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Abstract

Nonnegative matrix factorization (NMF) has been widely
employed in a variety of scenarios due to its capability of
inducing semantic part-based representation. However, be-
cause of the non-convexity of its objective, the factorization
is generally not unique and may inaccurately discover intrin-
sic “parts” from the data. In this paper, we approach this is-
sue using a Bayesian framework. We propose to assign a di-
versity prior to the parts of the factorization to induce cor-
rectness based on the assumption that useful parts should be
distinct and thus well-spread. A Bayesian framework includ-
ing this diversity prior is then established. This framework
aims at inducing factorizations embracing both good data fit-
ness from maximizing likelihood and large separability from
the diversity prior. Specifically, the diversity prior is formu-
lated with determinantal point processes (DPP) and is seam-
lessly embedded into a Bayesian NMF framework. To carry
out the inference, a Monte Carlo Markov Chain (MCMC)
based procedure is derived. Experiments conducted on a syn-
thetic dataset and a real-world MULAN dataset for multi-
label learning (MLL) task demonstrate the superiority of the
proposed method.

Introduction

Nonnegative matrix factorization (NMF) has attracted atten-
tion due to its non-negativity constraints. These constraints
induce non-subtractive part-based representations to effec-
tively interpret data (Lee and Seung 1999). For example,
in the multi-label learning task, NMF factorizes an image
dataset X into shared image parts as bases W and the corre-
sponding individual constituent weights as new image rep-
resentations H . Ideally, when the shared image parts in W
are associated with distinct labels, the constituent weights H
based on these parts then encode label information and help
improve the accuracies of the following classification task.
With this promising prospect, many efforts have been ded-
icated to effectively discovering meaningful parts from the
data in a vast number of application scenarios. Examples in-
clude document clustering based on topic discovery, hyper-
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spectral unmixing, audio source separating, music analysis,
and community detection.

Studies have been conducted to seek unique and exact
solutions to NMF, despite the non-convexity nature of the
problem. Most of these studies are based on the separabil-
ity assumption (Chen et al. 2019; Degleris and Gillis 2019).
This condition states that the columns of the bases W , which
should be a subset of dataset X , i.e., W ⊆ X , span a convex
hull/simplex/conical hull/cone which includes all data points
X (Zhou, Bian, and Tao 2013). However, this condition is
too strict to be satisfied in practice. Conditions focusing on
relaxing the separability assumption have been developed,
such as a near-separable condition, a subset-separable con-
dition (Ge and Zou 2015), and a geometric assumption (Liu,
Gong, and Tao 2017). However, all these exact solutions do
not consider the low-rank condition of W , which is practi-
cally important when NMF plays the role as a dimensional-
ity reduction tool.

In practice, approximate solutions with good generaliz-
ability are desired. To seek such solutions to NMF, a variety
of regularization penalties, based on either the characteris-
tics of the data or domain-specific prior knowledge, have
been imposed. For example, two most widely used penalties
in machine learning, i.e., sparseness and smoothness, have
been exploited (Tao et al. 2017). Additionally, from the ge-
ometric perspective, a large-cone regularizer on the bases
W has also been developed (Liu, Gong, and Tao 2017). All
these regularized solutions have either empirically or theo-
retically demonstrated improvement to the original solutions
(Lee and Seung 2001) in their generalizability. Furthermore,
these penalty-based models account for the low-dimensional
requirement, via balancing a trade-off among a regulariza-
tion penalty, the low-rank requirement of bases W , as well
as the model fitness measured by reconstruction error (Liu,
Gong, and Tao 2017), KL divergence (Lee and Seung 2001),
Itakura-Saito divergence (Ivek 2015), or the earth mover’s
distance (Sandler and Lindenbaum 2011).

