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Abstract

Clustering by jointly exploiting information from multiple
views can yield better performance than clustering on one sin-
gle view. Some existing multi-view clustering methods aim at
learning a weight for each view to determine its contribution
to the final solution. However, the view-weighted scheme can
only indicate the overall importance of a view, which fails to
recognize the importance of each inner cluster of a view. A
view with higher weight cannot guarantee all clusters in this
view have higher importance than them in other views. In this
paper, we propose a cluster-weighted kernel k-means method
for multi-view clustering. Each inner cluster of each view is
assigned a weight, which is learned based on the intra-cluster
similarity of the cluster compared with all its corresponding
clusters in different views, to make the cluster with higher
intra-cluster similarity have a higher weight among the cor-
responding clusters. The cluster labels are learned simultane-
ously with the cluster weights in an alternative updating way,
by minimizing the weighted sum-of-squared errors of the ker-
nel k-means. Compared with the view-weighted scheme, the
cluster-weighted scheme enhances the interpretability for the
clustering results. Experimental results on both synthetic and
real data sets demonstrate the effectiveness of the proposed
method.

1 Introduction

Multi-view data widely exist in real-world applications,
where the same set of instances are represented by multiple
distinct feature sets from different perspectives. For exam-
ple, images can be described by different visual descriptors;
documents may be translated into various languages; and pa-
tients are diagnosed by several types of medical examina-
tions. These heterogeneous views usually have consistent as
well as complementary information with each other, which
can be simultaneously learned to get better performance than
learning one single view.

Multi-view clustering has gained much attention in re-
cent years (Chao, Sun, and Bi 2017). It assumes that dif-
ferent views have a common clustering partition, which
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means the corresponding instances in different views be-
long to the same cluster. Simply concatenating features
from different views into a single one clustered by tradi-
tional clustering algorithms often results in poor perfor-
mance, since it ignores the heterogeneity of different fea-
ture spaces and may lead to dimension curse. Most existing
multi-view algorithms tend to obtain a common clustering
partition by jointly exploiting information of multiple views
without breaking the inherent structure of each view. The
general idea of these algorithms is to guarantee the consis-
tency among different views by using common cluster dis-
crimination information, which can be expressed by com-
mon eigenvector matrix for multi-view spectral clustering
(Kumar and Daumé 2011; Kumar, Rai, and Daumé 2011;
Li et al. 2015; Nie, Li, and Li 2016), common coefficient
matrix for multi-view subspace clustering (Yin et al. 2015;
Gao et al. 2015; Wang et al. 2016), and common indicator
matrix for multi-view nonnegative matrix factorization clus-
tering (Akata, Thurau, and Bauckhage 2011; Liu et al. 2013;
Qian et al. 2016) and multi-view k-type clustering (Tzortzis
and Likas 2012; Cai, Nie, and Huang 2013; Xu, Wang, and
Lai 2016).

In some cases, the low-quality views (views with high
clustering loss under the common clustering partition) may
degrade the performance if equally using all available views.
To determine the contribution of different views to the fi-
nal clustering, many view-weighted methods for learning
a weight for each view have been proposed. Some meth-
ods (Tzortzis and Likas 2012; Xia et al. 2010; Li et al.
2015) multiply each view with a weight factor, and the dis-
tribution of the weights is controlled by an extra hyper-
parameter. Some methods (Nie, Li, and Li 2016; 2017;
Huang, Kang, and Xu 2018) use a self-weighted scheme
to automatically learn a weight for each view without in-
troducing any extra hyper-parameter. Xu, Wang, and Lai
(2016) proposed a method to jointly learn the view weights
as well as the feature weights for high-dimensional fea-
ture selection. Xu, Tao, and Xu (2015) proposed a self-
paced smoothed weighting scheme that dynamically assigns
weights to views in clustering process for gradually training
from ’easy’ to ’complex’ views. In general, most existing
view-weighted methods determine the weight for each view
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according to the clustering loss of each view, to make the
view with lower loss possess a higher weight.

