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Abstract

The options framework is a popular approach for building
temporally extended actions in reinforcement learning. In par-
ticular, the option-critic architecture provides general purpose
policy gradient theorems for learning actions from scratch
that are extended in time. However, past work makes the key
assumption that each of the components of option-critic has in-
dependent parameters. In this work we note that while this key
assumption of the policy gradient theorems of option-critic
holds in the tabular case, it is always violated in practice for the
deep function approximation setting. We thus reconsider this
assumption and consider more general extensions of option-
critic and hierarchical option-critic training that optimize for
the full architecture with each update. It turns out that not
assuming parameter independence challenges a belief in prior
work that training the policy over options can be disentangled
from the dynamics of the underlying options. In fact, learning
can be sped up by focusing the policy over options on states
where options are actually likely to terminate. We put our new
algorithms to the test in application to sample efficient learn-
ing of Atari games, and demonstrate significantly improved
stability and faster convergence when learning long options. !

Introduction

Developing systems that can autonomously create temporal
abstractions is a major problem in scaling deep reinforcement
learning (RL). Options (Sutton, Precup, and Singh 1999;
Precup 2000) provide a general purpose framework for defin-
ing temporally abstract courses of action for learning and
planning in RL. This is a very promising direction with the po-
tential to allow for more coherent exploration and improved
long term credit assignment by effectively pruning the num-
ber of decision nodes. The popular option-critic (Bacon, Harb,
and Precup 2017) learning framework blurs the line between
option discovery and option learning. These approaches have
achieved success when applied to Q-learning on Atari (Ba-
con, Harb, and Precup 2017), but also with continuous action
spaces (Klissarov et al. 2017) and asynchronous paralleliza-
tion (Harb et al. 2017). Additionally, this framework was
recently extended to the hierarchical option-critic framework
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(Riemer, Liu, and Tesauro 2018), which allows networks
to learn an arbitrary depth hierarchy of high level (longer)
options and low level (shorter) options.

With the recent successes of Deep Learning based function
approximation applied to RL, a major point of interest has be-
come the derivation of theoretically justified policy gradient
theorems. Policy gradient theorems (originally developed for
learning with primitive actions by Sutton et al. (2000)) are
critical to the success of Deep RL as they define the gradient
steps that update the parameters of deep neural networks to
maximize the expected reward with gradient descent style
learning rules. The option-critic framework (Bacon, Harb,
and Precup 2017) has garnered significant interest largely
because it defined the first policy gradient theorems that
can be used to update a neural network architecture that is
endowed with options that are learned from scratch along
with the network. The high level role of options as a tempo-
rally extended form of actions is clear. However, how these
abstract actions should be composed with respect to the pa-
rameters of a neural network is far less clear and has not
been closely studied. In fact, the default architecture frame-
work for learning options (Bacon, Harb, and Precup 2017;
Riemer, Liu, and Tesauro 2018) functions in a setting where
the underlying assumptions of existing algorithms for opti-
mizing these architectures do not hold.

Past work on deriving policy gradient theorems for option
models (Bacon, Harb, and Precup 2017) has assumed that the
parameters of the option policies 7, the policy over options
7o and the termination functions 3 are independent of each
other (i.e. O N Or, N Og = 0). This assumption gets even
more strict for work on hierarchical option models where
policies and termination functions are assumed to have in-
dependent parameters at each level of the hierarchy as well
(Riemer, Liu, and Tesauro 2018). In practice, while this may
hold for tabular problems, this has never been true in appli-
cation to deep neural networks. In contrast, most parameters
have been totally shared using a shared feature extraction
network common across all model components and a private
output layer for each component. This setup closely follows
conventions from multi-task learning (Caruana 1997) with
neural networks in the supervised setting. Nonetheless, the
policy gradient theorems used to optimize these architectures
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Figure 1: We illustrate the training and execution of an option-critic architecture trained with the generalized option-critic policy
gradient update rule on the game Tutankham. Blue lines represent gradients and red lines represent option termination.

have not actually been valid.

