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patrick.schwab@hest.ethz.ch

Abstract

Estimating what would be an individual’s potential response
to varying levels of exposure to a treatment is of high practi-
cal relevance for several important fields, such as healthcare,
economics and public policy. However, existing methods for
learning to estimate counterfactual outcomes from observa-
tional data are either focused on estimating average dose-
response curves, or limited to settings with only two treat-
ments that do not have an associated dosage parameter. Here,
we present a novel machine-learning approach towards learn-
ing counterfactual representations for estimating individual
dose-response curves for any number of treatments with con-
tinuous dosage parameters with neural networks. Building
on the established potential outcomes framework, we intro-
duce performance metrics, model selection criteria, model ar-
chitectures, and open benchmarks for estimating individual
dose-response curves. Our experiments show that the meth-
ods developed in this work set a new state-of-the-art in esti-
mating individual dose-response.

Introduction

Estimating dose-response curves from observational data is
an important problem in many domains. In medicine, for ex-
ample, we would be interested in using data of people that
have been treated in the past to predict which treatments
and associated dosages would lead to better outcomes for
new patients (Imbens 2000). This question is, at its core,
a counterfactual one, i.e. we are interested in predicting
what would have happened if we were to give a patient
a specific treatment at a specific dosage in a given situ-
ation. Answering such counterfactual questions is a chal-
lenging task that requires either further assumptions about
the underlying data-generating process or prospective inter-
ventional experiments, such as randomised controlled tri-
als (RCTs) (Stone 1993; Pearl 2009; Peters, Janzing, and
Schölkopf 2017). However, performing prospective exper-
iments is expensive, time-consuming, and, in many cases,
ethically not justifiable (Schafer 1982). Two aspects make
estimating counterfactual outcomes from observational data
alone difficult (Yoon, Jordon, and van der Schaar 2018;
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Schwab, Linhardt, and Karlen 2018): Firstly, we only ob-
serve the factual outcome and never the counterfactual out-
comes that would potentially have happened had we cho-
sen a different treatment option. In medicine, for example,
we only observe the outcome of giving a patient a specific
treatment at a specific dosage, but we never observe what
would have happened if the patient was instead given a po-
tential alternative treatment or a different dosage of the same
treatment. Secondly, treatments are typically not assigned at
random in observational data. In the medical setting, physi-
cians take a range of factors, such as the patient’s expected
response to the treatment, into account when choosing a
treatment option. Due to this treatment assignment bias, the
treated population may differ significantly from the general
population. A supervised model naı̈vely trained to minimise
the factual error would overfit to the properties of the treated
group, and therefore not generalise to the entire population.

To address these problems, we introduce a novel method-
ology for training neural networks for counterfactual infer-
ence that extends to any number of treatments with contin-
uous dosage parameters. In order to control for the biased
assignment of treatments in observational data, we combine
our method with a variety of regularisation schemes orig-
inally developed for the discrete treatment setting, such as
distribution matching (Johansson, Shalit, and Sontag 2016;
Shalit, Johansson, and Sontag 2017), propensity dropout
(PD) (Alaa, Weisz, and van der Schaar 2017), and match-
ing on balancing scores (Rosenbaum and Rubin 1983; Ho et
al. 2007; Schwab, Linhardt, and Karlen 2018). In addition,
we devise performance metrics, model selection criteria and
open benchmarks for estimating individual dose-response
curves. Our experiments demonstrate that the methods de-
veloped in this work set a new state-of-the-art in inferring
individual dose-response curves. The source code for this
work is available at https://github.com/d909b/drnet.

Contributions. We present the following contributions:
• We introduce a novel methodology for training neural net-

works for counterfactual inference that, in contrast to ex-
isting methods, is suitable for estimating counterfactual
outcomes for any number of treatment options with asso-
ciated exposure parameters.
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• We develop performance metrics, model selection crite-
ria, model architectures, and open benchmarks for esti-
mating individual dose-response curves.

• We extend state-of-the-art methods for counterfactual in-
ference for two non-parametric treatment options to the
multiple parametric treatment options setting.

• We perform extensive experiments that show that our
method sets a new state-of-the-art in inferring individual
dose-response curves from observational data across sev-
eral challenging datasets.