However, the view-weighted scheme can only reflect the
overall quality of a view, which is like a ’black box’ that
cannot discover more detailed information within the view.
In real data sets, different clusters in a view may quite vary in
the degree of intra-cluster similarity, a view with lower loss
cannot guarantee all clusters in this view are partitioned bet-
ter than them in other views. The intra-cluster similarity of
the corresponding clusters can be lower in some views while
higher in others. Roughly assigning the weight to each view
by regarding each view as a whole cannot recognize the im-
portance of each inner cluster of a view. To deal with this
problem, in this paper, we propose a Cluster-Weighted Ker-
nel K-Means method for multi-view clustering (CWK2M),
which, as far as we know, is the first exploration on the
cluster-weighted scheme in multi-view clustering. Instead
of assigning the weight to the whole view, the weight is as-
signed to each inner cluster of the view, which determines
the contribution of each inner cluster to the final solution.
The cluster weight is learned based on the intra-cluster sim-
ilarity of this cluster compared with all its corresponding
clusters in different views. The kernel k-means is applied
to obtain a common clustering partition for different views,
by minimizing the weighted sum-of-squared errors in high-
dimensional space, with keeping the weights of the corre-
sponding clusters among different views summed to one.
The cluster weights are learned together with the cluster
labels in an alternative updating way, derived as a closed-
form solution by the Lagrangian multiplier method. Com-
pared with the view-weighted scheme, the cluster-weighted
scheme enhances the interpretability for the clustering re-
sults. Experimental results on both synthetic and real-world
data sets demonstrate the effectiveness of our method.

The rest of this paper is organized as follows: We review
the fundamentals of the kernel k-means and the weighted
multi-view kernel k-means in Section 2. Details of our pro-
posed method are presented in Section 3. Experimental re-
sults are shown in Section 4. Finally, we conclude our con-
tribution and point out the further work in Section 5.

2 Background and Notations

In this section, we first introduce the theory and notations
of the kernel k-means algorithm, and then revisit the multi-
view kernel k-means based on view-weighted scheme.

2.1 Overview of Kernel k-Means

The k-means clustering algorithm (MacQueen 1967) can
only discover clusters that are linearly separable, but can-
not work well if clusters are non-linearly separable. The ker-
nel k-means algorithm (Scholkopf, Smola, and Müller 1998)
is the kernelized version of traditional k-means, which can
solve this limitation by mapping the input data into a non-
linear high-dimensional feature space through a kernel func-
tion. Suppose the input data set {x1, x2, ..., xN} ∈ R

d is
aimed to be partitioned into M disjoint clusters {πk}Mk=1.
Each data point is transformed from the input space to a
reproducing kernel Hilbert space H by a non-linear map-

ping φ : Rd �→ H, then the k-means is applied on the high-
dimensional mappings {φ(x1), φ(x2), ..., φ(xN )} to obtain
a non-linear partition, by minimizing the sum of squared Eu-
clidean distances between each mapping and its closest clus-
ter center. The objective function of the kernel k-means is
given by

min
U,μk

M∑
k=1

N∑
i=1

Uik‖φ(xi)− μk‖2

s.t.U ∈ {0, 1}N×M ,
M∑
k=1

Uik = 1,

(1)

where U is the cluster indicator matrix, and μk is the cen-
troid of the kth cluster, obtained by

μk =

∑N
i=1 Uikφ(xi)∑N

i=1 Uik

. (2)

Usually the non-linear mapping φ(xi) cannot be explic-
itly computed, instead, the inner product of any two map-
pings φ(xi)

Tφ(xj) can be computed by a kernel function
K(xi, xj). Hence, the whole data set in high-dimensional
space can be represented by a kernel matrix K ∈ R

N×N ,
with each matrix entry Kij = K(xi, xj) = φ(xi)

Tφ(xj)
representing the pairwise inner product of any two map-
pings. Initially, M mappings are selected as the initial clus-
ter centers. In the first iteration, the indicator matrix U is
updated by assigning each mapping to the closest center
by computing the squared Euclidean distance in the high-
dimensional space

‖φ(xi)− φ(xj)‖2 = Kii − 2Kij +Kjj . (3)

In the next iteration, the cluster indicator matrix U is updated
by assigning each mapping to the new closest center μk as
follows

Uij =

{
1, j = argmin

k
‖φ(xi)− μk‖2

0, otherwise
, (4)

where the cluster center μk cannot be computed explicitly,
but the squared Euclidean distance between φ(xi) and μk

can be obtained by

‖φ(xi)− μk‖2 = Kii − 2
∑N

j=1 UjkKij
∑N

j=1 Ujk

+
∑N

l=1

∑N
m=1 UlkUmkKlm∑N

l=1

∑N
m=1 UlkUmk

.
(5)

Iteratively update the cluster indicator matrix U until the al-
gorithm converges.