In this work, we seek to provide a remedy to this miss-
match between the architectures used for deep option learning
and the policy gradient theorems used to provide their learn-
ing rule. We achieve this by assuming in our derivations that
all parameters are shared throughout all components of our
model rather than assuming no sharing. This assumption is
more general because even if a model component does not use
certain parameters, it is valid to optimize for all parameters
across all components because each component will only be
influenced by the parameters that it uses. To be more concrete,
if we assume some global set of shared parameters 8 such that
0 €0,0,, €6,and 05 € 6, we can say for example that
the set of parameters 0. = @—0, induces a zero gradient for
T i.e. 627:* = (. Past work (Bacon, Harb, and Precup 2017;
Riemer, Liu, and Tesauro 2018) has typically derived sepa-
rate learning rules for each policy and termination function
with respect to their own parameters. By assuming instead
to have one shared set of parameters, we arrive at a single
learning rule that optimizes for the entire system with respect
to its parameters 6. We will thus call this architecture level
learning rule the option-critic policy gradient (OCPG) or
more generally the hierarchical option-critic policy gradient
(HOCPG) when modeling deep hierarchies of options.

Our paper aims to shed light on the disconnect between the-
ory and practice in deep option-critic learning and motivates
the benefits of a corrected update rule for efficient learning
of long options. Our experiments in challenging RL envi-
ronments with high dimensional state spaces such as Atari
demonstrate the benefits of OCPG and HOCPG when us-
ing typical strategies for weight sharing across option model
components. Additionally, this result is a critical first step to-
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wards developing more sophisticated weight sharing schemes
across deep option models. It is extremely important that
option models allow for more flexibility in this regard as the
current methodology (Riemer, Liu, and Tesauro 2018) cannot
appropriately handle, for example, the case when the same
low level option is called within different high level options.

Background and Notation

A Markov Decision Process (MDP) is defined with a set of
states S, a set of actions A, a transition function P : Sx A —
(8§ — [0,1]) and a reward function 7 : Sx.A — R. Following
standard practice (Bacon, Harb, and Precup 2017), we de-
velop our ideas assuming discrete state and action sets, while
our results extend to continuous spaces using usual measure-
theoretic assumptions. A policy is defined as a probability
distribution over actions conditioned on states, 7 : S x A —
[0, 1]. The value function of a policy 7 is the expected re-
turn Ve (s) = E[> 0,7 ri41|s0 = s] with an action-value
function of Q(s,a) = Ex[>.,2¢ V' 7t41]50 = s,a0 = a]
where 7y € [0, 1) is the discount factor.

Policy gradient methods improve a policy by performing
gradient ascent over a family of parameterized stochastic poli-
cies, my. The policy gradient theorem (Sutton et al. 2000) pro-
vides an expression to compute the gradient of the discounted
reward objective with respect to 6 and a designated starting
state s in a straightforward expression. The theorem defines

the gradient update as > _ fir, (5[50) >, %Qm (s,a).
Here fir, (s|s0) = Y oo 7' P(st = s|so) is defined as the
discounted weighting of the states along the trajectories start-
ing from initial state sg.

The options framework (Sutton, Precup, and Singh 1999;
Precup 2000) formalizes temporally extended actions in RL.



A Markovian option 0o € Q is a triple ({,,m,, 5,) where
I, C S represents an initiation set, 7, represents an intra-
option policy, and 3, : S — [0, 1] represents a termination
function. Many algorithms (such as option-critic) assume
that all options are available everywhere, removing the need
to explicitly model I,,. MDPs with options become SMDPs
(Puterman 1994) with an optimal value function over options
V¢ (s) and option-value function Q4 (s, o).

The option-critic architecture (Bacon, Harb, and Precup
2017) leverages a call-and-return option execution model
where an agent picks option o according to its policy over op-
tions 7o (0|s), then follows the intra-option policy 7 (als, 0)
until termination (as determined by (s, 0)). Termination
then triggers a repetition of this procedure. Let mg_(als, 0)
denote the intra-option policy of option o parametrized by 6,
and 3y, (s, 0) the termination function of o parameterized by
3. The option-value function is then defined as:

QQ(S 0) = Zﬂgw(ab,o)QU(s,o,a), ()
a

Qu : S x Q2 x A — Ris defined as the value of an action

given the context of a state-option pair:

Qu(s,0,a) =r(s,a) + ’yZP(s’|s,a)U(s’, 0).

s/

@)

These (s, 0) pairs define an augmented state space (Levy
and Shimkin 2011). Instead, the option-critic architecture
leverages the function U : {2 x § — R which is called the
option-value function upon arrival (Sutton, Precup, and Singh
1999). The value of selecting option o upon entering s’ is:

U(s',0) = (1= Bo,(s",0))Qa(s, 0) + Bo, (5", 0)Var(s').
3)
We adopt a notation for clarity where we omit 6, and 63
which Qy and U both depend on. The intra-option policy
gradient theorem results from taking the derivative of the
expected discounted return with respect to the intra-option

policy parameters 6, defining the update rule for :

> nals.ols0,00) Y
5,0 a

g is defined as the discounted weighting of (s, 0) along
trajectories originating from (sg,00) : pa(s,0|se,00) =
YooV P(se = 5,0, = 0|sg, 00). Likewise, the termination
gradient theorem results from taking the derivative of the
expected discounted return with respect to the termination
policy parameters 65 and defines the update rule for 5 with
initial condition (s1, 0p):

Omg,. (als, 0)

a0, Qu(s,0,a).

“

8ﬂ93 (S 0)

—Z/.LQ s',0|s1,0,) ———=Aq(s',0),

&)

where AQ is the advantage function over options,
Aq(s',0) = Qal(s',0) — Va(s).

The hierarchical option-critic architecture (Riemer,
Liu, and Tesauro 2018) extends option-critic models to an
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arbitrarily deep NV level hierarchy of high level options and
low level options below them. We adopt the notation from
(Riemer, Liu, and Tesauro 2018) 2%+ = ¢, ..., 2'*J. This
implies that ***J denotes a list of variables in the range of
i through ¢ + j. In this hierarchical architecture, 7, (0*[s)
is the policy over the most abstract options in the hierarchy
o'. Once o' is chosen, o? is chosen with policy 73, (0?|s, 0'),
which is the next highest level policy. This process contin-
ues until reaching policy m)\ (als, 0"V =1). ™ is the lowest
level policy and finally selects over the primitive action space.
Each level of the option hierarchy also has a complimen-
tary termination function 8, (s, 0'), .. B¢N L (s, 0N,

Termination is bottom up, so high level options can only
terminate when all lower level options have terminated first.

At each level of abstraction ¢, the hierarchical option-
critic architecture has an analogous option-value function
Qa(s,0""), value of selecting an option in the presence of
previously selected options Q (s, 0'**), and option-value
function upon arrival U(s,0'*). The hierarchical intra-
option policy gradient theorem results from taking the deriva-
tive of the expected discounted return with respect to the
policy parameters #°, defining the update rule for 7*:

> pals,

P

87r6[( €|s ol Z’l)

00*

1:N— 1)

Qu (s, 0",
6)

where o is defined as the discounted weighting of
(s,0%*) along trajectories originating from (sg, oj*)
pa(s,0" s, 05N 1) = T2 (s = 5,0}

0" sg, 0p N~ 1) The hierarchical termination gradient the-
orem results from taking the derivative of the expected dis-
counted return with respect to the termination policy param-
eters ¢ and defines the update rule for 3 for the initial

condition (s1, 05N 1)

1Z|$07

N—-1
1€|81’ 1:N— 1 H 5;1(8,01:1)

i=+1
aﬂéz (57 0115) .
TAQ(S7 01'5)) )

where Ag, is the advantage function over a hierarchy options.

- > nals,

5,0l

Policy Gradient Theorems Over A Full
Option-Critic Architecture

We now turn our attention to deriving policy gradient theo-
rems for option-critic and hierarchical option-critic models
by taking the derivative of the expected return with respect to
a global set of shared parameters 6 rather than individually
for each component at each level of abstraction.

Option-Critic Policy Gradients

For the standard option-critic model, we follow the original
paper and take the derivative of Qg (s, 0), but now with re-
spect to O rather than the parameters of the different system
components. This can be done by substituting in equation 1.



Lemma 1 (Option-Critic Policy Gradients). Given a set
of Markov options with stochastic policies and termination
functions differentiable in their parameters 0 governing each
option policy , termination function 3, and the policy over
options Tq, the gradient of the expected discounted return
with respect to 6 and initial conditions (s, 0¢) is:

ZIJ’Q(S; o, 5/‘507 00)<Z M

! 90 QU(S7O7 Cl)

Oma(o'|s")

+ ZWﬂ(s,’O)TQQ(S,,O/) _ 9B(s’,0)

’YTAQ(S 70)>>

where po is a discounted weighting of augmented
state tuples along trajectories starting from (sg,0p)
/ o0 t

pa(s, 0,5 [s0,00) = D gV'P(st = 5,00 = 0,841 =
s'|s0, 09). We provide one proof in the appendix in the style
of (Bacon, Harb, and Precup 2017) and another complemen-
tary proof following (Kostas, Nota, and Thomas 2019). An
important point we are making here is that all option-critic
style policy gradient theorems are just special cases of the
more general co-agent policy gradient theorem (Kostas, Nota,
and Thomas 2019). In the appendix we also provide a formal
A3C style algorithm and computational analysis. Despite a
more complex update, we theoretically and empirically show
very similar computation time to prior option-critic models.