Related Work

Background. Causal analysis of treatment effects with
rigorous experiments is, in many domains, an essential tool
for validating interventions. In medicine, prospective experi-
ments, such as RCTs, are the de facto gold standard to evalu-
ate whether a given treatment is efficacious in treating a spe-
cific indication across a population (Carpenter 2014; Both-
well et al. 2016). However, performing prospective exper-
iments is expensive, time-consuming, and often not possi-
ble for ethical reasons (Schafer 1982). Historically, there has
therefore been considerable interest in developing method-
ologies for performing causal inference using readily avail-
able observational data (Angrist, Imbens, and Rubin 1996;
Rosenbaum and Rubin 1983; Robins, Hernan, and Brum-
back 2000; Pearl 2009; Hernán and Robins 2016). The naı̈ve
approach of training supervised models to minimise the ob-
served factual error is in general not a suitable choice for
counterfactual inference tasks due to treatment assignment
bias and the inability to observe counterfactual outcomes.
To address the shortcomings of unsupervised and supervised
learning in this setting, several adaptations to established
machine-learning methods that aim to enable the estimation
of counterfactual outcomes from observational data have re-
cently been proposed (Johansson, Shalit, and Sontag 2016;
Shalit, Johansson, and Sontag 2017; Wager and Athey 2017;
Alaa and van der Schaar 2017; Alaa, Weisz, and van der
Schaar 2017; Louizos et al. 2017; Yoon, Jordon, and van der
Schaar 2018; Schwab, Linhardt, and Karlen 2018). In this
work, we build on several of these advances to develop a
machine-learning approach for estimating individual dose-
response with neural networks.

Estimating Individual Treatment Effects (ITE). 1

Matching methods (Ho et al. 2007) are among the most
widely used approaches to causal inference from observa-
tional data. Matching methods estimate the counterfactual
outcome of a sample X to a treatment t using the observed
factual outcome of its nearest neighbours that have received
t. Propensity score matching (PSM) (Rosenbaum and Rubin
1983) combats the curse of dimensionality of matching di-
rectly on the covariates X by instead matching on the scalar
probability p(t|X) of receiving a treatment t given the co-
variates X . Another category of approaches uses adjusted
regression models that receive both the covariates X and the
treatment t as inputs. The simplest such model is Ordinary

1The ITE is sometimes also referred to as the conditional aver-
age treatment effect (CATE).

Least Squares (OLS), which may use either one model for
all treatments, or a separate model for each treatment (Kallus
2017). More complex models based on neural networks, like
Treatment Agnostic Representation Networks (TARNETs),
may be used to build non-linear regression models (Shalit,
Johansson, and Sontag 2017). Estimators that combine a
form of adjusted regression with a model for the exposure
in a manner that makes them robust to misspecification of
either are referred to as doubly robust (Funk et al. 2011).
In addition to OLS and neural networks, tree-based estima-
tors, such as Bayesian Additive Regression Trees (BART)
(Chipman et al. 2010; Chipman and McCulloch 2016) and
Causal Forests (CF) (Wager and Athey 2017), and distribu-
tion modelling methods, such as Causal Multi-task Gaussian
Processes (CMGP) (Alaa and van der Schaar 2017), Causal
Effect Variational Autoencoders (CEVAEs) (Louizos et al.
2017), Generative Adversarial Nets for inference of Indi-
vidualised Treatment Effects (GANITE) (Yoon, Jordon, and
van der Schaar 2018), and deconfounders (Wang and Blei
2019) have also been proposed for ITE estimation.2 Other
approaches, such as balancing neural networks (BNNs) (Jo-
hansson, Shalit, and Sontag 2016) and counterfactual regres-
sion networks (CFRNET) (Shalit, Johansson, and Sontag
2017), attempt to achieve balanced covariate distributions
across treatment groups by explicitly minimising the em-
pirical discrepancy distance between treatment groups us-
ing metrics such as the Wasserstein distance (Cuturi 2013).
Most of the works mentioned above focus on the simplest
setting with two available treatment options without associ-
ated dosage parameters. A notable exception is the gener-
alised propensity score (GPS) (Imbens 2000) that extends
the propensity score to treatments with continuous dosages.
Beyond ITE estimation, causal modeling has, for exam-
ple, also been used to learn independent causal mecha-
nisms (Parascandolo et al. 2018), and to explain machine
learning models (Schwab, Miladinovic, and Karlen 2019;
Schwab and Karlen 2019).

