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Abstract

Meta-learning for few-shot learning allows a machine to
leverage previously acquired knowledge as a prior, thus im-
proving the performance on novel tasks with only small
amounts of data. However, most mainstream models suf-
fer from catastrophic forgetting and insufficient robustness
issues, thereby failing to fully retain or exploit long-term
knowledge while being prone to cause severe error accumu-
lation. In this paper, we propose a novel Continual Meta-
Learning approach with Bayesian Graph Neural Networks
(CML-BGNN) that mathematically formulates meta-learning
as continual learning of a sequence of tasks. With each task
forming as a graph, the intra- and inter-task correlations can
be well preserved via message-passing and history transition.
To remedy topological uncertainty from graph initialization,
we utilize Bayes by Backprop strategy that approximates the
posterior distribution of task-specific parameters with amor-
tized inference networks, which are seamlessly integrated
into the end-to-end edge learning. Extensive experiments
conducted on the miniImageNet and tieredImageNet datasets
demonstrate the effectiveness and efficiency of the proposed
method, improving the performance by 42.8% compared
with state-of-the-art on the miniImageNet 5-way 1-shot clas-
sification task.

Introduction

A key signature of human intelligence is the ability to
quickly acquire knowledge from few examples. Despite
artificial intelligence (Yang et al. 2019; Bin et al. 2019;
Luo et al. 2019) has made remarkable progress in wide ap-
plications, it remains challenging to perform well in situa-
tions with little available data or limited computational re-
sources. Such a scenario is typically referred to as few-shot
learning, which has attracted vast interests recently.

Rather than simply augmenting data (Hariharan and Gir-
shick 2017) or adding regularization to compensate for the
lack of data, an emerging line of work tackles few-shot
learning with meta-learning. By leveraging previous learn-
ing experience to obtain a prior over tasks at meta-train time,
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the efficiency of later learning is further improved at meta-
test time. Particularly, the learned prior for discovering the
transferable knowledge can act as an inductive bias to mini-
mize generalization error.

Generally, mainstream meta-learning models follow the
episodic training paradigm, where the meta-learner ex-
tracts domain-general information among episodes so that
it can assist the task-specific learner to recognize unla-
beled samples (query set) based on the few labeled points
(support set). In this way, the meta-learner can be im-
plemented variously: as an optimizer that gathers gradient
flows from different tasks (Finn, Abbeel, and Levine 2017;
Nichol, Achiam, and Schulman 2018; Lee and Choi 2018);
as an classification weight generator that hallucinates clas-
sifiers for novel classes (Qiao et al. 2018; Rusu et al. 2016;
Gidaris and Komodakis 2019); or as a metric that measures
similarity between the query and support samples (Vinyals
et al. 2016; Snell, Swersky, and Zemel 2017). Nevertheless,
existing meta-learning methods are far from optimal due to
the lack of relational inductive bias modeling (Battaglia et
al. 2018), thereby failing to manipulate the structured repre-
sentations of intra- and inter-task relations.

Motivated to capture more interactions among instances,
another line of work has explored graph structure (Gar-
cia and Bruna 2018; Kim et al. 2019; Liu et al. 2019)
or second-order statistics like covariance (Li et al. 2019b)
in meta-learning framework. More concretely, Garcia and
Bruna (Garcia and Bruna 2018) cast few-shot learning as
the node classification problem with graph neural networks,
where nodes are represented with the images in the episodes,
and edges are given by a trainable similarity kernels. In the
same vein, Liu (Liu et al. 2019) et al. proposed a transduc-
tive propagation network (TPN) for label propagation and
thus enabled transductive inference for all query set. Alter-
natively, Kim et al. (Kim et al. 2019) modeled the learn-
ing as an edge labeling problem, in order to directly predict
whether the associated two nodes belong to the same class.

While promising, most existing graph-based meta-
learning approaches suffer from two major limitations, i.e.,
catastrophic forgetting (Kemker et al. 2018) and insuffi-
cient robustness (Zhang et al. 2019), which make it diffi-
cult to transfer knowledge over long time spans or handle
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uncertainty in graph structure. On the one hand, the problem
of catastrophic forgetting is that when a meta-learner grad-
ually encounters a sequence of learning problems, it tends
to attenuate past knowledge when it learns new things. On
the other hand, current graph-based models incorrectly treat
the pre-defined edge initialization as the reliable topology
for message-passing, in the sense that inaccurate or uncer-
tain relationships among query-support pairs could lead to
severe error accumulation through multi-layer propagation.