2.2 Weighted Multi-View Kernel K-Means
Revisit

The kernel k-means can be used in multi-view clustering.
Tzortzis and Likas (2012) proposed a weighted multi-view
kernel k-means clustering method. This method applies ker-
nel k-means in the space induced by a weighted combina-
tion of each view’s kernel matrix, which is derived equiv-
alent to a weighted combination of the loss of kernel k-
means in each view under a common clustering partition.
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Suppose a multi-view data set is composed of V views
for N instances denoted by {x(v)

1 , x
(v)
2 , ..., x

(v)
N }Vv=1 ∈

R
d(v)

, where x
(v)
i represents the ith instance from the

vth view and d(v) is the dimensionality of features
for the vth view. The high-dimensional mappings are
{φ(v)(x

(v)
1 ), φ(v)(x

(v)
2 ), ..., φ(v)(x

(v)
N )}Vv=1, which are to be

partitioned into M disjoint clusters. The loss of each view
is multiplied by a weight ωv , which is learned together with
a common cluster indicator matrix U , by minimize the fol-
lowing objective:

min
ωv,U,μ

(v)
k

V∑
v=1

ωp
v

M∑
k=1

N∑
i=1

Uik‖φ(v)(x
(v)
i )− μ

(v)
k ‖2

s.t.U ∈ {0, 1}N×M ,
M∑
k=1

Uik = 1,

ωv > 0,
V∑

v=1
ωv = 1, p > 1,

(6)

where μ
(v)
k =

∑N
i=1 Uikφ

(v)(x
(v)
i )

∑N
i=1 Uik

denotes the centroid of
the kth cluster in the vth view. The exponent p is a hyper-
parameter used to control the distribution of the view
weights. When p → 1, only one best view is selected, and
when p → ∞, ωv on each view tend to be equal. The
weight determins the importance of each view as a whole,
which fails to recognize the importance of each inner cluster
of a view. For this problem, we propose a cluster-weighted
scheme for multi-view clustering in next section.

3 The Proposed Methodology

To describe the cluster-weighted mechanism of our method,
we generate a synthetic data set shown in Figure 1, which
consists of 900 data points balanced over three clusters and
represented by two views. The intra-cluster similarity of
cluster 1 is low in view 1 but high in view 2, while clus-
ter 2 is exactly opposite to cluster 1 in each view, and cluster
3 has nearly the same level of intra-cluster similarity in each
view. We can observe that using each single view cannot
correctly separate all three clusters by its own, which, how-
ever, may be possible if using both views to jointly learn
the cluster labels. Since the overall loss of each view is on
the same level, performing view-weighted multi-view clus-
tering may assign almost equal weight to each view, which
fails to differentiate the loss of a cluster in different views.
We hope the corresponding cluster with higher intra-cluster
similarity (cluster 1 in view 2 and cluster 2 in view 1) to
have higher importance in clustering. Therefore, we propose
a cluster-weighted scheme by assigning the weight to each
inner cluster of each view, in order to determine the impor-
tance of each corresponding cluster across different views.

3.1 Objective Function of CWK2M

In our method, views are integrated by the weighted combi-
nation of the corresponding clusters among different views.
Instead of weighting each view globally, we modify the
equation Eq. (6) by multiplying the weight on the sum-of-
squared errors of each cluster in each view, and keep the

weights of the corresponding clusters among different views
summed to one. The view weight ωv on the vth view in Eq.
(6) is replaced by the view-cluster weight ωvk on the kth
cluster of the vth view, which yields the following objective:

min
ωvk,U,μ

(v)
k

V∑
v=1

M∑
k=1

ωp
vk

N∑
i=1

Uik‖φ(v)(x
(v)
i )− μ

(v)
k ‖2

s.t. U ∈ {0, 1}N×M ,
M∑
k=1

Uik = 1,

ωvk > 0,
V∑

v=1
ωvk = 1, ∀k,

(7)

where p > 1, controlling the distribution of the weights on
the corresponding clusters. There are M sets of correspond-
ing clusters in total. When p → 1, only the best cluster
in each set of corresponding clusters is selected, and when
p → ∞, ωvk on corresponding clusters tend to be equal. Al-
though the best p value may be different for each set of cor-
responding clusters, it is too complicated for optimization
to introduce different hyper-parameters for different sets. In
order to simplify the optimization process, we only use one
hyper-parameter p to control all M sets of corresponding
clusters by selecting a p value that has the best average effect
on these sets. In order to make the intra-cluster loss in dif-
ferent views’ feature spaces to be comparable, views should
be normalized by dividing each view’s kernel entries K

(v)
ij

by the average of the pairwise squared distances between
instances of this view

∑N
i=1

∑N
j=1(K

(v)
ii − 2K

(v)
ij +K

(v)
jj ).