In contrast to existing methods, we present the first
machine-learning approach to learn to estimate individual
dose-response curves for multiple available treatments with
a continuous dosage parameter from observational data with
neural networks. We additionally extend several known reg-
ularisation schemes for counterfactual inference to address
the treatment assignment bias in observational data. To facil-
itate future research in this important area, we introduce per-
formance metrics, model selection criteria, and open bench-
marks. We believe this work could be particularly impor-
tant for applications in precision medicine, where the cur-
rent state-of-the-art of estimating the average dose response
across the entire population does not take into account in-
dividual differences, even though large differences in dose-
response between individuals are well-documented for many
diseases (Oldenhof et al. 1988; Campbell et al. 2007).

2See (Knaus, Lechner, and Strittmatter 2018) and (Schwab,
Linhardt, and Karlen 2018) for empirical comparisons of large-
numbers of machine-learning methods for ITE estimation for two
and more available treatment options.
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Methodology

Problem Statement. We consider a setting in which we
are given N observed samples X with p pre-treatment co-
variates xi and i ∈ [0 . . p− 1]. For each sample, the poten-
tial outcomes yn,t(st) are the response of the nth sample to
a treatment t out of the set of k available treatment options
T = {0, ..., k − 1} applied at a dosage st ∈ {st ∈ R, at >
0 | at ≤ s ≤ bt}, where at and bt are the minimum and max-
imum dosage for treatment t, respectively. The set of treat-
ments T can have two or more available treatment options.
As training data, we receive factual samples X and their ob-
served outcomes yn,f (sf ) after applying a specific observed
treatment f at dosage sf . Using the training data with factual
outcomes, we wish to train a predictive model to produce
accurate estimates ŷt(n, s) of the potential outcomes across
the entire range of s for all available treatment options t. We
refer to the range of potential outcomes yn,t(s) across s as
the individual dose-response curve of the nth sample. This
setting is a direct extension of the Rubin-Neyman potential
outcomes framework (Rubin 2005).

Assumptions. Following (Imbens 2000; Lechner 2001),
we assume unconfoundedness, which consists of three key
parts: (1) Conditional Independence Assumption: The as-
signment to treatment t is independent of the outcome yt
given the pre-treatment covariates X , (2) Common Support
Assumption: For all values of X , it must be possible to ob-
serve all treatment options with a probability greater than 0,
and (3) Stable Unit Treatment Value Assumption: The ob-
served outcome of any one unit must be unaffected by the
assignments of treatments to other units. In addition, we as-
sume smoothness, i.e. that units with similar covariates xi

and dosages st have similar outcomes yt, both for model
training and selection.

Metrics. To enable a meaningful comparison of models
in the presented setting, we use metrics that cover several
desirable aspects of models trained for estimating individ-
ual dose-response curves. Our proposed metrics respectively
aim to measure a predictive model’s ability (1) to recover the
dose-response curve across the entire range of dosage val-
ues, (2) to determine the optimal dosage point for each treat-
ment, and (3) to deduce the optimal treatment policy overall,
including selection of the right treatment and dosage point,
for each individual case. To measure to what degree a model
covers the entire range of individual dose-response curves,
we use the mean integrated square error3 (MISE) between
the true dose-response y and the predicted dose-response ŷ
as estimated by the model over N samples, all treatments T ,
and the entire range [at, bt] of dosages s.

MISE =
1

N

1

|T |
∑
t∈T

N∑
n=1

∫ bt

s=at

(
yn,t(s)− ŷn,t(s)

)2

ds

(1)

To further measure a model’s ability to determine the opti-
mal dosage point for each individual case, we calculate the

3A normalised version of MISE has been used in (Silva 2016).

mean dosage policy error (DPE). The mean dosage policy
error is the mean squared error in outcome y associated with
using the estimated optimal dosage point ŝ∗t according to the
predictive model to determine the true optimal dosage point
s∗t over N samples and all treatments T .

DPE =
1

N

1

|T |
∑
t∈T

N∑
n=1

(
yn,t(s

∗
t )− yn,t(ŝ

∗
t )
)2

(2)

where s∗t and ŝ∗t are the optimal dosage point according
to the true dose-response curve and the estimated dose-
response curve, respectively.

s∗t = arg max
s∈[at,bt]

yn,t(s) (3)

ŝ∗t = arg max
s∈[at,bt]

ŷn,t(s) (4)

Finally, the policy error (PE) measures a model’s ability to
determine the optimal treatment policy for individual cases,
i.e. how much worse the outcome would be when using the
estimated best optimal treatment option as opposed to the
true optimal treatment option and dosage.