Previously, Bacon (2018) considered an almost identical
policy gradient termed the joint gradient. Bacon (2018) did
not include the discount factor for the next state, and no
similar algorithms have actually been implemented in prior
work to the best of our knowledge. However, we consider this
result a lemma towards developing a more general theorem. It
is not on its own a major theoretical result because it already
existed and was first established by Bacon (2018) and in a
more general form by Kostas, Nota, and Thomas (2019). Our
proof is not exactly the same as (Bacon 2018) mostly because
it starts with a different equation for the value function.

It is interesting that when using € we see the emergence
of a single update rule with three separate terms that closely
parallel the individual option-critic update rules for m, 7q,
and 3. However, there are some considerable differences as
well. There is now a formal acknowledgement of the policy
over options and termination function being updated at the
next state rather than the current state, which as such includes
a multiplicative factor of . During training, in most cases
this likely has a minor effect, especially if v is close to 1.

The most influential new term is the multiplication by 3
that is present in the update rule for the policy over options.
This multiplicative factor is quite intuitive as it modulates
the importance of updates to the policy over options by the
likelihood that the current option terminates and the policy
over options is actually used. Here, 3 appears as a coupling
factor between the dynamics of the policy over options and
the dynamics of the underlying options being selected over.
When the termination function is close to firing, the contri-
bution of the update to the policy over options is the largest
possible. In contrast, the smallest updates are obtained when
the termination likelihood is close to zero. This term of the
update therefore prioritizes likely transition points between
options rather than treating all states equally. This is an inter-
esting result as it shows that to strictly follow the exact policy
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Effective State Distribution for
Training Policy Over Options
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Figure 2: Illustration of effective state distribution for training
mq with OCPG in four rooms environment. 7op: Typical
option-critic learning focuses uniformly over states visited
by the policy. Bottom: OCPG transforms the distribution to
focus on the transition points where options are likely to
terminate and the policy over options is actually used.

gradient for the option-critic architecture, the policy over op-
tions cannot be viewed in total isolation from the underlying
option dynamics as done in previous work by using simple
Q-Learning or actor-critic. See Figure 2 for an illustration of
how this refined policy gradient theorem promotes improved
sample efficiency for learning the policy over options.

The last difference that it is important to mention is the
inclusion of o’ and not just o in the update rule. One could
be concerned about adding to the transition tuple needed
for updates. This is not an issue at all for straightforward
application of the option-critic policy gradient to on-policy
learning. However, it may not prove useful for off-policy up-
dates where the current policy is significantly different from
the policy used in the environment. In those cases, this term
can be removed from transition tuple stored and recovered by
sampling from the current policy over options. Additionally,
even for the o term, it would probably be better to consider
how the changing characteristics and current policy align with
past behaviors as demonstrated by Nachum et al. (2018).

A Generalized Hierarchical Option-Critic Policy
Gradient Theorem

In this section, following (Riemer, Liu, and Tesauro 2018),
we seek to find a generalization of the option-critic policy
gradient to an arbitrarily deep option hierarchy with N levels
of abstraction. As we did in the last section, we start by tak-
ing the derivative of the option-value function for all active
options Qq (s, o'V 1) with respect to 8. The derivation pro-
ceeds similarly to the one for the option-critic policy gradient.
However, we now consider the complexities of an arbitrarily
deep augmented state space of options.