3.2 Optimization

To solve the above optimization problem, the cluster indica-
tor matrix U and the cluster weight ωvk are updated alterna-
tively, that is, when one variable is updated, the other one is
fixed. Initially, M data points are selected as the initial clus-
ter centers, and the cluster weight ωvk is initialized as 1/V .
The following sections describe the optimization process for
these two variables respectively.

Updating the cluster indicator matrix U : Fixing the
cluster weight ωvk, each entry of U is updated by assign-
ing each data point to the cluster with the lowest loss which
is computed by a weighted sum of the squared distances be-
tween φ(v)(x

(v)
i ) and μ

(v)
k in different views. The indicator

matrix U at indices (i, j) can be obtained by

Uij =

⎧⎨
⎩ 1, j = argmin

k

V∑
v=1

ωp
vk‖φ(v)(x

(v)
i )− μ

(v)
k ‖2

0, otherwise.
.

(8)
In the first iteration, the initial cluster centers μ

(v)
k are

real data points, ‖φ(v)(x
(v)
i ) − μ

(v)
k ‖2 is computed by Eq.

(3) in the vth view. In the subsequent iterations, μ(v)
k =

∑N
i=1 Uikφ

(v)(x
(v)
i )

∑N
i=1 Uik

, and ‖φ(v)(x
(v)
i )−μ

(v)
k ‖2 is computed by

Eq. (5) in the vth view.
Updating the cluster weight ωvk: Fixing the cluster in-

dicator matrix U , the cluster weight ωvk can be updated by
using the Lagrangian multiplier method. First, we denote the
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Figure 1: The synthetic data set balanced over three clusters and represented by two views.

sum-of-squared errors of the kth cluster in the vth view as

Dvk =

N∑
i=1

Uik‖φ(v)(x
(v)
i )− μ

(v)
k ‖2. (9)

Then we get the Lagrangian formula of Eq. (7) with regard
to ωvk and λk as follows:

L(ωvk, λk) =

V∑
v=1

M∑
k=1

ωp
vkDvk +

M∑
k=1

λk(

V∑
v=1

ωvk − 1).

(10)
Taking derivative with regard to ωvk gives

∂L(ωvk, λk)

∂ωvk
= pωp−1

vk Dvk + λk. (11)

Setting this derivative to zero, we can get

pωp−1
vk Dvk + λk = 0 ⇒ ωvk = (

−λk

pDvk
)

1
p−1 . (12)

Substitute Eq. (12) into the constraints
∑V

v=1 ωvk = 1, we
have

(−λk)
1

p−1 =
1∑V

v′=1(
1

pDv′k
)

1
p−1

, p > 1. (13)

Taking Eq. (13) into Eq. (12) yields

ωvk =
1∑V

v′=1(
Dvk

Dv′k
)

1
p−1

, p > 1, (14)

where the smaller the cluster loss Dvk, the larger the clus-
ter weight ωvk. A smaller Dvk reflects higher intra-cluster
similarity of a cluster in a view. Therefore, the cluster with
higher intra-cluster similarity has larger weight in clustering.

The parameter p is used to control the distribution of
weights on corresponding clusters. For any two correspond-
ing clusters which belong to rth view and sth view re-
spectively, from Eq.(14), ωrk

ωsk
= (Dsk

Drk
)

1
p−1 and ωp

rk

ωp
sk

=

(Dsk

Drk
)

p
p−1 . As p increases, the exponents 1

p−1 → 0 and

p
p−1 → 1, thus the ratio ωrk

ωsk
gets closer to 1, meaning that

the distribution of ωvk on each corresponding clusters tends
to be uniform, and the ratio ωp

rk

ωp
sk

gets closer to Dsk

Drk
. There-

fore, as p increase, the relative differences in Dvk among
corresponding clusters are suppressed.

Since the first-iteration partition based on the initial cen-
ters is usually very rough, we start updating the cluster
weight ωvk in the second iteration (after the cluster centers
change for once). In the first iteration, only the cluster in-
dicator matrix U is computed. In the subsequent iterations,
the cluster indicator matrix U and the cluster weight ωvk are
updated alternatively. We summarize the above optimization
process in Algorithm 1.

Algorithm 1 The CWK2M.