To address the issues mentioned above, in this paper, we
propose a novel Continual Meta-Learning with Bayesian
Graph Neural Networks (CML-BGNN) for few-shot clas-
sification, which is illustrated in Figure 1. To alleviate the
drawback of catastrophic forgetting, we jointly model the
long-term inter-task correlations and short-term intra-class
adjacency with the derived continual graph neural networks,
which can retain and then access important prior information
associated with newly encountered episodes. Specifically,
the node update block aggregates the adjacent embedding
from each episode and feeds context-aware node representa-
tions to gated recurrent units, which are expected to melio-
rate node features with previous history. Such aggregations
can be naturally chained and combined into the multiple lay-
ers to enhance model expressiveness. Moreover, as uncer-
tainty is rife in edge initialization, we provide a Bayesian ap-
proach for edge inference so that classification weights can
be dynamically adjusted for discriminating specific tasks.
The conceived amortization networks approximate posterior
distribution of classification weights with a Gaussian distri-
bution defined by a mean and variance over possible values.
Accordingly, task-specific parameters are sampled to miti-
gate the bias of node embedding and further enhance the
robustness of graph neural networks. Overall, our contribu-
tions can be briefly summarized as follows:

• We propose a novel Continual Meta-Learning framework
that leverages both long-term inter-task and short-term
intra-task correlations for few-shot learning. Different
from existing graph-based meta-learning approaches, we
introduce a memory-augmented graph neural network to
enable flexible knowledge transfer across episodes.

• To remedy uncertainty among query-support pairs, a
Bayesian edge inference is derived by amortizing poste-
rior inference of task-specific parameters.

• We show the effectiveness of the proposed architecture
through extensive experiments on the miniImagenet and
tieredImagenet benchmark with a 42.8% relative im-
provement over state-of-the-art counterparts. Regarding
to robustness analysis, we perform semi-supervised learn-
ing to verify the efficiency and effectiveness of the pro-
posed method.

Related Work

Meta-Learning

Meta-learning studies how to distill prior knowledge from
past experience and enable fast adaptation to novel tasks
with only a limited amount of samples. Much effort has

been devoted by recent work, which can be broadly cate-
gorized into several groups: (1) Optimization-based meth-
ods either learn a good parameter initialization or leverage
an optimizer as the meta-learner to adjust model weights.
Typical examples include learning to approximate gradient
descent with LSTM (Ravi and Larochelle 2017), learning
model-agnostic initial parameters (Finn, Abbeel, and Levine
2017) and its variants with probabilistic estimation (Finn,
Xu, and Levine 2018; Yoon et al. 2018; Li et al. 2017), first-
order approximation (Nichol, Achiam, and Schulman 2018),
layer selection (Lee and Choi 2018), learner update direc-
tion and learning rate learning (Li et al. 2017), and relation
embedding (Rusu et al. 2019); (2) Generation-based meth-
ods learn to augment few-shot data with a generative meta-
learner (Wang et al. 2018), or learn to predict classification
weights for novel classes (Rusu et al. 2016; Qiao et al. 2018;
Gidaris and Komodakis 2019); (3) Metric-based approaches
address the few-shot classification problem by learning a
proper distance metrics as the meta-learner, such as co-
sine similarity (Vinyals et al. 2016), euclidean distance to
class prototypes (Snell, Swersky, and Zemel 2017; Ren et al.
2018), ridge regression (Bertinetto et al. 2019), relation net-
work (Sung et al. 2018), task attention (Yan, Zhang, and He
2019), category traversal (Li et al. 2019a), and graph model-
ing (Garcia and Bruna 2018; Liu et al. 2019; Li et al. 2019b;
Kim et al. 2019). Rather than purely relying on graph-based
metric learning, our methodology exploits long-term infor-
mation from previous tasks and jointly models the topologi-
cal uncertainty.

Catastrophic Forgetting

Catastrophic forgetting (Kemker et al. 2018) has been a
long-standing issue in machine learning community due to
the stability-plasticity dilemma (Ditzler et al. 2015). In re-
cent literature, a number of methods have been proposed
on the basis of continual learning, which can be roughly
subdivided into the following groups. Regularization ap-
proaches (Li and Hoiem 2016) alleviate catastrophic for-
getting by imposing constraints on the update of the neural
weights in order to prevent “overwriting” what was previ-
ously encoded. Alternatively, in ensemble algorithms (Rusu
et al. 2016), the architecture itself is altered to accommodate
new tasks by retraining a pool of pre-trained models. In dual-
memory algorithms (Soltoggio, Stanley, and Risi 2018), one
estimates the distribution of the old data either by saving a
small fraction of the original dataset into a memory buffer
or by training a generator to mimic the lost data and la-
bels (Shin et al. 2017). Being more related to the last group,
our work, for the first time, tackles the catastrophic forget-
ting in a meta-learning framework and validates its effec-
tiveness and efficiency on practical tasks.

