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Abstract

A number of cross-lingual transfer learning approaches based
on neural networks have been proposed for the case when
large amounts of parallel text are at our disposal. However, in
many real-world settings, the size of parallel annotated train-
ing data is restricted. Additionally, prior cross-lingual map-
ping research has mainly focused on the word level. This
raises the question of whether such techniques can also be
applied to effortlessly obtain cross-lingually aligned sentence
representations. To this end, we propose an Adversarial Bi-
directional Sentence Embedding Mapping (ABSent) frame-
work, which learns mappings of cross-lingual sentence rep-
resentations from limited quantities of parallel data. The ex-
periments show that our method outperforms several techni-
cally more powerful approaches, especially under challeng-
ing low-resource circumstances. The source code is available
from https://github.com/zuohuif/ABSent along with relevant
datasets.

1 Introduction

Not only have regular vector representations of words be-
come ubiquitous (Mikolov et al. 2013), but bilingual word
embeddings (Ruder 2017) have as well enjoyed remarkable
success, enabling many novel forms of cross-lingual NLP.
Owing to the availability of adequate cross-lingual word
datasets and supervised learning methods, cross-lingual
transfer learning at the word level is well-studied. However,
only few results exist on sentence-level cross-lingual map-
ping, let alone studying low-resource settings.

In order to effortlessly obtain sentence-level represen-
tations, one of the most popular methods is to compute
a (possibly weighted) average of the word vectors of all
words encountered in a sentence. The method is favored
for its straightforward simplicity, particularly in light of
the widespread availability of pre-trained word vectors.
While there are numerous more powerful methods (cf. Sec-
tion 2), they require substantially longer training times and
pre-trained models are typically less convenient to load.
Somewhat surprisingly, weighted averages of word vec-
tors have been shown capable of outperforming several
more advanced techniques, including certain Long short-
term memory (LSTM)-based setups (Wieting et al. 2015;

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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Figure 1: Sentence alignment between the respective embed-
dings of English and German sentences. Solid circles rep-
resent training samples, while hollow circles represent test
samples. The challenge is to align test samples (connected
by dotted segments) with limited numbers of training pairs
(connected by solid segments) and a large number of un-
paired training samples.

Arora, Liang, and Ma 2017). In this paper, we study to what
extent sentence embeddings based on simple word vector
averages can be aligned cross-lingually. While word vec-
tor averages have been studied for embeddings of entire text
documents, such document embeddings mainly need to cap-
ture topic information. Sentence embeddings, in contrast,
are typically expected to retain more detailed semantic in-
formation. If simple word vector averages can achieve this
cross-lingually despite being entirely oblivious of the or-
der of words in the input sentences, this would provide a
simple means of connecting semantically related sentences
across language boundaries, in support of a diverse range
of possible tasks such as question answering, recommenda-
tion, plagiarism detection (Liu et al. 2019b; Xian et al. 2019;
Ferrero et al. 2017). While there has been research on joint
multilingual training of NMT to obtain richer cross-lingual
sentence embeddings (Wang et al. 2019), such methods tend
to require substantial training data.

At the same time, aligning sentences cross-lingually with
limited parallel data is challenging, as it is not obvious how
to exploit non-parallel data (see Figure 1). While linear
transformations have proven fruitful for cross-lingual word
vector mapping (Mikolov, Le, and Sutskever 2013), recent
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Figure 2: The framework of our proposed ABSent method. It learns two generators GX and GY to approximate the joint
distribution of vectors from both languages. GX projects sentence embeddings x from language X to Y , while, conversely, GY

projects sentence embeddings y from language Y to X .

work shows that non-linear transformations may be neces-
sary even just at the level of individual words (Nakashole
and Flauger 2018). At the sentence level, this necessity may
be much more pronounced, due to the divergent syntactic
and morphological properties of different languages and the
linear superposition of different concepts. We not only study
this empirically but also show how non-linear transforma-
tions can be learned with limited parallel data.

Specifically, we propose Adversarial Bi-directional Sen-
tence Embedding Mapping (ABSent), based on the gener-
ative adversarial network (GAN) framework to bridge the
gap between languages while avoiding overfitting even with
limited parallel data. We consider simple (weighted) aver-
aged word embeddings for a source language sentence as in-
put but generates a sentence embedding in a target language
space resulting from (weighted) averaged word vectors in a
target language. The bi-directional structure additionally en-
ables joint transformations between two languages.