1: Input: A multi-view data set {x(v)
1 , x

(v)
2 , ..., x

(v)
N }Vv=1,

x
(v)
i ∈ R

d(v)

, number of clusters M , parameter p.
2: Output: Cluster indicator matrix U ∈ R

N×M .
3: Method:
4: Initialze: M cluster centers, cluster weight ωvk = 1/V ;
5: Compute U by using Eq. (8);
6: repeat
7: Update U by using Eq. (8);
8: Update ωvk by using Eq. (14);
9: until Converges.

3.3 Convergence Analysis

It is known that the kernel k-means monotonically converges
to a local minimum, therefore, when fixing ωvk, the objec-
tive value of Eq.(7) monotonically decreases by alternatively
updating U and μk. When fixing U and μk, the update on
ωvk further reduces the objective value, because the objec-
tive function is convex with respect to ωvk, and the feasible
set of the constraint on ωvk is a convex set. Therefore, by
solving each variable alternatively, our method will converge
to a local minimum.
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4 Experiments

In this section, we evaluate the performance of the pro-
posed method on one synthetic data set and four real data
sets. For the synthetic data set, the proposed method is com-
pared with the view-weighted method MVKKM (Tzortzis
and Likas 2012). For the real data sets, the proposed method
is compared with four state-of-the-art methods including
MVKKM. To avoid poor local solution resulting from ran-
domly initialized cluster centers, the global kernel k-means
initialization algorithm (Tzortzis and Likas 2009) is applied
for both CWK2M and MVKKM.

4.1 Experiments on Synthetic Data Set

We compare our cluster-weighted method (CWK2M) and
the view-weighted method (MVKKM) on the synthetic data
set shown in Figure 1. The standard deviation of each
cluster in each view is shown in Table 1, which reflects
the intra-cluster similarity of each cluster. Guassian kernel

K(xi, xj) = e−
‖xi−xj‖2

2σ2 is applied for representing each
view. To clearly compare the weighting mechanism of these
two methods, we set σ = 0.15 for each view. We run the ker-
nel k-means on each single view, and execute MVKKM and
CWK2M under various p values (p=1.2, and p = 2r, r=1,
2, 3, 4, 5, 6). In both two methods, the initial centers are se-
lected by running the global kernel k-means initialization al-
gorithm on view 1. For the experimental results, we demon-
strate the weights and the clustering performance (Normal-
ized Mutual Information (NMI) and Accuracy (ACC)) for
two methods under different p values. To better demonstrate
the variation trend of ωp

1/ω
p
2 and ωp

1k/ω
p
2k, we output the

view loss ratio D2/D1 and the cluster loss ratio D2k/D1k

for MVKKM and CWK2M respectively .

Table 1: Standard deviation of each cluster in each view of
the synthetic data set.

View 1 View 2
Cluster 1 0.15 0.05
Cluster 2 0.05 0.15
Cluster 3 0.04 0.04

Table 2: Performance for single-view kernel k-means on the
synthetic data set.

NMI ACC
View 1 0.8054 0.9200
View 2 0.8261 0.9289

Table 2 shows the performance of the kernel k-means on
each single view. Table 3 and 4 show the weights and perfor-
mance under different p values for MVKKM and CWK2M,
respectively. We can observe that the kernel k-means on
each single view cannot correctly partition all data points
by its own, and MVKKM shows even poorer performance
than single-view method, while CWK2M can correctly sep-
arate all data points under all p values. From Table 3, the
weights on two views are very close to each other. This is

Table 3: View weights and performance for MVKKM on the
synthetic data set under different p values.

ω1 ω2 ωp
1/ω

p
2 D2/D1 NMI ACC

p=1.2 0.4833 0.5167 0.9228 0.9867 0.7659 0.9156
p=2 0.4972 0.5028 0.9781 0.9890 0.7617 0.9133
p=4 0.4991 0.5009 0.9853 0.9890 0.7617 0.9133
p=8 0.4996 0.5004 0.9874 0.9890 0.7617 0.9133
p=16 0.4998 0.5002 0.9883 0.9890 0.7617 0.9133
p=32 0.4999 0.5001 0.9886 0.9890 0.7617 0.9133
p=64 0.5000 0.5000 0.9888 0.9890 0.7617 0.9133

Table 4: Cluster weights and performance for CWK2M on
the synthetic data set under different p values.