Background and Problem Definition

Given the training set Dtrain, the goal is to learn the model
f : x → y, which is capable of generalizing well to the un-
seen test set Dtest, where Dtrain∩Dtest = ∅. Meta-learning
approaches commonly adopt episodic training strategy to
minimize the generalization error across a series of tasks
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Figure 1: The general flowchart of the proposed CML.

T ∼ p(T ) that are randomly sampled from a task distri-
bution. Specifically, a N -way, K-shot classification setting
is used for both training and testing stage, where N in-
dicates the number of unique classes in each episode and
K denotes the number of training samples per class. Each
episode or task T = (S,Q) is composed of the support set
S = {(xi, yi)}N×K

i=1 and the query set Q = {(x̃i, ỹi)}Ki=1.
To discover the commonalities and variability across tasks,
we decouple the model f into two sub-modules, i.e., the
feature learner fΘ(·; Θ) and the task-dependent classifiers
{fψ(·;ψt)}Tt=1, where Θ indicates the shared parameters
that suit for all tasks and {ψt}|T |

t=1 indicate the task-specific
parameters. To mathematically illustrate the proposed con-
tinual meta-learning procedure, we firstly recall the unified
definition of existing meta-learning models: as discussed in
literature (Grant et al. 2018; Finn, Xu, and Levine 2018),
meta-learning can be viewed as an approximate inference
for the posterior given the following definition.

Definition 1. Meta-Learning Given the task T sampled
from task distribution p(T ), the posterior predictive distri-
bution for query points is calculated as,

p(Ỹ |X̃,S; Θ) =

|Q|∏
i=1

p(ỹi|x̃i,Si; Θ)

=

|Q|∏
i=1

∫
p(ỹi|x̃i,ψi; Θ)p(ψi|Si; Θ) dψi ≈ p(ỹi|x̃i, ψ∗

i ),

where ψ∗
i is the maximum a posteriori (MAP) value of ψi,

which can be obtained via point estimates.

For instance, the optimization-based meta-learning re-
gards all model parameters as ψ and forms a point estimate
by taking several steps of gradient descent initialized at ψ0

and learning rate η, i.e.,

ψ∗(S; Θ) = ψ0 + η
∂

∂ψ
log

|S|∑
j=1

p(yj |xj , ψ; Θ). (1)

While, the generation-based meta-learning focuses on es-
timating classification weight vector ψ for novel classes,

given the initial value ψ0 trained on Dtrain and the learn-
ing rate η, i.e.,

ψ∗(S,Θ) = ψ0 + η
∂

∂ψ
log

|S|∑
j=1

p(yj |xj , G(xj |ψ); Θ), (2)

where G(·|·) is the learnable weight generator. The metric-
based meta-learning takes the parameters from the top layer
of neural networks as ψ = {wc, bc}Cc=1 for all C classes, by
averaging the top-layer activations for each class c, i.e.,

ψ∗(S,Θ) = {μc,−
‖ μc ‖2

2
}Cc=1,

μc =
1

kc

kc∑
j=1

fΘ(x
(c)
j ), (3)

where kc denotes the number of samples belonging to class
c, and fΘ(·) indicates the embedding network.

However, the current meta-learning suffers from catas-
trophic forgetting and lacks for uncertainty estimation.
Without fixing these problems, a single deep model will
be incapable of adapting itself to a long-run learning, since
it forgets the old messages when it deals with new things.
Therefore, we generalize the meta-learning to a preferable
continual way, and give the following definition.
Definition 2. Continual Meta-Learning Given the task T
sampled from task distribution p(T ), the posterior predic-
tive distribution for query points is

p(Ỹ |X̃,S; Θ) =

|Q|∏
i=1

p(ỹi|x̃i,S1:i; Θ)

=

|Q|∏
i=1

∫
p(ỹi|x̃i, hi,ψi; Θ)p(hi|S1:i−1; Θ)p(ψi|Si; Θ) dψi,

where hi indicates the history knowledge that gives transi-
tion of long-term memory.