In this paper, we propose a diversified Bayesian NMF
model, termed DivBNMF, to enhance the solutions. Our ap-
proach can be seen as a Bayesian extension of the large-cone
regularized NMF (LCNMF) (Liu, Gong, and Tao 2017) yet
exhibits several advantages. First, thanks to the kernel trick
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adopted in DPP, our formulation is more flexible. LCNMF
with the two regularizers, i.e., large-volume and large-angle,
are two special cases of our model. Second, instead of man-
ually tuning the balance between model fitness and regu-
larization, our method automates this process via Bayesian
inference. Third, the proposed model is applied to solve the
multi-label learning problem, and the experimental results
demonstrate its effectiveness.

Related work

NMF and its extensions Due to the non-convexity of
NMF, different kinds of regularizers have been introduced to
make the solution unique via enforcing model/application-
constrained properties. The L1-based penalties (Gillis 2012)
induce sparse representations to facilitate the interpretation
of data, while the total variation penalty produces smooth
representations suitable for sequence data (Seichepine et al.
2014). From the geometric point of view, minimizing the
cone volume spanned by its bases W gives a unique solu-
tion for separable data (Schachtner et al. 2009). By contrast,
maximizing the cone volume has been proven to achieve bet-
ter generalizability (Liu, Gong, and Tao 2017). Two more
examples considering the data structure are a graph-based
manifold penalty (Cai et al. 2009) and a spatial localization
based penalty (Li et al. 2001). To sum up, regularization
constrained NMF achieves better performance under their
assumed scenarios either empirically or theoretically when
compared with the basic model.

NMF has also been extended under the probabilistic
scheme (Gillis et al. 2019). The Bayesian counterparts of
the penalties listed above have been developed. The connec-
tion between the regularized NMF and its Bayesian counter-
part has been established. Within the Bayesian framework,
noise models (likelihood functions) take over the role of re-
construction error functions while the prior distributions are
responsible for encoding regularization (Ivek 2015) during
maximization a posterior (MAP) estimation. First, in terms
of objectives, the correspondence between the Bayesian ver-
sion and the basic NMF are: a normally distributed noise
likelihood and the Frobenius reconstruction error, a con-
tinuous Poissionian noise likelihood and the generalized
Kullback-Leibler (KL) divergence, a zero-mean normally
distributed noise likelihood or unit-mean Gamma noise like-
lihood and the Itakura-Saito divergence. Second, the MAP
solutions to the Bayesian NMF under various priors are
equal to the solutions to the regularized NMF with cer-
tain regularizers. The most commonly used prior-regularizer
pairs are: The MAP solution under an exponential prior
is equivalent to an L1-based penalty - inducing sparsity; a
zero-mean normal prior, which guarantees the uniqueness of
the solution (Bayar, Bouaynaya, and Shterenberg 2014), de-
rives an L2-based penalty; a volume prior proposed in (Arn-
gren, Schmidt, and Larsen 2011) corresponds to the penalty
of minimizing the cone volume.

Following the Bayesian development, we extend NMF
with the determinantal point processes (DPP) prior which
can be geometrically interpreted as a large-volume penalty.

NMF for Multi-Label Learning Multi-label learning
(MLL), to handle the situation of assigning an instance mul-
tiple labels (Sun et al. 2019; Xing et al. 2019), has recently
become a popular tool in many applications, e.g., image
processing (Zhang et al. 2019) and text analysis. Many ef-
forts attempt to capture the label-label relationships (Xie et
al. 2017; Gong et al. 2019a), and then integrate them into
the traditional feature-label learning procedure (Yang et al.
2016). Apart from those, with the intuition that the label-
associated parts should correspond to the bases in the de-
composition of NMF, we apply the diversity-encouraging
prior to enhance the feature learning in MLL. Then a naive
K nearest neighbour (K-NN) classifier is employed to final-
ize MLL. This scheme follows the state-of-the-art develop-
ments (Tao et al. 2017; Gong et al. 2019b).