The major contributions of the paper can be outlined as
follows: 1) We highlight the simplicity and effectiveness
of inducing high-quality sentence representations from pre-
trained word embeddings by means of Term Frequency-
Inverse Document Frequency (TF-IDF) weighted averaging
word vectors. 2) We propose an adversarially bidirectional
model for cross-lingual sentence embedding mapping based
on a custom form of GAN framework that is capable of uti-
lizing non-parallel sentence pairs. Moreover, we show that
the same model architecture can easily be extended to more
than one source language. 3) We extensively evaluate the
performance of our method on the Tatoeba and Europarl cor-
pora, obtaining exceptional accuracy as well as high quality
mapping results, even in low-resource settings.

2 Related Work

Cross-Lingual Projection Approaches. A number of pa-
pers consider linear projections to align two word vec-
tor spaces with a regression objective (Mikolov, Le, and
Sutskever 2013; Zou et al. 2013). Faruqui and Dyer (2014)
proposed using Canonical Correlation Analysis (CCA).
Xing et al. (2015) showed that adding an orthogonality con-
straint to the mapping can significantly enhance the result

quality, and has a closed-form solution. There have been ap-
proaches that assume that languages share some common
vocabulary items as a heuristic for supervision (Smith et al.
2017; Dong and De Melo 2018; Artetxe, Labaka, and Agirre
2017).

A few works also attempt to align monolingual word vec-
tor spaces with no supervision at all. Zhang et al. (2017) em-
ployed a form of adversarial training, but their approach dif-
fers from ours in multiple respects. First, they rely on sharp
drops of discriminator accuracy for model selection. Second,
their performance is highly sensitive to the selected paral-
lel corpus. Lample et al. (2018) presented a related unsu-
pervised technique that learns a rotation matrix that outper-
forms several state-of-the-art supervised techniques. In con-
trast to our approach, none of the above methods consider
non-linear transformations (Nakashole and Flauger 2018).

Sentence Embeddings. Well-known approaches to create
sentence embeddings include the Paragraph Vector approach
(Le and Mikolov 2014), which straightforwardly extends
word2vec to generate vectors for paragraphs, and the Skip-
Thought Vector approach (Kiros et al. 2015), which relies
on recurrent units to encode and decode sentence represen-
tations such that these are predictive of neighbouring sen-
tences. There are more sophisticated methods that rely on
supervision from a range of different NLP tasks (Subrama-
nian et al. 2018; Yang et al. 2019).

However, inspired by the results from Wieting et al.
(2015), Arora, Liang, and Ma (2017) presented a weight-
ing technique that enables simple weighted sums of word
vectors to outperform several state-of-the-art models. In our
experiments, we build on these insights and as well consider
weighted sums of word vectors as sentence embeddings, as
these are readily available, even for many low-resource lan-
guages. Our weighting scheme is described in Section 4.

Adversarial Training. Recently, GANs (Goodfellow et
al. 2014) have shown remarkable success across a diverse
range of multimodal tasks. Their adversarial training pro-
cess resembles a min–max game. Some GAN approaches
require a supervised learning setting like image-to-image
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transfer (Isola et al. 2017). The CycleGAN approach (Zhu
et al. 2017) shows promise in its exploitation of unpaired
data to achieve a domain transfer. While GANs have mostly
been considered for multimodal data (Liu et al. 2019a), we
show how they can be used for linguistic representations in
an NLP task.

3 ABSent Approach

In this paper, we seek to learn a transformation between two
languages such that the mapping model can be invoked to
project an embedding of a source language sentence to a tar-
get language space and be able to find the nearest neighbor
targets in the target space at the sentence level. At the same
time, our approach is shown to be robust under low-resource
conditions in terms of the amount of parallel sentences avail-
able for training. We start with a formal definition of our
sentence representation problem under limited parallel data,
followed by a detailed demonstration of our proposed deep
neural model.