The first term can be interpreted as given a novel sam-
ple x̃i, its respective label ỹi not only conditions on the cur-
rent task ψi but also history information hi, which naturally
reuses supervision without pilling up complexity. The sec-
ond term presents information updating and resetting from
related tasks, which is jointly learned with shared parame-
ter Θ in the continual graph neural networks, which will be
elaborated in the next section. Lastly, to ensure a tractable
likelihood, in the last term, the distribution p(ψi|Si; Θ) over
classifier weights is approximated with a few steps of Bayes
by Backprop.

Proposed Approach

In this section, we detail two major components of the
proposed method, the continual graph neural networks and
Bayes by Backprop procedure for edge inference.

Continual Graph Neural Networks

As shown in Figure 1, the support T = (S,Q) (shown in
circle) and query data Q = {(x̃i, ỹi)}Ki=1 (shown in trian-
gle) in each episode can form an undirected acyclic graph
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Figure 2: An illustration of the node update and edge infer-
ence block at the k-th layer.

G = (V, E). Each vertex vi ∈ V is associated with a node
embedding vector X = {xi}|S|+|Q|

i=1 and each edge eij ∈ E
represents interaction between nodes. The adjacency matrix
A = {Aij}|V|

i,j=1 is defied as semantic similarity between
two connected nodes vi and vj , which will be updated dy-
namically. Considering the given label of support set, the
adjacency matrix can be initialized as,

A
(0)
ij =

⎧⎨
⎩
1 ifxi, xj ∈ S and yi = yj ,

0 ifxi, xj ∈ S and yi �= yj ,

0.5 otherwise,
(4)

where support-support pairs are initialized w.r.t their labels
and query-support pairs are softly assigned with an uncertain
value. Even though ambiguity is explicitly injected, we rem-
edy the noise via probabilistic edge inference presented in
the next section. For efficient implementation, we split the
meta-train Dtrain and meta-test dataset Dtest into several
sequences of episodes {Gt}Tt=1, which is learned by node up-
dating (see Figure 2), history transition and edge inference
module consecutively, where T is the length of the sequence.

Node Interactions Modeling To make each node aggre-
gate more information from neighbors K hops away, the
proposed graph model stacksK aggregation blocks. Follow-
ing the generic propagation rule, the node vectors in arbi-
trary graph Gt at the k-th layer can be updated as,

v̂
(k−1)
i =

∑
j∈N (i)

(v
(k−1)
i A

(k−1)
ij ),

v
(k)
i = fn([v

(k−1)
i ; v̂

(k−1)
i ]; θn), (5)

where N (i) indicates the neighbor set of the node vi, [·; ·]
is the concatenation operation and fn(·; θn) is a transfor-
mation block consisting of two convolutional layers, one
LeakyReLU activation and one dropout layer. The node em-
bedding is initialized with the extracted representation from

the backbone embedding model, i.e., v(0)i = xi. Here we
leave out the layer mark (k) in the next section.

Task History Transition After receiving messages from
current episode Gt, each node embedding vti is further trans-
formed with a gate updater. Different from the Gated Graph
Neural Network (Li et al. 2016) that utilizes the gate updater
to extend the depth of graph neural networks for the same
batch of data, we feed different embedding at each time step
in order to capture the long-term task correlations. Specifi-
cally, the hidden state for each node is transferred as follows,

zti = σ(Wzv
t
i + Uzh

t−1
i + bz),

rti = σ(Wrv
t
i + Urh

t−1
i + br),

h̃ti = tanh(Whv
t
i + Uh(r

t
i 	 ht−1

i ) + bh),

hti = h̃ti 	 zti + ht−1
i 	 (1− zti), (6)

where hti is the updated feature of node vti , σ is the sigmoid
function, Wz , Uz , Wr, Ur, Wh, Uh are learnable weights,
and bz , br, bh are biases of the updating function. zti and
rti are update gate vector and reset gate vector, respectively.
Here we let all parameters as θh for shorthand. The hidden
state h0i is initialized as a zero vector.

Adjacency Feature Update After T -step hidden transi-
tion, we can obtain a set of final node representations at the
k-th layer. In this way, the adjacency features Aij at the k-th
layer is calculated as,

Ã
(k)
ij = fe(‖h(k−1)

i − h
(k−1)
j ‖; θe),

A
(k)
ij = D− 1

2 Ã
(k)
ij D

− 1
2 , (7)

where D is the degree matrix of adjacency matrix, fe(·; θe)
is the non-linear transformation network parameterized by
θe, which includes four convolutional blocks, a batch nor-
malization, a LeakyReLU activation and a dropout layer.