Determinantal Point Processes (DPP) Diversity is a
good measure to subsets whenever the property of dis-
similarity or repulsiveness is required. Apart from its di-
rect application scenarios (Kulesza and Taskar 2011), diver-
sity has recently become a popular regularizer to enhance
model abilities (Qiao et al. 2015). Since DPP was introduced
into the machine learning community (Kulesza and Taskar
2012), it has been an effective tool to model the diversity
of a subset. It provides a powerful repulsive modeling tool
within an easily extended probabilistic framework, and al-
gorithms including self-contained efficient learning and in-
ference have also been developed for it. Following its recent
success, we employ DPP here as a prior encoding diversity
amongst NMF bases to develop a Bayesian counterpart of
the large-cone NMF (LCNMF) (Liu, Gong, and Tao 2017).

Our Model

Background for DPP

DPP is popular for modeling repulsion. In a continuous
space, given S ⊆ RD and a kernel L : S × S �→ R with
L(x, y) =

∑∞
n=1 λnφn(x)φ̄n(y), the probability density of

a point configuration A ⊂ S under a DPP is given by

pL(A) =
det(LA)∏∞

n=1(λn + 1)
, (1)

where λn and φn(x) are eigenvalues and eigenfunctions, and
φ̄n(x) are the complex conjugate of φn(x).

When the cardinality of diverse subsets is fixed to K, a
K-DPP (Kulesza and Taskar 2011) is then given as

pkL(A) =
det(LA)

ek(λ1:∞)
, (2)

where ek(λ1:∞) is the kth elementary symmetric polyno-
mial of the kernel L.

Building on the work of (Kulesza and Taskar 2012), the
kernel L is decomposed as

L(wi,wj) = q(wi)�(wi,wj)q(wj), (3)

where q(wi) is interpreted as a quality function at a point wi

and �(wi,wj) as a similarity function between two points
wi and wj . Furthermore, the similarity kernel � can be de-
composed as a Gram matrix �(wi,wj) = B�

i Bj , where
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Figure 1: A geometric interpretation of DPP for NMF. (a) Two simplicial cones in a same 2 −D plane are shown to approxi-
mately encompass the data points in the 3-D space. Only the angles of the two cones are distinct and therefore are the key factor
in determining their reconstruction performance within NMF. The cone spanned by {w′

1,w
′
2}, which associates with a larger

angle, encompasses more data points than the one spanned by {w1,w2}. In other words, the bases of a large cone achieve bet-
ter reconstruction performance. (b) Two tetrahedrons sharing the same base but with distinct height values are shown. The one
spanned by {w′

1,w
′
2,w

′
3} with a larger height has larger volume than the one spanned by {w1,w2,w3} does. DPP favors the

tetrahedron with the larger volume value, because it is built on a determinant operation, whose geometric explanation associates
with the volume constructed from the bases. (c) The NMF bases forming a larger volume encompass more data points than the
one with a smaller volume as shown in the figure. Therefore, DPP is applied as a prior to enforce large volume constraints to
allow NMF achieve better reconstruction results.

Figure 2: Graphical representation of DivBNMF.

Bi ∈ Rd represents a normalized diversity feature for point
wi ∈ A with d can be ∞ as transformed by the similarity
kernel �.

With this decomposition, the definition of DPP can be ex-
plained from a geometric point of view, as demonstrated in
Figure 1b. The probability of a 3-DPP (2) is proportional
to the determinant of the similarity kernel associated with
each diversity feature set, namely to the determinant of the
Gram matrix, which is geometrically equal to the square of
the volume of the parallelepiped spanned by those diversity
features. Two sets of diversity features {w1,w2,w3} and
{w′

1,w
′
2,w

′
3} form two tetrahedrons sharing the same base

but with distinct heights. From the figure, the items in the
first set are more diverse to each other than the ones in the
second set as the third vector w

′
3 is further from the two

shared vectors than w3. Moreover, the first set has a larger
height thus has a larger volume. Therefore, it is assigned
a higher probability by the DPP/K-DPP. In other words,
DPP/K-DPP prefers subsets expanding larger volumes.