3.1 Problem Definition

Formally, we assume a source language (domain) X and a
target one Y , such that each element is a d-dimensional vec-
tor, denoted by x ∈ X or y ∈ Y . We assume that ∀x ∈ X ,
x is aligned with one y ∈ Y , denoted by (x,y) ∈ D. Given
a bilingual corpus D and a labeled (parallel) subset Dl ⊆ D,
an unlabeled subset Dul and some distance measure fd, our
goal is to learn two non-linear transformation functions GX

and GY that minimize

Ld = Ex,y [fd(x, GY (y)) + fd(y, GX(x))] (1)

Note that in the labeled set Dl, the alignment between x is
known, while in the unlabeled set Dul, the relationship be-
tween x and y are unknown.

In this paper, we consider the case when the labeled set
|Dl| is very limited and the size of the unlabeled set |Dul| is
large. In other words, the challenge is how to utilize unpaired
vectors from two domains to learn good mappings from one
domain to the other. Specifically, the model is expected to
be able to jointly learn from bidirectional transformations
between the two languages at the same time to improve the
mappings for each direction by better modeling the joint dis-
tribution, which is important in settings with limited parallel
data as considered in this paper.

3.2 Our Method

To solve the trasnformation problem with limited parallel
data, we introduce the novel Adversarial Bi-directional Sen-
tence Embedding Mapping (ABSent) method.

The fundamental core of our model is inspired by the
Triangle Generative Adversarial Network (Gan et al. 2017),
which addresses the task of image-to-image translation. The
key idea is that the generator component learns to non-
linearly project embeddings across the two representation
spaces, while a discriminator component attempts to dis-
tinguish automatically projected embeddings from genuine
target language embeddings, thus constraining us to more
closely match the target distribution. Unlike regular GANs,

our model incorporates additional information from “adver-
sarial” pairs of sentence embeddings that come from both
parallel and non-parallel data. We define the corresponding
objective function as follows.

Lreal = Ex,y[log(Dreal(x,y))]

+ Ex[log(1−Dreal(x, GX(x))]

+ Ey[log(1−Dreal(y, GY (y))]

(2)

Here, Dreal is a discriminator that aims to distinguish real
pairs from fake pairs. A real pair (x,y) ∈ Dl is a known
mapping in the parallel dataset. A fake pair (x, GX(X)) or
(y, GY (Y)) is an artificial pair based on a projection emit-
ted by the generator GX or GY .

Equation 2 reflects an adversarial min–max game, in
which the generators GX , GY and the discriminator Dreal

are trained adversarially and concurrently to improve their
respective abilities. This is a bidirectional process due to its
reliance on both generator functions GX and GY to map
from one domain to the other.

In addition, in order to utilize non-parallel information,
we further take into consideration mismatch pairs induced
from non-parallel data. Given the set of source language
sentence embeddings X and the set of target language sen-
tence embeddings Y , the set of mismatch pairs consists of
all training pairs (x′,y′) ∈ X × Y such that x′ is an em-
bedding for a sentence that is not translationally equivalent
to the sentence represented by y′. The loss function is aug-
mented with the following mismatch term:

Lmis = Ex′,y′ [log(1−Dreal(x
′,y′)] (3)

By combining Equations 2 and 3, we force the discrimina-
tor Dreal to distinguish real pairs (x,y) from unpaired data,
which includes both mismatch pairs (x′,y′) as well as gen-
erated fake pairs (x, GX(x)) or (y, GY (y)).

However, the discriminator Dreal alone cannot determine
the directionality between fake pairs. Therefore, we intro-
duce another discriminator Ddom to distinguish whether
fake pairs come from the X domain or from the Y domain.
The loss function is defined as:

Ldom = Ex[log(Ddom(x, GX(x))]

+ Ey[log(1−Ddom(y, GY (y))]
(4)

The overall framework of our ABSent method is illustrated
in Figure 2, where we seek to solve the following joint opti-
mization problem:

L = Lreal + Lmis + Ldom

G∗
X , G∗

Y = arg min
GX ,GY

max
Dreal,Ddom

(L+ λLd)
(5)

where λ is a weighting factor to balance the effect between
distance metrics and adversarial components. In this paper,
we use cosine similarity as the distance measure:

fd(x,x
′) = 1− xᵀx′

‖x‖ ‖x′‖ (6)

