. In each iteration, we apply the uni-
form sampling (Li et al. 2019): first randomly select a corpus
from the entire training set, and then randomly choose one
batch from that corpus.

Our baseline model is the multilingual acoustic model
with a shared phoneme inventory. This type of architec-
ture is one of the standard approaches in the multilin-
gual ASR community (Tong, Garner, and Bourlard 2017;
Vu and Schultz 2013). In this architecture, all languages
share a common acoustic model and a single output layer.
The output layer is to predict phonemes in the universal
phoneme inventory shared by all the training languages.
In our experiment, the inventory consists of 131 distinct
phonemes from 14 training languages. To compare the base-
line with the proposed model, we also use the Bidirectional
LSTM model as the encoder to compute phoneme distribu-
tions P (p|xt

n). Then we decode phonemes with greedy de-
coding as in our approach. We use the same configuration
of LSTM architecture as well as the training criterion. As
we focus on phonemic transcriptions in this work, we use
phoneme error rate (PER) as the metric for evaluation.

Results

Our results are summarized in Table 2. As is shown, our
approach consistently outperforms the baseline in terms
of phoneme error rate. For example, the baseline achieves
55.7% phoneme error rate when evaluated with Swahili, and
our approach obtains 48.9% in the same test set. For each
language in our evaluation, we observe that we improve the
phoneme error rate from 3.1% (German) to 20.1% (Russian)
respectively. On average, the baseline has 66.9%, and our
model gets 7.7 % better phoneme error rate.

The table also indicates the strong correlation between

the number of unseen phonemes and the improvement in
the phoneme error rate. For example, Russian achieves the
largest improvement with our UPM: it improves signifi-
cantly by 20.1% phoneme error rate. In our experiment, the
Russian phoneme inventory has 48 phonemes in total out
of which 19 of them are unseen during training. This sug-
gests our model has a good generalization ability to adapt
to languages whose acoustic contexts are rarely known. On
the other hand, every phoneme in the Tagalog inventory has
been covered by other languages in the training set. There-
fore, the number of its unseen phoneme is 0 and the corre-
sponding 3.7% phoneme error rate improvement is relatively
limited. Similarly, the least improved language is German,
which improved from 68.0% to 64.9% because there are
only two unseen phonemes in German. This fact can also be
explained by the relationship between German and English.
German comes under the West Germanic branch in the Indo-
European language family like English. As English is the
largest training set in this experiment, phonemes of English
are well-trained in the baseline and should be generalizing
well to German. Therefore it is hard for UPM to outperform
by a large margin. Additionally, we find that the correlation
between the number of unseen phonemes and phoneme er-
ror rates is relatively weak. For example, Tagalog has 12%
higher phoneme error rate compared with Spanish, even its
unseen phonemes are less than Spanish. This might be ex-
plained by the discrepancy of the phoneme distribution be-
tween the target language and training languages. For exam-
ple, even though in principle all the phonemes of Tagalog
have been covered in the training languages, their relative
frequencies are not similar, which would affect the quality
of the results.

To further investigate the reason for improvements for our
model, we computed the (phoneme) substitution error rate,
shown in the two right columns of Table 2. It goes down
from 40.2% in the baseline to 31.9% in our model. The num-
bers show that we have 8.3% improvement in substitution
error rate. This result suggests that our model is good at im-
proving confusions between phonemes. However, it also in-
dicates that our model is not able to improve addition and
deletion errors.

To understand how the number of training languages con-
tributes to the performance in the experiment, we train dif-
ferent models by changing the numbers of training lan-
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Language Baseline unseen PER% UPM unseen PER% Baseline seen PER% UPM seen PER%

German 100.0 100.0 63.9 61.9
Mongolian 100.0 91.9 86.8 78.6

Russian 100.0 96.1 69.5 51.7
Swahili 100.0 86.4 54.3 46.2
Tagalog N.A. N.A. 57.4 54.2
Spanish 100.0 58.0 45.2 41.7

Zulu 100.0 88.3 70.5 64.6

Average 100.0 89.8 64.2 57.0

Table 3: Phoneme error rate (%PER) of the seen phonemes and unseen phonemes in the baseline and our approach.

guages: we train those models with 2, 6, 10, 14 languages.
The first two languages are English and Mandarin which are
corresponding to the 6 well resourced corpus in Table.1. The
other 4, 8, 12 languages are randomly selected from the re-
maining training languages.
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Figure 3: Illustration of the relationship between the number
of training languages and the average phoneme error rate
over 7 languages

Figure.3 demonstrates their performance: the red line
(with triangular mark) and blue line (with cross mark) in-
dicate the average PER of the baseline and UPM respec-
tively. They suggest that increasing the number of training
languages is helpful to reduce phoneme error rate for both
models. For the baseline model, it indicates that the acous-
tic model get exposed to more diverse phonemes present
in different languages. Therefore it learns to predict them
with reduced error rates in the test set. Our UPM also im-
proves by learning various acoustic contexts of broader ar-
ticulatory attributes. The curves in Figure.3 show that UPM
outperforms the baseline consistently with different training
size. Additionally, the gap of phoneme error rate between the
two models has increased when using more languages: the
gap increased from 5.0 to 9.3. The results illustrate that our
UPM is better at taking advantage of the diverse training lan-

guages. Our model can infer correlations between phonemes
by using their shared articulatory attributes. This ability is
helpful when a specific phoneme is rarely seen but its at-
tributes have already been well-trained using other related
phonemes. On the contrary, the baseline is not adapted well
to those rare phonemes or unseen phonemes. It fails to pre-
dict those phonemes when their training data are limited.