The Proposed DivBNMF

NMF approximates a nonnegative matrix X ∈ R
D×N
+ with

two nonnegative matrices W ∈ R
D×K
+ and H ∈ R

K×N
+ ,

with K � max{D,N}.
From its exact algebraic formulation, i.e., X = WH ,

NMF has a geometric interpretation (Donoho and Stodden
2004). Let the K bases {wk ∈ RD

+}Kk=1 be the extreme rays
for a simplicial cone, i.e.,

CW = {x : x =
K∑

i=1

hiwi, hi ∈ R+}.

Geometrically, the exact NMF equation indicates that all
D-dimensional data points in the matrix X lie within this
simplicial cone. However, when considering based on the
inverse, given X , there may exist many different simpli-
cial cones that satisfy the NMF equation. This is caused by
the non-convexity nature of NMF. However, a large simpli-
cial cone can be developed by adding extra constraints to
the original problem. For example, in (Liu, Gong, and Tao
2017), a large simplicial cone with either a large volume or
a large angle constraint results in a good approximate solu-
tion. These additional constraints lead to better performance
in the reconstruction error and generalizability. This is visu-
ally explained in Figure 1a. NMF seeks a simplicial cone to
approximately encompass the data points scattering on the
surface of a 3−D ball. The simplicial cone with a larger an-
gle value can encompass more data points than the one with
a smaller angle value, and thus allowes NMF to achieve bet-
ter reconstruction performance.

The goal of the geometry of NMF is to seek a large sim-
plicial cone generated by the columns of W to encompass as
many data points as possible. At the same time, the geometry
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of DPP provides a way to favor a large-volume for the set of
bases W . Therefore, we employ DPP as a large-volume prior
for the columns of W integrated into the probabilistic NMF,
as explained in Figure 1c. Based on this idea, we developed a
diversified Bayesian NMF model (DivBNMF). Several ben-
efits can be expected from this DPP induced large volume
NMF. First, we use the efficient parameter learning and in-
ference algorithms developed for DPP to develop the infer-
ence for our model. Second, a principled Bayesian exploita-
tion of the NMF decomposition provides more insights than
a single NMF solution. Finally, kernel tricks, on which DPP
is built, can be further exploited.

The graphical representation for the proposed model is
shown in Figure 2, where shallow circles represent ran-
dom variables such as parameters W and H and hyper-
parameters Σ0,μq,Σq,Γ,μ,Σ, shadowed circles represent
observations X , and solid dots represent hyper-prior param-
eters (μ̄q, λq, . . . ). The bold red ellipse emphasizes the DPP
prior for the bases W of NMF.

The generative process for data and NMF parameters cor-
responding to the above graphical representation is listed be-
low.

xn ∼ N (xn;Whn,Σ0)u(xn), xn ∈ R
D
+ , n = 1, . . . , N,

{wk} ∼ K-DPPL(μq ,Σq ,Γ), wk ∈ R
D
+ , k = 1, . . . ,K,

hn ∼ N (hn;μ,Σ)u(hn), hn ∈ R
K
+ , n = 1, . . . , N.

Each nonnegative observation xn is assumed to be sampled
from a truncated Gaussian distribution with mean Whn and
covariance Σ0, with u(·) denoting the unit step function.
New low-dimensional representations {hn} ⊂ RK

+ are as-
sumed to be independently sampled from a truncated Gaus-
sian prior parameterized with mean μ and covariance Σ. The
bases W of NMF are assumed from a K-DPP prior parame-
terized with kernel L established in (3) with quality param-
eters μq,Σq and diversity parameters Γ. The decomposition
of quality and similarity is based on the modeling conve-
nience as in (Kulesza and Taskar 2012). A quality function
is

q(wi) = exp{−1

2
(wi − μq)

�Σ−1
q (wi − μq)}, (4)

and a similarity function is

�(wi,wj) = exp{−1

2
(wi −wj)

�Γ−1(wi −wj)}. (5)

The quality and similarity functions can be polynomial,
Cauchy, RBF, etc. For computational convenience, the RBF
kernel is employed throughout this paper.

Additionally, hyper-parameters are assigned hyper-priors
which are listed below:

Σ0 ∼ W−1(A0, ν0),

(μq,Σq) ∼ NIW(μ̄q, λq,Φq, νq),

Γ ∼ W−1(A, ν),

(μ,Σ) ∼ NIW(μ̄, λ,Φ, νh).