ω1k ω2k ωp
1k/ω

p
2k D2k/D1k NMI ACC

Cluster 1 0.0002 0.9998 0.0000 0.1725
p=1.2 Cluster 2 0.9998 0.0002 36284 5.7538 1.000 1.000

Cluster 3 0.5039 0.4961 1.0188 1.0031
Cluster 1 0.1471 0.8529 0.0298 0.1725

p=2 Cluster 2 0.8519 0.1481 33.106 5.7538 1.000 1.000
Cluster 3 0.5008 0.4992 1.0062 1.0031
Cluster 1 0.3576 0.6424 0.0960 0.1725

p=4 Cluster 2 0.6418 0.3582 10.310 5.7538 1.000 1.000
Cluster 3 0.5003 0.4997 1.0042 1.0031
Cluster 1 0.4376 0.5624 0.1342 0.1725

p=8 Cluster 2 0.5622 0.4378 7.3878 5.7538 1.000 1.000
Cluster 3 0.5001 0.4999 1.0036 1.0031
Cluster 1 0.4707 0.5293 0.1535 0.1725

p=16 Cluster 2 0.5291 0.4709 6.4657 5.7538 1.000 1.000
Cluster 3 0.5001 0.4999 1.0033 1.0031
Cluster 1 0.4858 0.5142 0.1630 0.1725

p=32 Cluster 2 0.5141 0.4859 6.0879 5.7538 1.000 1.000
Cluster 3 0.5000 0.5000 1.0032 1.0031
Cluster 1 0.4930 0.5070 0.1678 0.1725

p=64 Cluster 2 0.5069 0.4931 5.9158 5.7538 1.000 1.000
Cluster 3 0.5000 0.5000 1.0032 1.0031

because the weights are learned based on the overall loss
of each view, and two views with nearly the same level of
overall loss can be assigned nearly equal weights. And as p
increases, ω1 and ω2 get to be equal, and the ratio ωp

1/ω
p
2

gets closer to D2/D1. For CWK2M, since it can reflect the
quality of the inner cluster of the view, it shows better perfor-
mance than MVKKM. From Table 4, smaller p value tends
to assign most portion of the weight to the good cluster (clus-
ter 1 in view 2, and cluster 2 in view 1). As p increases, ω1k

and ω2k for each cluster get closer to each other, but the rela-
tively difference between ωp

1k and ωp
2k on cluster 1&2 is still

large, and the ratio ωp
1k/ω

p
2k gets closer to D2k/D1k. Since

the difference between ωp
1k and ωp

2k is always not lower than
the difference between D1k and D2k when p → ∞, and the
difference between D1k and D2k for cluster 1&2 is large
enough, the good clusters can always make the major con-
tribution to the clustering results when p → ∞. Therefore,
CWK2M can always correctly partition all data points under
all p values. The distribution of ωp

vk reflects the importance
of each corresponding cluster in clustering, which demon-
strates the interpretability of the cluster-weighted scheme.

4.2 Experiments on Real Data Sets

Data Set Description The proposed method is further as-
sessed on four real-world data sets as follows.
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• MSRC-v1 1: This is an image data set consisting of 240
images over eight categories. We follow (Lee and Grau-
man 2009) to select seven categories including tree, build-
ing, airplane, cow, face, car, and bicycle, and each cat-
egory has 30 images. Five visual features are extracted
from each image to form five views: 24-dimension Color
Moments (View 1), 576-dimension HOG feature (View
2), 512-dimension GIST feature (View 3), 256-dimension
LBP feature (View 4), and 254 Centrist feature (View 5).

• Caltech101-7 2: This is a subset of Caltech101 image
data set that contains 101 categories. Following (Dueck
and Frey 2007), the subset containing seven categories is
selected from Caltech101, including Dollar Bill, Faces,
Garfiel, Motobikes, Snoopy, Stop-sign and Windor-Chair,
with 441 images in total. Three visual features are ex-
tracted from each image to form three views: 254-
dimension Centrist feature (View 1), 48-dimension Ga-
bor feature (View 2) and 40-dimension wavelet moments
(View 3).

• Handwritten numerals (HW) 3: This data set consists of
2000 instances over ten digit classes from 0 to 9 digit,
with 200 instances per class. The digits are represented
by multiple published feature sets, and we use four of
them to compose our multi-view data set. These four
feature sets are 76-dimension Fourier coefficients of the
character shapes (View 1), 216-dimension profile correla-
tions (View 2), 64-dimension Karhunen-Love coefficients
(View 3), and 240-dimension pixel averages in 2 × 3 win-
dows (View 4).