PE =
1

N

N∑
n=1

(
yn,t∗(s

∗
t∗)− yn,t̂∗(ŝ

∗
t̂∗)

)2

(5)

where
t∗ = arg max

t∈T
yn,t(s

∗
t ) (6)

t̂∗ = arg max
t∈T

ŷn,t(ŝ
∗
t ) (7)

are the optimal treatment option according to the ground
truth y and the predictive model, respectively. Considering
the DPE and PE alongside the MISE is important to com-
prehensively evaluate models for counterfactual inference.
For example, a model that accurately recovers dose response
curves outside the regions containing the optimal response
would achieve a respectable MISE but would not be a good
model for determining the treatment and dosage choices that
lead to the best outcome for a given unit. By considering
multiple metrics, we can ensure that predictive models are
capable both in recovering the entire dose-response as well
as in selecting the best treatment and dosage choices. We
note that, in general, we can not calculate the MISE, DPE or
PE without knowledge of the outcome-generating process,
since the true dose-response function yn,t(s) is unknown.

Model Architecture. Model structure plays an important
role in learning representations for counterfactual inference
with neural networks (Shalit, Johansson, and Sontag 2017;
Schwab, Linhardt, and Karlen 2018; Alaa and Schaar 2018).
A particularly challenging aspect of training neural net-
works for counterfactual inference is that the influence of
the treatment indicator variable t may be lost in high-
dimensional hidden representations (Shalit, Johansson, and
Sontag 2017). To address this problem for the setting of two
available treatments without dosage parameters, (Shalit, Jo-
hansson, and Sontag 2017) proposed the TARNET architec-
ture that uses a shared base network and separate head net-
works for both treatment options. In TARNETs, the head
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networks are only trained on samples that received the re-
spective treatment. (Schwab, Linhardt, and Karlen 2018) ex-
tended the TARNET architecture to the multiple treatment
setting by using k separate head networks, one for each treat-
ment option. In the setting with multiple treatment options
with associated dosage parameters, this problem is further
compounded because we must maintain not only the influ-
ence of t on the hidden representations throughout the net-
work, but also the influence of the continuous dosage pa-
rameter s. To ensure the influence of both t and s on hidden
representations, we propose a hierarchical architecture for
multiple treatments called dose response network (DRNet,
Figure 1). DRNets ensure that the dosage parameter s main-
tains its influence by assigning a head to each of E ∈ N

equally-sized dosage strata that subdivide the range of po-
tential dosage parameters [at, bt]. The hyperparameter E de-
fines the trade-off between computational performance and
the resolution (b−a)

E at which the range of dosage values is
partitioned. To further attenuate the influence of the dosage
parameter s within the head layers, we additionally repeat-
edly append s to each hidden layer in the head layers. We
motivate the proposed hierarchical structure with the effec-
tiveness of the ”regress and compare” approach to counter-
factual inference (Kallus 2017), where one builds a sepa-
rate estimator for each available treatment option. Separate
models for each treatment option suffer from data-sparsity,
since only units that received each respective treatment can
be used to train a per-treatment model and there may not be
a large number of samples available for each treatment. DR-
Nets alleviate the issue of data-sparsity by enabling infor-
mation to be shared both across the entire range of dosages
through the treatment layers and across treatments through
the base layers.

Model Selection. Given multiple models, it is not trivial to
decide which model would perform better at counterfactual
tasks, since we in general do not have access to the true dose-
response to calculate error metrics like the ones given above.
We therefore use a nearest neighbour approximation of the
MISE to perform model selection using held-out factual data
that has not been used for training. We calculate the nearest
neighbour approximation NN-MISE of the MISE using:

NN-MISE =
1

NT

T∑
t=1

N∑
n=1

∫ bt

s=at

(yNN(n),t(s)− ŷn,t(s))
2ds

(8)
where we substitute the true dose-response yn,t of the nth
sample with the outcome yNN(n),t of an observed factual
nearest neighbour of the nth sample at a dosage point s from
the training set. Using the nearest neighbour approximation
of the MISE, we are able to perform model selection without
access to the true counterfactual outcomes y. Among oth-
ers, nearest neighbour methods have also been proposed for
model selection in the setting with two available treatments
without dosages (Schuler et al. 2018).