Finally, to highlight the ability of our model, we com-
pute the phoneme error rate for each phoneme, then clas-
sify them into the seen group and unseen group based on
whether the phoneme is available in the training set. To com-
pute phoneme error rate in this case, we align the expected
phonemes with the predicted phonemes using their edit dis-
tance, the phoneme error rate here denotes the correction
rate for each expected phone. Table.3 demonstrates the re-
sults of both the baseline and UPM, it suggests the UPM
outperforms the baseline on both groups. On average, UPM
would predict 10.2 % better for the unseen groups and 7.2 %
better for the seen groups. The average numbers demonstrate
that our approach has the ability to predict unseen phonemes
and could even be adapted better to seen groups. The table
also shows the difficulty of the task and the weakness of our
approach: we could not predict any unseen phonemes for
German. The two unseen phonemes of German are /pf/ and
/C/, but the frequencies of both phonemes are less than 0.5
% in the test set, which makes the model extremely unsta-
ble when predicting those phonemes. On the other hand, the
Spanish improvement of unseen PER is extremely signifi-
cant, which can also be explained by the unstable prediction
over low frequency unseen phonemes. Additionally, the 89.8
error rate of unseen groups is still not practical in the real-
world production systems.

Related Work

We briefly outline several areas of related works, and de-
scribe their connections and differences with this paper.
Zero-shot learning was first applied to recognize unseen
objects during training in the computer vision field (Lam-
pert, Nickisch, and Harmeling 2009; Palatucci et al. 2009;
Socher et al. 2013). However those works rarely mention
speech recognition.

Meanwhile there has been growing interests in zero-
resource speech processing (Glass 2012; Jansen et al. 2013),
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most of the work focusing on tasks like acoustic unit dis-
covery, unsupervised segmentation and spoken term dis-
covery (Heck, Sakti, and Nakamura 2017). These models
are useful for various extrinsic speech processing tasks like
topic identification. However, the unsupervised concept can-
not be directly grounded to actual phonemes, hence making
it impracticable to do speech recognition or acoustic model-
ing. The usual intrinsic evaluations that these zero resource
tasks are tested on is ABX discriminability task or the un-
supervised word error rate which are good for quality esti-
mates but not practical as they use an oracle or ground truth
labels to assign cluster labels. In addition these approaches
demands a modest size of audio corpus of targeting lan-
guage (e.g: 2.5h to 40h). In contrast, our approach assumes
no audio corpus and no text corpus for targeting languages.
The idea of decomposing speech into concepts was also dis-
cussed by (Lake et al. 2014), where the authors propose a
generative model to learn representations for spoken words
which they then use to classify words with only one training
sample available per word. Though this is in the same line
as the zero-resource speech processing papers, we feel the
motivation behind the decomposition is very similar to this
work.

Another group of researchers explore adaptation tech-
niques for multilingual speech recognition, especially for
low resource languages. In these multilingual settings, the
hidden layers are either HMM or DNN models which are
shared by multiple languages, and the output layer is either
language specific phone set or a universal IPA-based phone
set (Tong, Garner, and Bourlard 2017; Vu and Schultz 2013;
Thomas, Ganapathy, and Hermansky 2010; Chen and Mak
2015; Dalmia et al. 2018). However predictable phonemes
are restricted to the phonemes in the training set, thus they
fail to predict unseen phonemes in the test set. In contrast,
our model can predict unseen phonemes by taking advantage
of their articulatory attributes.

Articulatory features have been shown to be useful in
speech recognition under several situation. Specifically, ar-
ticulatory features has been used to improve robustness un-
der noisy and reverberant environment (Kirchhoff 1998),
compensate for crosslingual variability (Stüker et al. 2003b),
improve word error rate in multilingual models (Stüker et al.
2003a), be beneficial for low resource languages (Müller,
Stüker, and Waibel 2016), detecting spoken words (Prab-
havalkar et al. 2013), clustering phoneme-like units for un-
written languages (Müller et al. 2017), recognizing unseen
languages (Siniscalchi et al. 2011), developing phonolog-
ical vocoder (Cernak and Garner 2016). There are also
some attempts to predict articulatory features or distribu-
tions for clinical usages (Jiao, Berisha, and Liss 2017;
Vásquez-Correa et al. 2019), but they do not provide a model
to predict unseen phonemes.

We note that there are also several attempts to build
acoustic models for unseen phonemes. For example, the
authors in (Scharenborg et al. 2017) present an interesting
method to predict unseen phonemes in Mboshi by mapping
Dutch/Mboshi phonemes in the same space using an extrap-
olation approach. However starting phonemes used for ex-
trapolation had to be manually assigned for every missing

phoneme and every pair of languages. Compared with this
work, our model proposes a much more generic algorithm
to recognize unseen phonemes. Another previous work in-
tegrated articulatory attributes into the state-position based
decision tree to predict unseen phones in their multilingual
model (Knill et al. 2014), however the approach is limited
to traditional HMM models and it is unclear how attributes
are extracted and how it performs when predicting unseen
phonemes.

Conclusion

In this work, we propose the Universal Phonemic Model
to apply zero-shot learning to the automatic phonemic tran-
scription task. Our experiment shows that it outperforms the
baseline by 7.7 % phoneme error rate on average for 7 lan-
guages. While the performance of our approach is still not
enough for the real-world production systems, it paves the
way to tackle zero-shot learning of speech recognition with
a new framework.
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