Most of these hyper-prior forms are chosen from the
consideration of computational convenience. For exam-
ple, Normal-Inverse-Wishart (NIW) distributions are self-
conjugate with respect to Gaussian likelihoods, which sat-
isfies H . An inverse Wishart distribution, denoted by W−1,

is chosen to define the prior on symmetric, nonnegative def-
inite matrices such as Σ0 and Γ.

Hyper-parameters are assigned weakly informative priors
to allow them to be studied from observations with posterior
inference. To implement this, the parameters for the hyper-
priors are set below. For inverse Wishart priors ν = ν0 =
D + 1 and A = A0 = ID so that the means for the two
variables are E(Γ) = A

ν−D+1 and E(Σ0) =
A0

ν0−D+1 respec-
tively. Here ID is the D-dim identity matrix. For NIW priors,
νq = D, νh = K, and Φq = ID, Φ = IK have the same
meaning as the inverse Wishart prior. Finally, λq = λ = 1
and μ̄q and μ̄ are vectors of zero.

Model Remarks

Advantages of a DPP prior First, from the geometric point
of view, solutions with less reconstruction error and better
generalizability are naturally obtained due to the large vol-
ume capability. Second, more succinct solutions can be ob-
tained due to this mutually repulsive prior imposed on bases
W . In other words, the solutions obtained by our model re-
quire a smaller K when compared with the basic NMF to
achieve similar or better performance. Third, the solutions
under the scenario of MLL induce more diverse and abstract
‘parts’ representation to facilitate the labeling task.
Relation to LCNMF When the quality function for all basis
{wi} are set equally to 1, i.e., q(wi) = 1 with i = 1, . . . ,K
and the pairwise similarity functions are set to the inner
product of two associated bases in Euclidean space, i.e.,
�(wi,wj) = w�

i wj , and then the prior encoded with DPP
under the MAP inference is degenerated to the large-cone
regularizer in LCNMF (Liu, Gong, and Tao 2017). Thus,
LCNMF is a special case of the proposed DivBNMFM.
Tuning trade-off parameters In LCNMF, one needs to tune
a trade-off parameter manually, i.e., λ, to achieve a bal-
ance between the large-cone regularization and model fit-
ness. However, the proposed model, following the princi-
pled Bayesian framework, automatically adjusts the balance
between the large-volume regularization induced from DPP
based hyper-priors and the model fitness given empirical ob-
servations.

Inference

Due to the non-conjugacy in our model, the inference in-
volves intractable integrals. Therefore, precisely maintain-
ing full posterior distributions of all hidden random vari-
ables including parameters and hyper-parameters is infea-
sible. Thus, we use approximate solutions. Here, the Gibbs
sampling algorithm is adopted, which is an MCMC algo-
rithm and suitable for multivariate probability inference. It
obtains samples of all unobserved variables from a joint
posterior distribution by alternately and iteratively sampling
from the posterior distribution of each variable conditional
on all other variables. The overall sampling procedure is
summarized in Alg. 1, and the associated conditional pos-
terior distributions for all variables are individually derived
and details can be found in supplemental materials.
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Figure 3: ACF plots of H11, H21, H31,W11,W12 for a synthetic dataset with K = 5.

Table 1: Reconstruction error comparison on synthetic dataset

Measures Methods K
2 4 6 8 10

Euclidean

NMF 25.68 21.48 19.81 16.57 0.92
LVNMF (λ) 25.60 (0.1) 21.34 (0.1) 20.07 (0.01) 16.4 (0.10) 0.08 (1.0)
LANMF (λ) 25.53 (1.0) 21.40 (0.1) 19.88 (0.01) 16.41 (1.0) 0.19 (0.01)

DivBNMF-MAP (Γ) 24.10 (0.10) 19.55 (0.1) 17.74 (1.0) 14.67 (0.1) 0.09 (10)
DivBNMF-Mean (Γ) 24.18 (0.1) 19.88 (0.1) 18.04 (1.0) 15.23 (0.1) 0.1 (10)