Theorem 1 (Hierarchical Option-Critic Policy Gradient



Theorem). Given an N level hierarchical set of Markov op-
tions with stochastic option policies at each level T and
termination functions at each level B3¢ differentiable in their
parameters 0, the gradient of the expected discounted return

with respect to @ and initial conditions (so, 05 1) is: 2

Z MQ(S7Ol:N—l,s/‘SO7O(1):N—1)<
s,oliN—=1 o/
or(als, o N
Z ( Iae QU(Syol'N 1,a)+,y
a o/1:N—1
Bk‘(sl Ol:k)awé(0/£|s/’0/1:l—l)
' 06
N-1 AB (s, 0t) £+1

S
s AQ(S’,OLE) H [_31‘:(8/’01:&))7
06 k=N_—1

N—-1

>

=1

1:N—1)

1|

k=

QQ(S/, 0/1:2)137‘_‘6(0/11—1|S/7 Ol:l—l):|

=1

where g is a discounted weighting of augmented state

tuples along trajectories starting from (sg, o5 )
LN=1 LN-1 - ' B
Hals, o0 8’15000 ) = Yo Pl =
1:N—1 1:N—1 _ / 1:N—-1
5,0t o ) St+1 = s'|s0, 0 ).

Py 5(0"17 1" 01*~1) is the probability while at the
next state and terminating the options for the current state
that the agent arrives at a particular set of next option
selections. We provide a proof in the appendix in the style
of (Riemer, Liu, and Tesauro 2018) and another proof
in the style of (Kostas, Nota, and Thomas 2019). We
also provide a formal A3C style algorithm and analysis
theoretically showing very similar computation per step to
prior hierarchical option-critic models.

We first would like to point out that this theorem is a gen-
eralization of the option-critic policy gradient in the previous
section. In fact, when N = 2 the hierarchical option-critic
policy gradient theorem should be exactly the same. 3 In
comparison to the original hierarchical intra-option policy
gradient theorem and hierarchical termination gradient theo-
rem from (Riemer, Liu, and Tesauro 2018), our new theorem
has many of the same terms but with only one update rule
rather than 2V — 1 different update rules. The other chief
differences with the original work are similar to the last sec-
tion in that option policies and termination functions update
with respect to the next state. Additionally, we again see the
emergence of a dependence of the option policy update rules
on the likelihood that the option policy is actually used. The
option policy is only used if the both the option at that level
of abstraction and all lower level options terminate.

Empirical Analysis

We now seek to evaluate how OCPG and HOCPG perform in
a function approximation setting with a complex state space
and thus consider the Atari games (Bellemare et al. 2013).
We utilize the popular Open AI Gym environments for these
games and use the default settings. We extend A3C from a
popular PyTorch repository and provide further details on
our setup in the appendix. Our architecture follows Mnih et
al. (2015) consisting of a feature extractor common across all

7% is expressed as a function 7' (o' |s) when ¢ = 1.

*Note that Py g = 1 when N = 2.
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components of the architecture with 4 convolutional layers
each followed by a max pooling and ReLU layer. This output
is then fed into an LSTM as in (Mnih et al. 2016).

Implementation Details: We implement option-critic pol-
icy gradients (OCPG) using the variant of A20C outlined in
algorithm 1 of the appendix and implement the hierarchical
option-critic policy gradients (HOCPG) following algorithm
2 of the appendix. Our primary baselines (OC) and (HOC)
are standard version of A20C and A2HOC respectively us-
ing the intra-option policy gradient theorem and termination
gradient theorem for training. For easier direct comparison
with our new full architecture level policy gradient theorem,
we leverage actor-critic learning for the policy over options
rather than arbitrarily using Q-Learning. This allows us to
directly compare the ability of models to implement a policy
gradient theorem for the full system. All of our models use 8
options following past work, and a learning rate of 1e-4. Fol-
lowing (Harb et al. 2017) we run 16 parallel asynchronously
updating threads for each game. We also run one thread for
evaluation that we do not learn from. We report the aver-
age and standard deviation of the reward for the most recent
150 evaluation episodes across ten runs. To ensure that our
analysis is statistically sound, given the high variance that
is typical for deep reinforcement learning, we follow best
practices from (Colas, Sigaud, and Oudeyer 2018).

We should also note that it was the aim of prior work to
study how and when options are useful. Our paper instead
focuses on a particular systemic and problem agnostic aspect
of the optimization of option-critic learning. As such, in the
main text we only have space to report our main results.
However, we have provided additional analysis of the options
that are actually learned by each model and where potential
learning advantages may be coming from in the appendix.