Regularisation Schemes. DRNets can be combined with
regularisation schemes developed to further address treat-

ment assignment bias. To determine the utility of various
regularisation schemes, we evaluated DRNets using dis-
tribution matching (Shalit, Johansson, and Sontag 2017),
propensity dropout (Alaa, Weisz, and van der Schaar 2017),
matching on the entire dataset (Ho et al. 2007), and on
the batch level (Schwab, Linhardt, and Karlen 2018). We
naı̈vely extended these regularisation schemes since neither
of these methods were originally developed for the dose-
response setting (Appendix A).

Experiments

Our experiments aimed to answer the following questions:
1 How does the performance of our proposed approach

compare to state-of-the-art methods for estimating indi-
vidual dose-response?

2 How do varying choices of E influence counterfactual in-
ference performance?

3 How does increasing treatment assignment bias affect the
performance of dose-response estimators?

Datasets. Using real-world data, we performed experi-
ments on three semi-synthetic datasets with two and more
treatment options to gain a better understanding of the em-
pirical properties of our proposed approach. To cover a
broad range of settings, we chose datasets with different out-
come and treatment assignment functions, and varying num-
bers of samples, features and treatments (Table 1). All three
datasets were randomly split into training (63%), validation
(27%) and test sets (10%).

News. The News benchmark consisted of 5000 randomly
sampled news articles from the NY Times corpus4 and was
originally introduced as a benchmark for counterfactual in-
ference in the setting with two treatment options without an
associated dosage parameter (Johansson, Shalit, and Sontag
2016). We extended the original dataset specification (Jo-
hansson, Shalit, and Sontag 2016; Schwab, Linhardt, and
Karlen 2018) to enable the simulation of any number of
treatments with associated dosage parameters. The samples
X were news articles that consist of word counts xi ∈ N,
outcomes ys,t ∈ R that represent the reader’s opinion of the
news item, and a normalised dosage parameter st ∈ (0, 1]
that represents the viewer’s reading time. There was a vari-
able number of available treatment options t that corre-
sponded to various devices that could be used to view the
News items, e.g. smartphone, tablet, desktop, television or
others (Johansson, Shalit, and Sontag 2016). We trained a
topic model on the entire NY Times corpus to model that
consumers prefer to read certain media items on specific
viewing devices. We defined z(X) as the topic distribution
of news item X , and randomly picked k topic space cen-
troids zt and 2k topic space centroids zst,i with i ∈ 0, 1
as prototypical news items. We assigned a random Gaus-
sian outcome distribution with mean μ ∼ N (0.45, 0.15)
and standard deviation σ ∼ N (0.1, 0.05) to each centroid.
For each sample, we drew ideal potential outcomes from

4https://archive.ics.uci.edu/ml/datasets/bag+of+words
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Figure 1: The dose response network (DRNet) architecture with shared base layers, k intermediary treatment layers, and k ∗E
heads for the multiple treatment setting with an associated dosage parameter s. The shared base layers are trained on all samples,
and the treatment layers are only trained on samples from their respective treatment category. Each treatment layer is further
subdivided into E head layers (only one set of E = 3 head layers for treatment t = 0 is shown above). Each head layer is
assigned a dosage stratum that subdivides the range of potential dosages [at, bt] into E partitions of equal width (b − a)/E.
The head layers each predict outcomes ŷt(s) for a range of values of the dosage parameter s, and are only trained on samples
that fall within their respective dosage stratum. The hierarchical structure of DRNets enables them to share common hidden
representations across all samples (base layers), treatment options (treatment layers), and dosage strata (head layers) while
maintaining the influence of both t and s on the hidden layers.

that Gaussian outcome distribution ỹt ∼ N (μt, σt) + ε
with ε ∼ N (0, 0.15). The dose response ỹs was drawn
from a distance-weighted mixture of two Gaussians ỹs ∼
d0N (μst,0, σst,0)+d1N (μst,1, σst,1) using topic space dis-
tances d = softmax(D(z(X), zst,i)) and the Euclidean dis-
tance as distance metric D. We assigned the observed treat-
ment t using t|x ∼ Bern(softmax(κỹtỹs)) with a treat-
ment assignment bias coefficient κ and an exponentially
distributed observed dosage st using st ∼ Exp(β) with
β = 0.25. The true potential outcomes ys,t = Cỹtỹs were
the product of ỹt and ỹs scaled by a coefficient C = 50.
We used four different variants of this dataset with k = 2,
4, 8, and 16 viewing devices, and κ = 10, 10, 10, and 7,
respectively. Higher values of κ indicate a higher expected
treatment assignment bias depending on ỹtỹs, with κ = 0
indicating no assignment bias.