We train our model adversarially to learn the mappings bi-
directionally by encouraging that the resulting pairs be indis-
tinguishable from genuine pairs, and the direction that was
generated remain as indiscernible as possible.
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Datasets Tatoeba Europarl
Corpus deu→eng eng→deu spa→eng eng→spa deu→eng eng→deu spa→eng eng→spa
Precision@k (%) k=1 k=5 k=1 k=5 k=1 k=5 k=1 k=5 k=1 k=5 k=1 k=5 k=1 k=5 k=1 k=5
Mikolov et al. (2013) 13.6 20.9 12.8 21.7 31.1 46.9 24.7 38.3 6.4 13.4 7.8 14.6 13.1 21.6 12.4 22.1
Dinu et al. (2014) 17.3 30.8 22.7 36.4 35.4 52.8 30.5 46.2 13.8 21.9 11.9 21.1 18.5 28.6 15.7 27.3
Smith et al. (2017) 27.6 42.6 26.0 40.0 40.5 55.2 35.0 48.1 13.9 24.3 19.3 27.5 47.2 58.6 39.5 50.8
Lample et al. (2018) 10.0 19.7 11.2 18.7 29.1 40.3 30.5 43.5 20.8 30.2 22.9 35.2 28.2 39.7 30.0 42.7
BERT 10.0 17.3 12.4 21.1 25.6 38.2 24.9 33.8 5.9 8.9 5.8 9.6 22.5 39.9 21.7 36.5
seq2seq NMT 6.5 9.0 7.3 10.1 9.9 12.5 9.9 13.1 5.0 8.7 5.1 6.3 7.0 9.2 7.8 10.3
fairseq NMT 9.3 19.4 15.6 24.4 19.9 29.8 18.5 31.0 12.2 16.1 7.3 11.8 18.4 27.9 17.0 25.2
Conditional GAN 16.0 36.3 18.8 37.5 16.6 34.2 16.6 32.3 9.6 17.1 7.9 15.0 18.6 29.6 17.3 27.6
ABSent (ours) 46.2 65.5 43.8 65.9 38.5 64.3 37.4 60.5 27.5 40.4 26.2 39.2 49.4 62.5 47.7 62.2

Table 1: Results of sentence embedding mapping experiment in terms of precision@1 and precision@5. Our proposed ABSent
only utilizes 20% of parallel training data and the equal size of unparalleled data for training, while all baselines take 100%
training data with parallel labels. The best-performing method is highlighted in bold.

Dataset Tatoeba Europarl
Corpus deu→eng→spa→ eng→ deu→eng→spa→ eng→

eng deu eng spa eng deu eng spa
U\mis 25.1 28.0 27.1 24.4 19.8 19.6 38.6 36.7
U 26.9 29.1 27.4 25.3 21.5 20.0 39.3 36.9
A\mis 32.0 32.9 30.7 29.6 23.9 22.8 43.0 44.5
A 34.4 34.9 31.8 30.0 24.7 23.1 45.0 45.8

As 27.4 28.1 28.0 26.2 15.6 14.5 24.6 22.8
Aw 24.0 23.7 22.5 21.5 21.9 22.4 37.1 38.4

Table 2: Comparison of precision@1 between ABSent (A),
uni-Sent (U ), and further modified settings. A\mis, U\mis
are two variants without mismatch loss term. As swaps the
weighting strategy (TF-IDF weighting for Tatoeba but not
for Europarl). Aw stands for first aligning word-level repre-
sentations and then generating sentence embeddings.

Language LASER ABSent (ours)
#train Acc (%) #train Acc (%) #test

Armenian (hye) 6k 32.21 5.3k 28.56 742
Irish (gle) 732 4.20 700 5.23 1k
Kazakh (kaz) 4k 17.39 3.9k 18.14 575

Table 3: On low-resource languages, simple word vector av-
erages obtain comparable results to the richly supervised
LASER model, despite lack of word order information.

3.3 Zero-Shot Multilingual Setting

Our model can also be easily extended to align sentences
between two languages X1 and X2 in a zero-shot manner
without any parallel data between them. The zero-shot mul-
tilingual task involves jointly projecting two languages X1

and X2 to a common target language Y given only limited
parallel data and non-aligned data connecting each to Y . As
input, we have labeled data D(i)

l and unlabeled data D(i)
ul for

the language pairs (Xi, Y ) (i = 1, 2). However, we do not
observe any direct relationship between the two source lan-
guages X1 and X2 in the training data.