Bayes by Backprop for Edge Inference

Though multiple graph aggregation layers, we aim to infer a
full predictive distribution over the unknown query labels re-
lying on distributional Bayesian Decision Theory (Finn, Xu,
and Levine 2018; Gordon et al. 2019). Notably, we amortize
the posterior distribution of the classification weights p(ψ)
as qψ to enable quick prediction at the meta-test stage and
learn parameters by minimizing the average expected loss
over tasks i.e., ψ∗ = argminψ LB , where

LB = E[DKL(p(ỹ|x̃,S) ‖ qψ(ỹ|x̃,S))],

ψ∗ = argmax
ψ

E[log

∫
p(ỹ|x̃, ψ)qψ(ψ|x̃,S) dψ]. (8)

To ensure likelihood tractable, we use a factorized Gaussian
distribution for qψ(ψ|x̃,S; Θ) with means and variances set
by the amortization network,

qψ(ψ|x̃,S; Θ) =

|T |∏
t=1

qψ(ψt|{hi}|T |
i=1) =

|T |∏
t=1

N (μt, δ
2
t ),

μt = fμ({hi}|T |
i=1; θμ), δ

2
t = fδ({hi}|T |

i=1; θδ).
(9)
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Algorithm 1 Meta-training of the Proposed CML-BGNN.
1: Inputs:

Task distribution of Dtrain: p(T );
2: Outputs:

Model Weights: Θ = {θn, θh, θe, θμ, θδ};
3: Initialize:

Hyper-parameters: M , K, γ;
Adjacency matrix A; Hidden states h;
Visual features X for all tasks;
Minibatch size m and learning rate η;

4: for M iterations do
5: Sample batch of tasks T ∼ p(T );
6: Message passing and update node representations in

Equation (5) and Equation (6);
7: Compute adjacency matrix in Equation (7);
8: Generate task-specific parameter μt, δt, sample
ψt ∼ N (μt, δ

2
t );

9: Compute prediction p(ỹ|x̃, ψt) of query samples;
10: Update parameters Θ by descending stochastic gra-

dients according to Equation (11).
11: end for

With the generated posterior distribution, we can adaptively
transform the predictive logits from the k-th layer based on
the learned adjacency matrix and sampled classifier weights
ψt = {Wt, bt} for each specific task,

p(ỹ(k)|x̃, h(k), ψt) =Mq 	 σ(WtA
(k) + bt)	Ms,

Wt, bt ∼ N (μt, δ
2
t ), (10)

where σ and 	 indicate the sigmoid function and Hadamard
product, respectively. Mq indicates the mask matrix to se-
lect query predictions, where the value is assigned 1 when
the row index belongs to query set and 0 otherwise. Simi-
larly, Ms selects columns when the column index belongs
to support set. During the meta-training time, the proposed
model is optimized by minimizing the binary cross-entropy
loss of query edges and Bayes by Backprop loss, i.e.,

LE = −
K∑

k=1

|Q|∑

i=1

ỹi log(p(ỹ
(k)
i )) + (1− ỹi) log(1− p(ỹ

(k)
i )),

Θ∗ = argmin
Θ

LE + γLB , (11)

where shared parameters Θ = {θn, θh, θe, θμ, θδ} are jointly
optimized. the loss aggregates all predictions from different
layers. The overall algorithm for meta-training is shown in
Algorithm 1.

Experiments

Datasets

For fair comparisons with state-of-the-art baselines, we con-
duct extensive experiments on two benchmark few-shot
classification datasets:

miniImageNet is the subset of the ILSVRC-12 dataset,
where 600 images for each of 100 classes are randomly cho-
sen to be the part to the dataset. We follow the class split

used by (Ravi and Larochelle 2017), where 64 classes are
used for training, 16 for validation, and 20 for testing. All
the input images have the size of 84× 84× 3.

tieredImageNet is a larger subset of ILSVRC-2012,
which contains 608 classes in 34 higher-level categories
sampled from the high-level nodes in the ImageNet. The
standard split includes 351 classes for training, 97 classes
for validation, and 160 classes for testing. The average num-
ber of images in each class is 1, 281.

Baselines

We compare our approach with the following baseline meth-
ods to justify its effectiveness:

Optimization-based: Meta-learner LSTM (Ravi and
Larochelle 2017), MAML (Finn, Abbeel, and Levine 2017),
REPTILE (Nichol, Achiam, and Schulman 2018), Meta-
SGD (Li et al. 2017), SNAIL (Mishra et al. 2018),
LEO (Rusu et al. 2019).