Frobenius

NMF 56.35 45.58 35.57 23.11 1.89
LVNMF (λ) 56.31 (0.1) 45.61 (0.1) 35.48 (1.0) 23.16 (0.1) 0.13 (1.0)
LANMF (λ) 56.28 (1.0) 45.67 (0.1) 35.46 (1.0) 23.22 (0.10) 0.33 (0.01)

DivBNMF-MAP (Γ) 52.91 (0.1) 42.84 (0.1) 33.6 (1.0) 21.09 (0.1) 0.22 (10)
DivBNMF-Mean (Γ) 53.11 (0.1) 43.32 (0.1) 34.28 (1.0) 22.39 (0.1) 0.23 (10)

Algorithm 1 Gibbs Sampling for DivBNMF
Data: t = 1; sample number: NS ;
initializations W t, Ht,Σt

0,μ
t
q,Σ

t
q,Γ

t,μt,Σt.
Result: {W t, Ht,Σt

0,μ
t
q,Σ

t
q,Γ

t,μt,Σt}NS
t=1.

while t < NS do
t = t+ 1;
sampling W t|X,Ht−1,Σt−1

0 ,μt−1
q ,Σt−1

q ,Γt−1,

μt−1, Σt−1;
sampling Ht|X,W t,Σt−1

0 ,μt−1,Σt−1 from truncated
Gaussian distribution;
sampling Σt

0|X,W t, Ht from inverse Wishart distri-
bution;
sampling (μt,Σt)|Ht from Normal-Inverse-Wishart
distribution;
sampling (μt

q,Σ
t
q,Γ

t)|W t,μt−1
q ,Σt−1

q ,Γt−1;
end

Experiments

In this section, we present reconstruction results conducted
on both a synthetic dataset and a real-world dataset, i.e., the
MULAN scene. We also apply the decomposed NMF repre-
sentation to perform MLL on a real-world dataset to verify
the conjecture that the proposed DivBNMF enhances parts-
based learning and thus benefits the prediction accuracy of
the MLL task. Note that to make fair comparison among dif-
ferent algorithms, the shared parameters W and H were ini-
tialized with the same value.

Experiments on synthetic dataset

A synthetic matrix X = (36 × 100) was randomly gener-
ated. The experimental settings are shown below. The re-
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Figure 4: Comparison of diversity measurements on Wis
learned from the synthetic dataset.

sults for LANMF and LVNMF were optimized by varying
the trade-off parameter λ among {0.01, 0.1, 1, 10, 100}. All
reconstruction errors were averaged over 10 runs.

Sampling analysis The first 2000 iterations were omitted
as burn-in period. The ACF plots of five variables are pre-
sented in Figure 3. Although the sample autocorrelation val-
ues of different variables decay in different speeds in terms
of lags, all of them are reasonably small when the lag is be-
yond 100. Based on this observation, we collected indepen-
dent samples from the Gibbs chain by sequentially keeping
one sample every 100 interval after the burn-in period.
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Figure 5: ACF plots of H11, H21, H31,W11,W12 for MULAN scene dataset from result with K = 10.

Figure 6: mAP results for 6 classes of MULAN scene testing sets.

Reconstruction error The results of reconstruction errors
with varying K for both Mean and MAP estimations of the
proposed DivBNMF as well as the point estimations of the
baselines are summarized in Table 1. The number in brack-
ets in each cell corresponds to the parameter setting resulting
in the reconstruction error. Several trends can be extracted
from the table. First, along with the increase of K, more
bases were involved, and as a result, better reconstruction
was obtained. Second, the diversity-encouraging methods
including the proposed DivBNMF, LANMF and LVNMF
achieved better performance compared to the unconstrained
NMF. This shows the effectiveness of the diversity prior.
Furthermore, the proposed DivBNMF with either MAP es-
timation or mean estimation consistently outperformed the
two large cone induced diversity NMFs, namely LANMF
and LVNMF. We attribute this superiority to the more flexi-
ble diversity modeling ability of our method.