In this case, we adopt the same framework as in the previ-
ous section except that the generator Gx is expected to learn
two language projections from X1 to Y and from X2 to Y .
Let L(i) be the loss function defined in Equation 5 for cross-
lingual Xi and Y . The overall loss function for multilingual
mapping is simply L′ = 1

2

(L(1) + L(2)
)
.

3.4 Sentence Representation and Mapping

With regard to obtaining the sentence representations, we
adopt pre-trained word vectors (Bojanowski et al. 2016) that
are available for numerous languages trained on Wikipedia
using fastText. We ensure the same input embeddings in
training and evaluation for the baselines as in our model.
Based on the results of Wieting et al. (2015) and Arora,
Liang, and Ma (2017), we adopt simple (weighted) averages
of word vectors, which are surprisingly powerful, although
our method could also be applied to other sentence embed-
ding methods.

Given source sentence embeddings {x} and target sen-
tence embeddings {y} acquired as described above, we can
train the generators GX and GY through the joint loss func-
tion in Equation 5. Subsequently, we evaluate the obtained
transformation via a standard sentence retrieval task. For
each source sentence embedding x, we compute its k near-
est neighbours in terms of the distance function fd among
all target embeddings. The corresponding k target sentences
are regarded as the candidate set of mapping results.

4 Experiments

In this section, we extensively evaluate the effectiveness
of our ABSent method compared with state-of-the-art ap-
proaches on two heterogeneous real-world corpora.

4.1 Experimental Setup

Datasets. We evaluate the precision of our approach on the
Europarl parallel corpus and on extracted from the Tatoeba
service1, which provides translations of commonly used
phrases that might be useful to language learners. We fo-
cus on German and English as well as Spanish and English
translation retrieval. For the English←→ German datasets,
we take 160k pairs as the training set and 1,600 pairs as
the test set in both datasets. For the English ←→ Spanish
datasets, we take 60k pairs as training and 600 pairs as test
data for the Tatoeba corpus, and 130k as training and 1,300
as test for the Europarl corpus. However, to emphasize that
our model can cope with very limited amounts of parallel
data, we solely make use of just 20% of the parallel training

1http://tatoeba.org
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Figure 3: Performance of our proposed ABSent and uni-Sent with two baseline experiments under different ratios of parallel
training data on the Tatoeba dataset (Figures (a)-(d)) and Europarl dataset (Figures (e)-(h)).

data when training our model, while all the baseline meth-
ods exploit 100% of the parallel training data. Given a set of
training pairs, we randomly sample false pairs of the same
size as the respective parallel data.

Baselines. For comparison, we consider as baselines
the linear transformation methods by (Mikolov, Le, and
Sutskever 2013), Dinu, Lazaridou, and Baroni (2014), and
Smith et al. (2017), the supervised version of MUSE (Lam-
ple et al. 2018) with cross-domain similarity local scaling.
We also use the multilingual version of BERT (Devlin et al.
2018), using the standard method for sentence-level repre-
sentations based on the [CLS] token2 to generate sentence
vectors that are already multilingual without further projec-
tion. This is to assess how far we can take simple word vec-
tor averages in comparison to powerful alternatives.

We further consider a seq2seq (Sutskever, Vinyals, and
Le 2014) NMT baseline jointly trained to translate language
X to Y as well as to monolingually auto-encode sentences
from language Y back to X . We use two different encoders
with a shared decoder such that the two encoders produce
latent representations in the same space. This allows us to
save the latent sentence embeddings for evaluation rather
than generate an output translation.

Additionally, we consider the fairseq NMT (Gehring et
al. 2017) approach based on a convolutional encoder model,
which constructs latent representations hierarchically.

Finally, we investigate a Conditional GAN (Mirza and
Osindero 2014), for which we use our model but do not con-
sider any fake pairs or mismatch pairs for training.