Generation-based: PLATIPUS (Finn, Xu, and Levine
2018), VERSA (Gordon et al. 2019), LwoF (Rusu et al.
2016), Param Predict (Qiao et al. 2018), wDAE (Gidaris and
Komodakis 2019).

Metric-based: Matching Net (Vinyals et al. 2016), Pro-
totypical Net (Snell, Swersky, and Zemel 2017), Relation
Net (Sung et al. 2018), TADAM (Oreshkin, López, and La-
coste 2018), CTM (Li et al. 2019a).

Graph-based: GNN (Garcia and Bruna 2018), CovaM-
Net (Li et al. 2019b), TPN (Liu et al. 2019), EGNN (Kim et
al. 2019).

Implementation Details

Our source code1 is implemented based on Pytorch. All ex-
periments are conducted on a server with two GeForce GTX
1080 Ti and two GTX 2080 Ti GPUs.

Module Architecture. Despite the generality of back-
bone embedding module, we adopt the same architecture
used in some recent work (Sung et al. 2018; Kim et al.
2019). Specifically, the network consists of four convolu-
tional blocks including a 2D covolutional layer with a 3× 3
kernal, a batch normalization, a 2 × 2 max-pooling and a
LeakyReLU activation. Regarding to specification of recur-
rent units, the dimension of hidden states and all embedding
size are fixed to 96. We fix the number of hidden states to 8.

Parameter Settings. The mini-batch size for all graph-
based models is 80 and 64 for 1-shot and 5-shot experiments,
respectively. The proposed model was trained by Adam opti-
mizer with an initial learning rate η of 1× 10−3 and weight
decay of 1 × 10−6. The dropout rate is set to 0.3 and the
loss coefficient γ is set to 1. We report the final results of
the proposed model trained with 70K and 160K iterations
on miniImageNet and tieredImageNet.

Comparisons with State-of-The-Art

To verify the effectiveness of our proposed continual meta-
learning model, we compare it with state-of-the-art meta-
learning methods on the miniImageNet and tieredImageNet

1https://github.com/Luoyadan/BGNN-AAAI

5025



Table 1: The 5-way 1-shot and 5-shot classification accura-
cies (%) on the test split of the miniImageNet dataset, with
95% confidence interval. † indicates our re-implementation.
“w/o” indicates without.

Models Backbone 1-shot 5-shot

Optimization-based
Meta-learner LSTM Conv4 43.44± 0.77 60.60± 0.71

MAML Conv4 48.70± 1.84 63.10± 0.92
REPTILE Conv4 49.97± 0.32 65.99± 0.58

Meta-SGD Conv4 50.47± 1.87 64.03± 0.94
SNAIL ResNet-12 55.71± 0.99 68.88± 0.92

LEO WRN-28 61.76± 0.08 77.59± 0.12
Generation-based

PLATIPUS Conv4 50.13± 1.86 -
VERSA Conv4 53.40± 1.82 67.37± 0.86

LwoF Conv4 56.20± 0.86 72.81± 0.62
Param Predict WRN-28 59.60± 0.41 73.74± 0.19

wDAE WRN-28 61.07± 0.15 76.75± 0.11
Metric-based

Matching Net Conv4 43.56± 0.84 55.31± 0.73
Prototypical Net Conv4 49.42± 0.78 68.20± 0.66

Relation Net Conv4 50.40± 0.80 65.30± 0.70
TADAM ResNet-12 58.50± 0.30 76.70± 0.30

CTM Conv4 62.05± 0.55 78.63± 0.06
Graph-based

GNN Conv4 50.33± 0.36 66.41± 0.63
CovaMNet Conv4 51.19± 0.76 67.65± 0.63

TPN Conv4 53.75± 0.86 69.43± 0.67
EGNN Conv4 - 76.37± 0.30

EGNN† Conv4 58.65± 0.55 75.25± 0.49
Ours
CML-BGNN w/o C Conv4 63.74± 0.63 79.36± 0.57
CML-BGNN w/o B Conv4 87.15± 0.24 91.21± 0.19