Mechanical Ventilation in the Intensive Care Unit
(MVICU). The MVICU benchmark models patients’ re-
sponses to different configurations of mechanical ventilation
in the intensive care unit. The data was sourced from the
publicly available MIMIC III database (Saeed et al. 2011).
The samples X consisted of the last observed measurements
xi of various biosignals, including respiratory, cardiac and
ventilation signals. The outcomes were arterial blood gas
readings of the ratio of arterial oxygen partial pressure to
fractional inspired oxygen PaO2/F iO2 which, at values
lower than 300, are used as one of the clinical criteria for
the diagnosis Acute Respiratory Distress Syndrome (ARDS)
(Ferguson et al. 2012). We modelled a mechanical venti-
lator with k = 3 adjustable treatment parameters: (1) the
fraction of inspired oxygen, (2) the positive end-expiratory
pressure in the lungs, and (3) the tidal volume. To model
the outcomes, we use the same procedure as for the News
benchmark with a Gaussian outcome function and a mix-
ture of Gaussian dose-response function, with the exception
that we did not make use of topic models and instead per-

formed the similarity comparisons D in covariate space. We
used a treatment assignment bias κ = 10 and a scaling coef-
ficient C = 150. Treatment dosages were drawn according
to st ∼ N (μdose,t, 0.1), where the distribution means were
defined as μdose = (0.6, 0.65, 0.4) for each treatment.

The Cancer Genomic Atlas (TCGA). The TCGA project
collected gene expression data from various types of can-
cers in 9659 individuals (Weinstein et al. 2013). There were
k = 3 available clinical treatment options: (1) medication,
(2) chemotherapy, and (3) surgery. We used a synthetic out-
come function that simulated the risk of cancer recurrence
after receiving either of the treatment options based on the
real-world gene expression data. We standardised the gene
expression data using the mean and standard deviations of
gene expression at each gene locus for normal tissue in the
training set. To model the outcomes, we followed the same
approach as in the MVICU benchmark with similarity com-
parisons done in covariate space using the cosine similarity
as distance metric D, and parameterised with κ = 10 and
C = 50. Treatment dosages in the TCGA benchmark were
drawn according to st ∼ N (0.65, 0.1).

Models. We evaluated DRNet, ablations, baselines, and
all relevant state-of-the-art methods: k-nearest neighbours

Table 1: Comparison of the benchmark datasets used in our
experiments. We evaluate on three semi-synthetic datasets
with varying numbers of treatments and samples.

Dataset # Samples # Features # Treatments

News 5000 2870 2/4/8/16
MVICU 8040 49 3
TCGA 9659 20531 3
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Figure 2: Analysis of the effect of choosing varying numbers
of dosage strata E (x-axis) on MISE (red), DPE (blue), PE
(orange) and Time needed for training and evaluation (black)
as calculated on the MVICU benchmark. Metrics were nor-
malised to the range [0, 1]. All other hyperparameters be-
sides E were held equal.

(kNN) (Ho et al. 2007), BART (Chipman et al. 2010;
Chipman and McCulloch 2016), CF (Wager and Athey
2017), GANITE (Yoon, Jordon, and van der Schaar 2018),
TARNET (Shalit, Johansson, and Sontag 2017), and GPS
(Imbens 2000) using the ”causaldrf” package (Galagate
2016). We evaluated which regularisation strategy for learn-
ing counterfactual representations is most effective by train-
ing DRNets using a Wasserstein regulariser between treat-
ment group distributions (+ Wasserstein) (Shalit, Johansson,
and Sontag 2017), PD (+ PD) (Alaa, Weisz, and van der
Schaar 2017), batch matching (+ PM) (Schwab, Linhardt,
and Karlen 2018), and matching the entire training set as a
preprocessing step (Ho et al. 2011) using the PM algorithm
(+ PSMPM) (Schwab, Linhardt, and Karlen 2018). To deter-
mine whether the DRNet architecture is more effective than
its alternatives at learning representations for counterfactual
inference in the presented setting, we also evaluated (1) a
multi-layer perceptron (MLP) that received the treatment in-
dex t and dosage s as additional inputs, and (2) a TARNET
for multiple treatments that received the dosage s as an ex-
tra input (TARNET) (Johansson, Shalit, and Sontag 2016;
Schwab, Linhardt, and Karlen 2018) with all other hyperpa-
rameters beside the architecture held equal. As a final ab-
lation of DRNet, we tested whether appending the dosage
parameter s to each hidden layer in the head networks is ef-
fective by also training DRNets that only receive the dosage
parameter once in the first hidden layer of the head network
(- Repeat). We naı̈vely extended CF, GANITE and BART by
adding the dosage as an additional input covariate, because
they were not designed for treatments with dosages.