Parameter Settings. Both generators GX and GY con-
sist of three fully connected layers with hidden sizes of 512,

2As provided by based on bert-as-service: https://github.com/
hanxiao/bert-as-service

1024, 512, respectively. Each hidden layer is connected with
a BatchNorm layer and the ReLU activation function. The
final activation function is tanh. Both discriminators Dreal

and Ddom take as input two embeddings, followed by three
fully connected layers of sizes 512, 1024, 512 with concate-
nation. Each hidden layer is connected with a leaky ReLU
activation function (0.2), while the output is activated by a
sigmoid function. We rely on Adam optimization with an
initial learning rate of 0.002 and a batch size of 128.

4.2 Main Results

We assess the quality of the mapping by considering the
ranking of the ground truth paired target sentence. The
overall quality across all test set instances is given by
the precision@k metric, which, following previous work
(Mikolov, Le, and Sutskever 2013) in this area, is defined
as the ratio of test set instances for which the correct tar-
get is among the top k. Then we repeat the same evaluation
process for all four datasets from the two corpora.

The results are reported in Table 1. Recall that we only
use 20% of parallel sentences (true pairs) to train our model
while all the other baselines utilize 100% of parallel sen-
tence pairs for the training. We observe that our ABSent
approach still significantly outperforms other baselines by
a large margin. Take the deu→eng data from Tatoeba as
an example. Our method achieves a precision@1 of 46.2%
and a precision@5 of 65.5%, which are 18.6 and 22.9 abso-
lute percentage points higher than the respective results of
the best baseline. Similar trends can be observed for other
datasets. Note that the results for different languages are not
fully comparable due to different sizes of training data.

4.3 Detailed Analysis

Influence of Bi-directional Transformation. We evalu-
ate how the bi-directional mapping strategy affects the effec-
tiveness of our model. Taking German sentence embeddings
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Example German Sentence English Sentences ranked by similarity score

Tatoeba
(high-quality)

Ich finde keine
Worte.

(1) I am at a loss for words. (0.852)

(2) I just don’t know what to say. (0.847)
(3) Tom has turned twenty. (0.836)

Europarl
(high-quality)

Notwendig ist die
Interoperabilität der
Set-Top-Boxen.

(1) Set top boxes must be compatible with each other. (0.895)
(2) People are showing great solidarity at local and regional level and help is
being mobilised at national level. (0.858)
(3) I support the proposed deadline for the Commission being 30 September in
proposed amendment. (0.846)

Europarl
(medium-quality)

Zunächst ist es zu
begrüßen, dass der
Universaldienst zwar
einfache, aber keine
breitbandigen
Internetanschlüsse
umfassen soll.

(1) In the past, the international community has done itself credit by prohibiting
anti-personnel mines on these grounds. It should now, by the same token, ban
weapons containing depleted uranium. (0.866)
(2) This is because it provides clarity and therefore does not expose public ser-
vices to the attacks which would otherwise have been levelled at them. (0.863)
(3) That does not mean, however, that we do not still see much room for im-
provement, as other speakers have pointed out as well, and some of our wishes
have not been fulfilled. (0.854)
(4) Firstly, the fact that the universal service is to include simple but not
broadband Internet connections is to be welcomed. (0.852)

Europarl
(low-quality)

Sie teilt die
Auffassung, dass mit
dem Universaldienst
nicht nur die
geographische
Abdeckung
gewährleistet werden
soll.

(1) At the European Council in Gothenburg at the end of this week, the Swedish
Presidency will point out the need to discuss these issues within the European
Union in order to develop a concrete basis allowing powerful action by the Eu-
ropean Union on these vital issues. (0.862)
(2) It could have expressed a lot more in the way of hopes for the future. (0.860)
(3) So what does this railway package contain? (0.859)
· · ·
(6) The Commission shares the view that universal service is not just about
getting geographical coverage right. (0.814)

Table 4: Examples of English sentences as dom neighbors for German sentences in Europarl and Tatoeba. (parallel ratio=10%)

Datasets Tatoeba Europarl
Corpus deu→spa spa→deu deu→spa spa→deu
Metrics Acc P@5 Acc P@5 Acc P@5 Acc P@5
(Baseline
A)

8.2 11.5 9.0 15.4 7.5 16.4 8.3 16.1

(Baseline
B)

12.3 26.1 13.5 27.2 8.1 14.9 9.5 19.5

(Baseline
C)

20.8 39.1 17.4 37.2 21.1 34.2 20.9 35.4

(Baseline
D)

15.1 27.5 15.6 27.9 20.9 31.6 21.4 33.1

(Baseline
E)