• Reuters 4: This is a multilingual data set consisting of
documents originally written in five different languages
and translated into the other four languages. All the doc-
uments are classified into six categories. We choose the
documents written in English (View 1) and translated
in French (View 2), German (View 3), Italian (View 4),
Spain (View 5). Each language can be regarded as a view.
Following (Bisson and Grimal 2012), 1200 documents
are randomly sampled over six categories in a balanced
manner, and 2000 words have been selected with the k-
medoids algorithm 5.

Experimental Setup The proposed method is compared
with the single-view kernel k-means and four other kernel-
based multi-view clustering methods as follows:

• Kernel K-Means on single view (KKM): Running the
kernel k-means on each single view. (e.g.,KKM(1) means
performing KKM on View 1.)

• Co-regularized Spectral Clustering (CoregSC): A state-
of-the-art multi-view clustering method by using the co-
regularized idea on spectral clustering of multiple views.

1https://www.microsoft.com/en-us/research/project/image-
understanding/

2http://www.vision.caltech.edu/Image Datasets/Caltech101/
3https://archive.ics.uci.edu/ml/datasets/Multiple+Features
4https://archive.ics.uci.edu/ml/datasets
5http://membres-lig.imag.fr/grimal/data.html

We set the parameter λ = 0.01 in this algorithm as sug-
gested in their paper (Kumar, Rai, and Daumé 2011).

• Auto-weighted Multiple Graph Learning (AWGL):An
automatically weighted multi-view spectral clustering
method for learning the view weight without introducing
any extra parameters (Nie, Li, and Li 2016).

• Multi-Model Spectral Clustering (MMSC): A multi-
view spectral clustering algorithm that learns a com-
monly shared graph Laplacian matrix by unifying differ-
ent views. We set the parameter α = 0.1 in this algorithm
(Cai et al. 2011).

• Multi-View Kernel K-Means (MVKKM): A weighted
multi-view kernel k-means method with the weight added
to each view (Tzortzis and Likas 2012).
For fair comparison, the same kernel settings is applied

for all methods on the same data set. We use Guassian ker-
nel for the MSRC-v1, Caltech101-7 and HW data sets by
setting the standard deviation to be the median of the pair-
wise Euclidean distances between instances of each view,
and use linear kernel for the Reuters data set. For MVKKM
and CWK2M, the parameter p for each data set is searched
in logarithm form (log10 p from 0.1 to 2 with step size 0.2),
and the initial centers are selected on a single view with the
best performance by the global kernel k-means initializa-
tion algorithm. Because of fixed initialization of centers for
MVKKM and CWK2M, these two methods run only once.
The other methods are repeated for 30 times, and the aver-
age results are reported. For the experimental results, three
metrics: ACC, NMI, and Adjusted Rand Index (ARI) are re-
ported.

Table 5: Performance comparisons on MSRC-v1 data set.

Method NMI ACC ARI
KKM(1) 0.2722 0.3476 0.1389
KKM(2) 0.6233 0.7143 0.4894
KKM(3) 0.6633 0.8000 0.6138
KKM(4) 0.4687 0.5905 0.3314
KKM(5) 0.5021 0.5619 0.3608
CoregSC 0.6548 0.7606 0.5752
AWGL 0.5960 0.6570 0.4760
MMSC 0.5723 0.6519 0.4567

MVKKM 0.7096 0.7762 0.6082
CWK2M 0.7451 0.8429 0.6690

Table 6: Performance comparisons on Caltech101-7 data set.

Method NMI ACC ARI
KKM(1) 0.3430 0.4512 0.2791
KKM(2) 0.2776 0.4014 0.2245
KKM(3) 0.2897 0.4036 0.2221
CoregSC 0.3503 0.4582 0.2806
AWGL 0.3240 0.4976 0.2812
MMSC 0.3135 0.4845 0.2817

MVKKM 0.3090 0.4150 0.2491
CWK2M 0.3513 0.4875 0.2961
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Table 7: Performance comparisons on HW data set.

Method NMI ACC ARI
KKM(1) 0.5932 0.5885 0.4468
KKM(2) 0.7513 0.8540 0.7044
KKM(3) 0.6977 0.7580 0.6006
KKM(4) 0.7533 0.8035 0.6884
CoregSC 0.7667 0.8278 0.7162
AWGL 0.7712 0.8169 0.7110
MMSC 0.7768 0.8334 0.7213

MVKKM 0.8684 0.9325 0.8563
CWK2M 0.8685 0.9325 0.8564

Table 8: Performance comparisons on Reuters data set.