CML-BGNN Conv4 88.62 ± 0.43 92.69 ± 0.31

datasets. Here we report the best performance for every
model in Table 1 and Table 2, along with the specifications
of the backbone embedding models for feature extraction.
Conv4 refers to a 4-layer convolutional network, ResNet-
12 (He et al. 2016) denotes 4 layer blocks of depth 3 with 3×
3 kernels and short connections, and WRN-28 is a 28-layer
wide residual network. Generally, a deeper embedding net-
work will lead to a better classification performance yet with
a risk of overfitting. From Table 1, we can observe that our
CML-BGNN equipped with three graph layers surpasses
all compared meta-learning methods with a large margin,
especially in the challenging scenario of 1-shot learning.
More concretely, the proposed model with the basic conv4
embedding structure gains 43.5%, 45.1%, 42.8%, 51.1%
relative improvements over the previous best optimization-
based LEO (Rusu et al. 2019), generation-based wDAE (Gi-
daris and Komodakis 2019), metric-based CTM (Li et al.
2019a) and graph-based methods EGNN (Kim et al. 2019)
in a 5-way 1-shot miniImageNet experiment, respectively.
This is mainly owing to the learned history transition, which
reinforces the memory of rare samples and correlations be-
tween classes. Furthermore, we re-implemented the most
powerful graph-based baseline EGNN with mini-batch size
of 80 for fairness and present a detailed comparison in box-
plots. All parameters are randomly initialized in three trials
with fixed seeds 111, 222, 333 for reproducibility. As de-
picted in Figure 3, the absolute value of validation accuracy

Table 2: The 5-way 1-shot and 5-shot classification accura-
cies (%) on the test split of the tieredImageNet dataset, with
95% confidence interval. † indicates the re-implementation.
“w/o” indicates without.

Models Backbone 1-shot 5-shot

Optimization-based
MAML Conv4 51.67± 1.81 70.30± 0.08

REPTILE Conv4 52.36± 0.23 71.03± 0.22
Meta-SGD Conv4 62.95± 0.03 79.34± 0.06

LEO WRN-28 66.33± 0.05 81.44± 0.09
Generation-based

LwoF Conv4 50.90± 0.46 66.69± 0.36
wDAE WRN-28 68.18± 0.16 83.09± 0.12

Metric-based
Matching Net† Conv4 54.02± 0.00 70.11± 0.00

Prototypical Net Conv4 53.31± 0.89 72.69± 0.74
Relation Net Conv4 54.48± 0.93 71.32± 0.78

CTM Conv4 64.78± 0.11 81.05± 0.13
Graph-based

GNN Conv4 43.56± 0.84 55.31± 0.73
TPN Conv4 57.53± 0.96 72.85± 0.74

EGNN-3 Conv4 - 80.15± 0.30
EGNN-1† Conv4 61.04± 0.45 73.91± 0.40
EGNN-2† Conv4 64.64± 0.50 79.80± 0.43
EGNN-3† Conv4 65.30± 0.53 82.39± 0.43

Ours
CML-BGNN-1 Conv4 85.91± 0.51 89.58± 0.28
CML-BGNN-2 Conv4 88.02± 0.50 91.50± 0.25
CML-BGNN-3 Conv4 88.87 ± 0.51 92.77 ± 0.28

either in 1-shot or 5-shot setting tends to go up as training
iterations increase. The proposed method reaches the peaks
at an early stage and achieves a much higher performance,
yet showing the sensitivity to seed selection in the case of 5-
way 5-shot classification. We infer this variance is mainly
introduced by edge inference sampling, which can be al-
leviated by averaging predictions from multiple sampling.
From Table 2, we observe that our re-implemented EGNN
obtains better performance (as indicated with †) by enlarging
the batch size from 40 to 80. This phenomenon consistently
verifies that task correlations are more likely to contribute
positively to few-shot learning.

Ablation Study

Effect of Components. The major ablation results re-
garding to CML-BGNN with different components on
miniImageNet dataset are shown in gray blocks of Table 1.
All variants are trained with three graph layers, mini-batch
size of 80. Removing the history transition module, the vari-
ant CML-BGNN w/o C can only mine the pattern from lo-
cal neighborhood without maintaining related prior informa-
tion for reference, thus inevitably leading to a inferior per-
formance, e.g., averagely decreasing 5-way 1-shot perfor-
mance from 88.62% to 63.74%. CML-BGNN w/o B indi-
cates the variant of our proposed model that directly utilizes
the adjacency matrix to predict query labels without infer-
ring task-specific parameters. Accordingly, the classification
accuracy suffers a slight drop on both datasets, e.g., from
92.69% to 91.21% in a 5-way 5-shot setting, which demon-
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Figure 3: The 5-way 1-shot and 5-shot accuracies of query
classification on the validation split of miniImageNet (left)
and tieredImageNet dataset (right).

Figure 4: The 5-way 1-shot accuracies (%) of query classifi-
cation on the validation split of miniImageNet with different
number of hidden states. Best viewed in color.

strates the necessity of the full CML-BGNN formulations.