Hyperparameters. To ensure a fair comparison of the
tested models, we took a systematic approach to hyperpa-
rameter search. Each model was given exactly the same
number of hyperparameter optimisation runs with hyperpa-
rameters chosen at random from predefined hyperparame-
ter ranges (Appendix B). We used 5 hyperparameter opti-
misation runs for each model on TCGA and 10 on all other
benchmarks. Furthermore, we used the same random seed

for each model, i.e. all models were evaluated on exactly the
same sets of hyperparameter configurations. After comput-
ing the hyperparameter runs, we chose the best model based
on the validation set NN-MISE. This setup ensures that each
model received the same degree of hyperparameter optimi-
sation. For all DRNets and ablations, we used E = 5 dosage
strata with the exception of those presented in Figure 2.

Metrics. For each dataset and model, we calculated the√
MISE,

√
DPE, and

√
PE. We used Romberg integration

with 64 equally spaced samples from yn,t and ŷn,t to com-
pute the inner integral over the range of dosage parame-
ters necessary for the MISE metric. To compute the opti-
mal dosage points and treatment options in the DPE and PE,
we used Sequential Least Squares Programming (SLSQP) to
determine the respective maxima of yn,t(s) and ŷn,t(s).

Results and Discussion

Counterfactual Inference. In order to evaluate the rel-
ative performances of the various methods across a wide
range of settings, we compared the MISE of the listed
models for counterfactual inference on the News-2/4/8/16,
MVICU and TCGA benchmarks (Table 2; other metrics in
Appendix D). Across the benchmarks, we found that DR-
Nets outperformed all existing state-of-the-art methods in
terms of MISE. We also found that DRNets that used ad-
ditional regularisation strategies outperformed vanilla DR-
Nets on News-2, News-4, News-8 and News-16. However,
on MVICU and TCGA, DRNets that used regularisation per-
formed similarly as standard DRNets. Where regularisation
was effective, Wasserstein regularisation between treatment
groups (+ Wasserstein) and batch matching (+ PM) were
generally slightly more effective than PSMPM and PD. In ad-
dition, not repeating the dosage parameter for each layer in
the per-dosage range heads of a DRNet (- Repeat) performed
worse than appending the dosage parameter on News-2,
News-4 and News-8. Lastly, the results showed that DRNet
improved upon both TARNET and the MLP baseline by a
large margin across all datasets - demonstrating that the hi-
erarchical dosage subdivision introduced by DRNets is ef-
fective, and that an optimised model structure is paramount
for learning representations for counterfactual inference.
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Figure 3: Comparison of DRNet (red), TARNET (blue),
MLP (yellow) and GPS (purple) in terms of their

√
DPE

(bottom) for varying levels of treatment assignment bias κ
(x-axis) on News-2. DRNet performs better than other meth-
ods across the entire range of treatment assignment bias val-
ues, and is more robust to increasing levels of κ.
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Table 2: Comparison of methods for counterfactual inference with multiple parametric treatments on News-2/4/8/16, MVICU
and TCGA. We report the mean value ± the standard deviation of

√
MISE on the respective test sets over 5 repeat runs with

new random seeds. n.r. = not reported for computational reasons (excessive runtime). †= significant at α < 0.05 to DRNet.