19.2 29.4 18.7 30.4 19.3 34.6 20.1 32.4

seq2seq
NMT

5.2 6.9 5.6 7.0 4.1 5.9 5.0 6.4

fairseq
NMT

13.3 26.2 15.1 29.0 22.8 31.8 23.4 27.9

ABSent 27.3 49.2 26.6 55.4 30.8 45.3 28.6 39.8

Table 5: Results of multilingual sentence embedding map-
ping experiment in terms of accuracy %) and precision@5
(%). The best-performing method is highlighted in bold.
(Baseline A: Mikolov, Le, and Sutskever (2013), Baseline
B: Dinu, Lazaridou, and Baroni (2014), Baseline C: Smith
et al. (2017), Baseline D: Lample et al. (2018), Baseline E:
Schwenk and Douze (2017))

as source and English sentence embedding as the target, we
train our model to map the German sentence embeddings to
the corresponding English vector space and align the sen-
tence with the same meaning. We obtain the unidirectional
transformation model from German to English, which we
refer to as uni-Sent. Then we repeat the same process for En-
glish to German, Spanish to English, and English to Spanish.
Thus, this model only acquires the ability to conduct a uni-

directional transformation between two languages, since the
bi-directional discriminator Ddom is omitted. In this case,
we only learn the generator GX to map the source to the
target domain. The goal is to optimize

Lreal = Ex,y[log(Dreal(x,y))]

+ Ex[log(1−Dreal(x, G(x)))]

G∗
X = min

GX

max
Dreal

(Lreal + Lmis + λLd)
(7)

where Lmis and Ld stay the same as in Equations 3 and 1.
The results in Figure 3 shows that the effectiveness of the
method is improved substantially by the introduction of bidi-
rectional learning. This demonstrates that the bidirectional
training method not only enables a simultaneous transfor-
mation between the two language sentence embeddings, but
also delivers better results. One possible reason is the ef-
fectiveness of Ddom, which can regularize the directional
uncertainty among two language sentence embedding trans-
formations. A unidirectional transformation does not bear
this benefit.

Influence of Ratio of Parallel Training Corpus. Next,
we study how various ratios of available parallel data affect
the effectiveness of our model. Apart from using 20% of par-
allel data in the training corpus, we also evaluate using 10%,
40%, and 100% as ratios of parallel training sentence pairs.
We randomly sample the mismatch pairs to be of equal size
as the respective parallel data. The results are also depicted
in Figure 3. We observe that the precision improves as the
ratio of parallel labelled sentence increases.
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Influence of Mismatch Loss. Recall that our ABSent
method incorporates a custom mismatch loss in Equation
3. This experiment aims to study how this loss function in-
fluences the effectiveness of our proposed models. For sim-
plicity, we refer to a model X without the mismatch loss as
X\mis, where X can be either uni-Sent or ABSent. The results
in Table 2 demonstrate the effectiveness of the mismatch
strategy of introducing false pairs. We take 10% of parallel
training pairs, leaving other parameters as in the main exper-
iments. Generally, bringing in mismatch pairs into the train-
ing improves the effectiveness of both our ABSent model
and the uni-Sent version.

Influence of Weighting strategy For the input sentence
embeddings of ABSent, we take the average of word embed-
dings and get normalized to obtain sentence representations
for the Tatoeba corpus. For the Europarl corpus, we define
the sentence embeddings to be the normalized sum over the
word vectors multiplied with TF-IDF scores for a weighted
average. As a comparison experiment, we swap the weight-
ing stragy in As while keeping other parameters as for AB-
Sent, i.e., we impose TF-IDF weighted vectors for Tatoeba,
while using vanilla word averages for Europarl.

The effectiveness of As is shown in Table 2. Choosing an
appropriate weighting strategy boosts the experimental re-
sults. Since TF-IDF weights words in accordance with their
assumed importance, for the Europarl corpus, the 2σ vol-
ume of sentence lengths falls between 35 and 60, while
for the Tatoeba corpus it is between 8 and 16. In such
circumstances, words that appear more frequently in long
sentences, especially function words such as ’a’, ’the’, etc.
ought to have a lower weight, while infrequent ones ought
to have a higher weight. For short sentences, it may make
sense to even consider words with higher frequency, so as
to not neglect their semantic contribution to the sentence.
Thus, simple averaging works better than TF-IDF weighted
averaging for the Tatoeba corpus.