Settings Explored: It is important to note that Lemma 1
and Theorem 1 do not differ significantly from past work on
option-critic and hierarchical option-critic learning for the
corner case where all options always terminate. As such, it is
clear that the gap with old approaches for option-critic learn-
ing becomes more substantial as options become more ex-
tended in time. On the other hand, this fact poses a challenge
for conducting experiments that highlight the value gained
as a result of the modified gradient. This is because option-
critic style architectures since the first paper (Bacon, Harb,
and Precup 2017) have needed to regularize the advantage
function during the updates to the termination function using
a parameter 7 to avoid trivially learning to always terminate.
Option-critic style models paired with a regularizer can have
the ability to learn options ranging the spectrum of temporal
lengths, but have also been shown to be quite sensitive to the
value of this parameter (Harb et al. 2017). In our experiments,
we attempt to understand the role that regularization and op-
tion termination frequency have on the behavior of OCPG
and OC. To do this we consider two settings of interest. In
the first setting we consider a simple schedule (similar to a
learning rate schedule) for 7 in which OCPG and HOCPG
perform quite well. Then we explore choosing a reasonable
fixed n that leads to options that are both extended in time
and still divide the episode into segments.
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Figure 3: Option-critic style model performance and steps per termination during learning with a 7 schedule.

Regularization Schedule

While high values of 7 lead to options that are of longer du-
ration, they have the drawback of leading to solutions that
are merely n-optimal (Harb et al. 2017). This implies that we
would only arrive at an optimal policy for the base MDP if
1 = 0. With this in mind, it seems quite natural to set a sched-
ule for an agent trying to solve a task where first the agent
focuses on learning skills from scratch without temporal ab-
straction and then the agent gradually learns to terminate
less, decomposing the problem in time. Before any useful
policies are learned, the regularization on the advantage may
only serve to impede the proper convergence of the model.
To test out this theory, we consider Atari experiments with
training for 60 million steps while implementing a simple
regularization schedule where 7 changes every 15 million
steps. At the beginning we set n = 0.0 for 15 million steps
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Figure 4: Hierarchical option-critic style model performance
and steps per termination of the highest level option during
learning with a n schedule.
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before setting 7 = 0.01. Next, we set 7 = 0.1 at 30 million
steps and n = 1.0 at 45 million steps. We tested six runs
of each algorithm in this setup on three maze style naviga-
tion environments: Alien, Amidar, and Tutankham. For the
hierarchical models, we set 7 to the same value at each level.
In Figure 3, we report results for OCPG and OC across
Alien, Amidar, and Tutankham. We include A3C perfor-
mance from Table S3 of (Mnih et al. 2016) as a point of
reference for how agents with primitive actions perform on
these games. We report the results of a similar agent with
a CNN and LSTM based representation like ours, but we
should note this results are not directly comparable in a few
ways. For example, the agents in past work were trained for
considerably more steps. In early training, OCPG and OC
have pretty much identical performance. This is particularly
noticeable when 17 = 0 during the first 15 million steps.
However, as ) gradually increases, we begin to see OCPG
significantly differentiate itself from OC. OC experiences
significant instability once 7 = 1.0 at 45 million steps of
training in all three games. Meanwhile, OCPG does not re-
ally see this instability or at least experiences it much less.
Below our average reward results, we also provide insight
about the termination behavior of the agents by plotting the
average number of steps per termination over time. We can
see that the gap between OCPG and OC consistently begins
for each game when we start to see terminations become
less frequent. Inline with our remarks in the last section, it is
predictable that both algorithms should have the same perfor-
mance when all options terminate every step. Additionally, it
makes perfect sense that the gap between algorithms grows as
71 becomes high and options start taking a significant amount
of time. When options are longer, OCPG has a superior ability
to focus the policy over options on likely transition regions,
allowing it to quickly adapt to and manage longer options.
We also report results for hierarchical option models in
Figure 4 when using N = 3 levels of abstraction (standard
option-critic uses N = 2). Unfortunately, both hierarchical
models struggled to achieve the performance of a primitive



Asterix

....... 100

oC
OCPG

2500

2000

1500

1000
-50

Average Reward
Average Reward

500

Boxing

Jamesbond
400 -

Average Reward

0
0.0 1o [ 20

Training Steps

05

1.0

Training Steps

1.5 20 1.0 15

Training Steps

Figure 5: Option-critic style model performance for three Atari games with fixed n = 0.3.

action agent on Alien (not shown) and didn’t seem to provide
additional value over option-critic on the other games by
using the third level of abstraction either (at least with only
60 million steps of training from scratch). Nonetheless, the
model still surpasses prior results with primitive actions in a
short amount of training and can still be useful for understand-
ing the optimization behavior of the hierarchical option-critic
architecture. Similar to the N = 2 case, we see significant
instability in the HOC model that we do not see for HOCPG.
Once again, in line with what we would expect, we see that
the gap between the models only starts to grow when options
start learning not to terminate. A noticeable difference with
our option-critic experiments is that options become longer
earlier. However, this could be related to our setting as 7
grows in effect when applied to more levels of abstraction,
making the effective regularization higher at the same 7).