Diversity comparison The diversity measurements of
volume and total pairwise angles over the bases W s cor-

responding to the above results (MAP estimation for our
method) are shown in Figure 4. The Wis learned by NMF
achieved the worst diversity measure, while those learned
from LANMF and LVNMF demonstrated higher perfor-
mance of diversity measurements. Comparatively, the pro-
posed DivBNMF achieved the most diverse bases. Com-
paring this result to the above reconstruction performance,
we conclude that the diversity-encouraging priors improve
NMF’s reconstruction performance. Additionally, the DPP
prior within the Bayesian framework encodes more flexible
repulsiveness.

Experiments on MULAN scene dataset

We evaluated the performance of the proposed DivBNMF
regarding MLL on one nonnegative featured benchmark
dataset: the MULAN scene dataset 1. It contained 2047 im-
ages with six labels, each of which was represented by a

1http://mulan.sourceforge.net/
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Figure 7: Reconstruction error on both training and testing
sets of MULAN scene.

294-dimensional nonnegative feature vector. It was split into
a training set containing 1211 images and a test set contain-
ing 1196 images. Average precision (AP), summarizing over
the entire precision-recall curve, was examined as an MLL
evaluation criterion.

Sampling analysis The first 10000 iterations were
dumped as burn-in period. The thinning interval was set to
500 to collect independent samples as supported by reaching
reasonable small ACF values regarding lags for these vari-
ables, as evidenced by five ACF plots in Figure 5.

Performance analysis Figure 7 presents the reconstruc-
tion error results with varying Ks for both training and test-
ing subsets, and Figure 6 presents the corresponding AP
results for the six classes. For the reconstruction error, as
shown in the first plot, it was difficult to determine which
method among the proposed DivBNMF-MAP and the three
baselines achieved the best performance, since these curves
for either the training set or testing set were almost super-
posed with each other. In contrast, in terms of AP, as shown
in the second plots, different methods inhibit various ability
levels for multi-label prediction. The methods with a diverse
regularizer/prior consistently achieved better results over all
six classes than the traditional NMF. When zooming in for a
close look at each class, the proposed DivBNMF-MAP con-
sistently achieved the best results for classes 1, 2, 3, and 4,
while obtaining comparative results for classes 5 and 6.

Diversity analysis The diversity measurements for the
four methods with increasing K are shown in Figure 8.
The Wis learned from NMF inhibited the lowest diver-
sity in volume and total pairwise mutual angle compar-
ing to the other three diversity-encouraging methods, i.e.,
DivBNMF, LANMF, and LVNMF. Among those, the pro-
posed DivBNMF obtained a slightly better diversity mea-
surement. To sum up, all these experimental results together
verify that diversity-encouraging regularizers/priors facili-
tate NMF to improve multi-label prediction. Furthermore, a
DPP-encoded prior within the Bayesian framework achieves
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Figure 8: Comparison of diversity measurements on learned
Wis for MULAN scene.

better diversity modeling flexibility.

Conclusion

In this paper, we propose an extended Bayesian NMF ap-
proached, termed DivBNMF, with a diversity-encouraging
prior for columns of its bases matrix. The merits of Di-
vBNMF include its modeling diversity flexibility inherited
from DPP, as well as its labor-reducing ability of automat-
ically adjusting trade-off parameters via hyper-priors bene-
fited from the Bayesian inference. Experiments conducted
on both synthetic data reconstruction and real-world multi-
label learning tasks verify the effectiveness of the proposed
method.

Our future work will focus on two directions. First, due
to the non-conjugacy, the posterior inference requires inner
loop calculations within each sample sampling. Such opera-
tions are considerably time-consuming. Therefore, explor-
ing the possibility of conjugacy would help speed up the
whole procedure. The second direction is to extend the cur-
rent model by enabling it to automatically select the num-
ber of bases, namely K. Nonparametric learning (Xuan et
al. 2018) could be integrated into the current framework to
achieve this task.
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