Method NMI ACC ARI
KKM(1) 0.3027 0.4000 0.1553
KKM(2) 0.3054 0.3925 0.1516
KKM(3) 0.2918 0.3792 0.1507
KKM(4) 0.1545 0.1992 0.0058
KKM(5) 0.3352 0.4508 0.2020
CoregSC 0.2837 0.4556 0.1985
AWGL 0.2885 0.3990 0.1554
MMSC 0.3083 0.4457 0.1930

MVKKM 0.3556 0.4633 0.2224
CWK2M 0.3556 0.4633 0.2224

Clustering Performance Evaluation Tables 5, 6, 7 and
8 show the performance comparisons on the four data
sets. First, CWK2M outperforms each single-view kernel k-
means on all data sets. Second, CWK2M apparently out-
performs the spectral clustering based methods CoregSC,
AWGL and MMSC on all data sets, except for its per-
formance under ACC metric being slightly lower than
AWGL on Caltech101-7 data set. Third, CWK2M outper-
forms MVKKM on MSRC-v1, Caltech101-7 and HW data
sets, and achieves the same performance as MVKKM on
the Reuters data set, which demonstrates that the cluster-
weighted scheme is more effective than the view-weighted
scheme in general. In summary, CWK2M demonstrates bet-
ter performance than the compared methods.

Convergence Study Figure 2 shows the convergence
curve of our method for each data set under the best p value.
As can be seen, the objective function value decreases in
each iteration and finally converges to a stable value. Since
the instances of Caltech101-7 data set are unbalanced over
different categories, the method converges relatively slow on
this data set compared with the other three.

5 Conclusions

In this paper, we proposed a cluster-weighted kernel k-
means method for multi-view clustering. Our method as-
signs reasonable weights to corresponding clusters among
different views. The weight determines the importance of
each cluster of each view to the final solution, and it is
learned automatically based on the intra-cluster similarity
of the cluster compared with all its corresponding clusters in

(a) MSRC-v1(log10 p = 0.7) (b) Caltech101-7(log10 p = 0.5)

(c) HW(log10 p = 1.3) (d) Reuters (log10 p = 0.3)

Figure 2: Convergence curves on four data sets.

different views. The kernel k-means algorithm is utilized to
simultaneously learn the cluster labels as well as the cluster
weights. Our method considers the weight on a more fine-
grained level (cluster level) than MVKKM (view level). In
this sense, the cluster-weighted scheme is more interpretable
than the view-weighted scheme, which is further demon-
strated in the experiment on the synthetic data set. Experi-
mental results on four real data sets have demonstrated the
superiority of our method over the state-of-the-art multi-
view clustering methods. In our further work, more factors
that influence the cluster weights will be considered by in-
corporating other constraints on the cluster weights.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (under grants 61573229, 61976128,
61432011, 61876103, 61773247, 61603230), the Key Re-
search and Development (R&D) Projects of Shanxi Province
(under grant 201803D31022), and the 1331 Engineering
Project of Shanxi Province, China.

References

Akata, Z.; Thurau, C.; and Bauckhage, C. 2011. Non-
negative matrix factorization in multimodality data for seg-
mentation and label prediction. In 16th Computer vision
winter workshop.
Bisson, G., and Grimal, C. 2012. Co-clustering of multi-
view datasets: a parallelizable approach. In 2012 IEEE 12th
International Conference on Data Mining, 828–833. IEEE.
Cai, X.; Nie, F.; Huang, H.; and Kamangar, F. 2011. Het-
erogeneous image feature integration via multi-modal spec-
tral clustering. In Computer Vision and Pattern Recognition,
1977–1984. IEEE.
Cai, X.; Nie, F.; and Huang, H. 2013. Multi-view k-
means clustering on big data. In Proceedings of the Twenty-

4866



Third International Joint Conference on Artificial Intelli-
gence, 2598–2604. AAAI Press.
Chao, G.; Sun, S.; and Bi, J. 2017. A survey on multi-view
clustering. arXiv preprint arXiv:1712.06246.
Dueck, D., and Frey, B. J. 2007. Non-metric affinity propa-
gation for unsupervised image categorization. In 2007 IEEE
11th International Conference on Computer Vision, 1–8.
Gao, H.; Nie, F.; Li, X.; and Huang, H. 2015. Multi-view
subspace clustering. In Proceedings of the IEEE interna-
tional conference on computer vision, 4238–4246.
Huang, S.; Kang, Z.; and Xu, Z. 2018. Self-weighted multi-
view clustering with soft capped norm. Knowledge-Based
Systems 158:1–8.
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