Effect of GNN’s Depth. In addition to the evaluation for
investigating the impact of GNN’s depth, we test our model
in both 5-way 1-shot and 5-shot with different depth of graph
neural networks on both miniImageNet (shown in Table 3)
and miniImageNet (shown in Table 2) dataset. Generally,
larger depth enables node to learn from a global perspec-
tive and thus enhances the expressive power of graph neural
networks. For instance, the proposed CML-BGNN, EGNN
and GNN equipped with a 3-layer structure respectively im-
prove the classification accuracy by 3.4%, 6.4% and 4.3%
w.r.t 5-way 1-shot classification, compared with the one with
one-layer structure.

Effect of Number of Hidden States. In order to study
the impact of number of hidden states in history transition
module, we compare nine variants of our model on both
datasets and show validation curves in terms of node clas-
sification accuracy and edge binary classification results in
Figure 4. The CML-BGNN-L-{1,2,3}-C-16 indicates the
variants that leverage unrolled gated recurrent units with 16
time steps to transfer history messages with different num-
ber of graph layers, which significantly outperform other
variants with fewer hidden states CML-BGNN-L-{1,2,3}-
C-{4,8}. This confirms that the augmented memory module
effectively enhances node representation learning by bridg-
ing the prior task learning regardless of the model depth.

Table 3: 5-Way 5-shot and 1-shot classification accuracies
(%) on miniImageNet dataset with different depths of graph
neural networks. † indicates our re-implementation.

Methods Layer-1 Layer-2 Layer-3

1-shot
GNN† 48.25± 0.65 49.17± 0.35 50.32± 0.41

EGNN† 55.13± 0.44 57.47± 0.53 58.65± 0.55
CML-BGNN 85.73 ± 0.47 87.67 ± 0.47 88.62 ± 0.43

5-shot
GNN† 65.58± 0.34 67.21± 0.49 66.99± 0.43

EGNN† 67.76± 0.42 74.70± 0.46 75.25± 0.49
CML-BGNN 90.85 ± 0.27 91.63 ± 0.26 92.69 ± 0.31

Table 4: Semi-supervised few-shot classification accuracies
(%) on miniImageNet with 95% confidence intervals.

Methods
5-way 5-shot

20%-labeled 40%-labeled 100%-labeled

GNN-LabeledOnly 50.33± 0.36 56.91%± 0.42 66.41± 0.63
GNN-Semi 52.45± 0.88 58.76%± 0.86 66.41± 0.63
EGNN-LabeledOnly† 58.65± 0.55 56.91%± 0.00 75.25± 0.49
EGNN-Semi† 63.62± 0.00 64.32%± 0.00 75.25± 0.49
CML-BGNN-LabeledOnly 84.37± 0.54 88.62%± 0.29 92.69 ± 0.31
CML-BGNN-Semi 88.95 ± 0.32 89.70%± 0.32 92.69 ± 0.31

Robustness Evaluation by Semi-supervised
Learning

To quantitatively analyze the model capacity of handling
uncertainty, we conduct 5-way 5-shot semi-supervised ex-
periments on miniImageNet dataset and showcase major re-
sults in Table 4. In this semi-supervised regime, support
data is partially labeled while balanced across all classes,
which poses a greater challenge of modeling uncertain rela-
tionships between labeled and unlabeled samples. In partic-
ular, the 20%-labeled column indicates that each episode
contains 4 labeled support instances and 1 unlabeled in-
stance. Here we use LabeledOnly to denote the strategy
with only labeled support samples, and Semi presents train-
ing with both labeled and unlabeled data. By comparing
the results with all graph-based counterparts, the proposed
method greatly outperforms with a large margin (88.95% vs
63.62% and 52.45%, when 20% are labeled). The superior
performance results from our uncertainty modeling, which
effectively adapts the noise and misguidance from adjacency
initialization with task-specific parameters.

Conclusion

In this work, we propose a continual meta-learning model
with Bayesian graph neural networks for few-shot classifi-
cation problem. Towards preserving more history messages
associated with related tasks, the proposed CML-BGNN
mines the prior knowledge patterns by updating a memory-
augmented graph neural network and handles topological
uncertainty with Bayes by Backprop. Distinguishing our
work from conventional graph-based meta-learning meth-
ods, it naturally alleviates the catastrophic forgetting and in-
sufficient robustness issues and thus encourages an efficient
adaptation and generalization to novel tasks.
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