Fixed Regularization

We would also like to verify that our proposed algorithms
add value in the typical setting where 7) is simply set to some
reasonable value. Based on our initial experiments we found
that n = 0.3 was a good choice that led to options of non-
trivial length for each game we explored. In addition to our
three games from the previous section, we will explore four
other Atari games that have quite different dynamics than
these maze style navigation games including Asterix, Boxing,
Jamesbond, and Tennis. We consider a sample efficient set-
ting similar to (Pritzel et al. 2017) where we evaluate model
performance after 10 million and 25 million training steps.
This allows us to highlight the improved learning efficiency
of OCPG when options are of non-trivial lengths.

In Table 1 we report results for OCPG and OC across 10
runs. While, again, results may not be directly comparable
due to differences in the implementation, past work has re-
ported performance for primitive action A3C after 10 million
steps as 415.5 for Alien, 96.3 for Amidar, 301.6 for Asterix,
2.5 for Boxing, 31.5 for Jamesbond, -23.8 for Tennis, and
108.3 for Tutankham (Pritzel et al. 2017). In all but one case,
OCPG results in superior performance to both OC and prior
reported A3C results. The only apparent failure is Boxing at
10 million steps. That said, the performance achieved for Box-
ing at 25 million steps is very impressive given the amount
of training and even surpasses some past asymptotic results
reported for A3C (Mnih et al. 2016). Once again, we find that
the strong comparative performance of OCPG is in a setting
where options often do not terminate. For example, even by
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Game oC OCPG
10M / 25M 10M / 25M
Alien 4915+ 115.3/618.8 £61.8 | 663.0 +£45.3/791.4 +44.7
Amidar 45.1 £264/89.4+ 159 219.3 £ 18.4/141.9 + 18.6
Asterix 409.7 £ 76.6/1042.0 £ 98.1 | 1213.4 £ 74.3/1679.8 £ 71.0
Boxing -37.7+£147/329 £ 14.3 -41.44+12.9/90.8 £ 6.8
Jamesbond 7.1 £5.5/729.3+10.7 118.6 + 29.4/317.7 £ 38.7
Tennis -17.9 +£2.6/-199+ 13 -144 +1.7/-131+£238
Tutankham 1.6 +£25/08 +3.0 16.8 +20.8 /128.0 = 27.3

Table 1: Average and standard deviation of the evaluation
reward for Atari games across 10 runs, reported after 10 mil-
lion steps (10M) and 25 million steps (25M). Bold indicates a
statistically significant difference according to Welch’s t-test.

10 million training steps, the average number of terminations
per step for OCPG is 7.9 for Alien, 12.8 for Amidar, 8.3
for Asterix, 32.4 for Boxing, 5.5 for Jamesbond, 242.2 for
Tennis, and 1266.3 for Tutankham.

In Figure 5, we highlight the learning behavior of OCPG
and OC on three of the new games. For Asterix and James-
bond, we see OCPG pretty immediately differentiate itself
from the OC baseline and achieve quite impressive early
performance. However, OCPG takes a little longer to differ-
entiate itself from OC on Boxing. That being said, once it
starts learning, it is able to achieve great performance quickly.

Discussion

Developing better general purpose methods for learning op-
tions from scratch is an important avenue of RL research. In
this work, we reconsider an assumption in the intra-option
policy gradient theorem and termination gradient theorem,
namely that the policies and termination functions have inde-
pendent parameters (Bacon, Harb, and Precup 2017). While
this assumption is true in tabular settings, it is never the case
for practical deep function approximation settings as parame-
ter sharing across components of the model leads to sample
efficient learning. We propose to rectify this issue by per-
forming full architecture level option-critic policy gradient
updates. A key distinction with prior approaches is that the
update rule for the policy over options depends on the be-
havioral characteristics of the underlying options it selects
over. We demonstrate that this modification leads to improved
sample efficient learning across a test bed of Atari games.
We show for a number of games that this update rule results
in more stable and faster learning by focusing on a more
representative state space distribution when options are long.
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