First Aligning Words. As we can see in Table 2, the ac-
curacy drops quite notably compared to the regular ABSent
approach if we first align words and then create the sentence
vectors. The only difference between Aw and ABSent is that
we first align individual word vectors using our method and
then average them (TF-IDF weighted averaging for the Eu-
roparl corpus) to generate sentence embeddings in the target
vector space. For this comparison, we take 10% of parallel
word pairs for training. We conjecture that this approach is
less able to account for variation in the meaning of a word
across different sentences.

Qualitative Analysis. We additionally provide represen-
tative examples of nearest neighbours, showcasing typical
high-quality, medium quality, as well as low-quality trans-
formation results for English–German in Table 4. The lower
quality results in some cases highlight the limits of average
word vector based embeddings, as they disregard word order
and may lose semantically salient signals. This problem can

be overcome by applying our method using more semanti-
cally sophisticated methods to obtain sentence embeddings.
Although many such methods require extensive training and
in some cases also rich supervision, the advantage of our
model is that we can rely on just limited parallel data to
project a resource-poor language into the embedding space
of a resource-rich language such as English for which such
sentence embedding methods are readily available.

4.4 Mapping of Low-Resource Languages

In order to better evaluate the effectiveness and robustness of
our model for diverse languages, we conduct additional ex-
periments on low-resource languages. For comparison, we
consider the state-of-the-art massively multilingual neural
MT model LASER 3 (Artetxe and Schwenk 2018). We eval-
uate the mapping of low-resource languages with English on
the test sets provided by them. However, as they only pro-
vide test sets but not training sets, our model is trained on
comparably sized training data obtained via random sam-
pling from Tatoeba, OpenSubtitles2018, Global Voices.4 We
adopt equivalent preprocessing steps such as filtering certain
special characters and eliminating duplicate pairs.

The results in Table 3 confirm that simple word averages
can be aligned with a broadly similar level of accuracy. This
is obtained although our method does not have access to
word order information and is not trained on the rich mas-
sively multilingual data used to train LASER, but only on
the respective single language pairs.

4.5 Zero-Shot Multilingual Mapping

We also evaluate multilingual training, which entails map-
ping two source languages (Spanish and German) both to
the same target language space (English) without any paral-
lel data connecting the two source languages.

From both Tatoeba and Europarl, we each take 44,280
Spanish ←→ English sentence pairs and 44,280 German
←→ English sentence pairs. To train the baselines, we also
collect the same number of German ←→ Spanish pairs for
which the bilingual baselines make use of dedicated su-
pervision, while our method does not receive any pairings
at all for this language pair. Additionally, our proposed
method only utilizes 20% of parallel training data and an
equal amount of non-parallel data for training, while all
the baselines take 100% training data with parallel labels.
During the training process, we alternate over mini-batches
with Spanish–English pairings and German–English pair-
ings. The number of test queries is 490 for all experiments.

The results are reported in Table 5. Though seq-to-seq
models can learn full-fledged neural translation models, they
do not fare particularly well in resource-constrained scenar-
ios with limited training data. Particularly, even with a paral-
lel sentence pair percentage of just 20%, our model outper-
forms many baselines that utilize the total amount of train-
ing data. Moreover, retrieval accuracies between two source
languages German and Spanish obtained by our model are

3https://github.com/facebookresearch/LASER
4Available from http://opus.nlpl.eu/. For Irish, we incorporate

some additional training data from the EUbookshop dataset
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very competitive with baselines receiving supervision for
that language pair. Note that in our method, we do not pro-
vide any direct pairwise mapping. This proves the effective-
ness of our zero-shot Multilingual mapping.

5 Conclusion

Our study shows that despite their simplicity, word vector
averages can serve as reasonably strong cross-lingually pro-
jectable sentence representations. To this end, we have pre-
sented the ABSent model to align such representations via
an adversarial approach that requires only small amounts
of parallel data. We obtain competitive results, although our
method does not obtain any information about the word or-
der in the input sentences. Our results in a series of retrieval
experiments on both short and long sentences outperform
previous work by a substantial margin.
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