Method News-2 News-4 News-8 News-16 MVICU TCGA

DRNet 8.0 ± 0.1 11.6 ± 0.1 10.2 ± 0.1 10.3 ± 0.0 31.1 ± 0.4 9.6 ± 0.0
- Repeat † 9.0 ± 0.1 †11.9 ± 0.2 10.3 ± 0.1 10.4 ± 0.1 31.0 ± 0.3 10.2 ± 0.2
+ Wasserstein † 7.7 ± 0.2 11.5 ± 0.0 †10.0 ± 0.0 †10.2 ± 0.0 32.9 ± 2.9 10.2 ± 0.9
+ PD † 9.0 ± 0.2 †12.2 ± 0.1 †10.6 ± 0.2 10.3 ± 0.1 †36.9 ± 0.9 †11.9 ± 1.4
+ PM † 8.4 ± 0.3 †12.2 ± 0.1 †11.4 ± 0.3 †12.3 ± 0.3 31.2 ± 0.4 9.7 ± 0.2
+ PSMPM

† 8.6 ± 0.1 †12.2 ± 0.2 †11.5 ± 0.2 †12.2 ± 0.3 †32.6 ± 0.5 †11.4 ± 0.6

MLP †15.3 ± 0.1 †14.5 ± 0.0 †13.9 ± 0.1 †14.0 ± 0.0 †49.5 ± 5.1 †15.3 ± 0.2
TARNET †15.5 ± 0.1 †15.4 ± 0.0 †14.7 ± 0.1 †14.7 ± 0.1 †58.0 ± 4.8 †14.7 ± 0.1
GANITE †16.8 ± 0.1 †15.6 ± 0.1 †14.8 ± 0.1 †14.8 ± 0.0 †59.5 ± 0.8 †15.4 ± 0.2

kNN †16.2 ± 0.0 †14.7 ± 0.0 †15.0 ± 0.0 †14.5 ± 0.0 †54.9 ± 0.0 n.r.
GPS †47.6 ± 0.1 †24.7 ± 0.1 †22.9 ± 0.0 †15.5 ± 0.1 †78.3 ± 0.0 †26.3 ± 0.0

CF †26.0 ± 0.0 †20.5 ± 0.0 †19.6 ± 0.0 †14.9 ± 0.0 †57.5 ± 0.0 †15.2 ± 0.0
BART †13.8 ± 0.2 †14.0 ± 0.1 †13.0 ± 0.1 n.r. †47.1 ± 0.8 n.r.

Number of Dosage Strata E. To determine the impact
of the choice of the number of dosage strata E on DRNet
performance, we analysed the estimation performance and
computation time of DRNets trained with various numbers
of dosage strata E on the MVICU benchmark (Figure 2).
With all other hyperparameters held equal, we found that a
higher number of dosage strata in general improves estima-
tion performance, because the resolution at which the dosage
range is partitioned is increased. However, there is a trade-
off between resolution and computational performance, as
higher values of E consistently increased the computation
time necessary for training and prediction.

Treatment Assignment Bias. To assess the robustness of
DRNets and existing methods to increasing levels of treat-
ment assignment bias in observational data, we compared
the performance of DRNet to TARNET, MLP and GPS on
the test set of News-2 with varying choices of treatment as-
signment bias κ ∈ [5, 20] (Figure 3). We found that DR-
Net outperformed existing methods across the entire range
of evaluated treatment assignment biases.

Limitations. A general limitation of methods that attempt
to estimate causal effects from observational data is that
they are based on untestable assumptions (Stone 1993).
In this work, we assume unconfoundedness (Imbens 2000;
Lechner 2001), which implies that one must have reasonable
certainty that the available covariate set X contains the most
relevant variables for the problem setting being modelled.
Making this judgement can be difficult in practice, particu-
larly when one does not have much prior knowledge about
the underlying causal process. Even without such certainty,
this approach may nonetheless be a justifiable starting point
to generate hypotheses when experimental data is not avail-
able (Imbens 2004).

Conclusion

We presented a deep-learning approach to learning to esti-
mate individual dose-response to multiple treatments with
continuous dosage parameters based on observational data.
We extended several existing regularisation strategies to the
setting with any number of treatment options with associ-
ated dosage parameters, and combined them with our ap-
proach in order to address treatment assignment bias inher-
ent in observational data. In addition, we introduced per-
formance metrics, model selection criteria, model architec-
tures, and new open benchmarks for this setting. Our exper-
iments demonstrated that model structure is paramount in
learning neural representations for counterfactual inference
of dose-response curves from observational data, and that
there is a trade-off between model resolution and computa-
tional performance in DRNets. DRNets significantly outper-
form existing state-of-the-art methods in inferring individual
dose-response curves across several benchmarks.
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