
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

URNet : User-Resizable Residual Networks with Conditional Gating Module

Sangho Lee,∗1 Simyung Chang,∗12 Nojun Kwak†1

1Seoul National University, Seoul, Korea
2Samsung Electronics, Suwon, Korea

{shlee223, timelighter, nojunk}@snu.ac.kr

Abstract

Convolutional Neural Networks are widely used to process
spatial scenes, but their computational cost is fixed and de-
pends on the structure of the network used. There are meth-
ods to reduce the cost by compressing networks or vary-
ing its computational path dynamically according to the in-
put image. However, since a user can not control the size of
the learned model, it is difficult to respond dynamically if
the amount of service requests suddenly increases. We pro-
pose User-Resizable Residual Networks (URNet), which al-
lows users to adjust the computational cost of the network as
needed during evaluation. URNet includes Conditional Gat-
ing Module (CGM) that determines the use of each residual
block according to the input image and the desired cost. CGM
is trained in a supervised manner using the newly proposed
scale(cost) loss and its corresponding training methods. UR-
Net can control the amount of computation and its inference
path according to user’s demand without degrading the accu-
racy significantly. In the experiments on ImageNet, URNet
based on ResNet-101 maintains the accuracy of the baseline
even when resizing it to approximately 80% of the original
network, and demonstrates only about 1% accuracy degrada-
tion when using about 65% of the computation.

Introduction

Generally, the computational graph in a deep neural network
is fixed and unchanged during inference time. But in many
situations of real applications, there may be the case that the
system needs to handle various amounts of computation per
request (Herbst, Kounev, and Reussner 2013). For example,
in the situation that the number of requests is rapidly increas-
ing but the system is forced to respond quickly, it is better for
the system to dynamically allocate less resource for requests
within a moderate performance degradation bound.

There are many researches that suggest static compressed
model(Hinton, Vinyals, and Dean 2015; Howard et al. 2017;
Iandola et al. 2016). Unlike these works, recent researches
(Wu et al. 2018; Lin et al. 2017) suggest the methods that a
neural network dynamically changes its computation graph

∗These authors also contributed equally to this work
†This author is a corresponding author

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Bl
oc

k

Bl
oc

k

Bl
oc

k

Bl
oc

k

Bl
oc

k

Bl
oc

k

Bl
oc

k

Cat

Bl
oc

k

Bl
oc

k

Cat

Increase of service requests
scale 1.0

scale 0.3

Figure 1: The concept of URNet. Our method uses the entire
network when resources are sufficient. If the number of ser-
vice requests increases, the system or a user can change the
scale(the size of the computational cost) of the network to
use only a fraction of the entire blocks, thereby reducing the
amount of computation in the network and processing the
increased requests in time.

at test time, rather than fixed all the time. But these works
only change the network path for each input, e.g., easy sam-
ples follow the path with less computation but complex sam-
ples require maximum available computation. Therefore,
these works can not take care of the demand from the ex-
ternal environment. They are dynamic but cannot resize on
our own purpose.

In this paper, we suggest a model that can adjust its com-
putational cost by dropping some of its components. It fol-
lows given user’s demand by itself, like 70% or 50% of max-
imum resource for usage, at any inference time. Our model is
also variant to input samples, but its computational cost does
not deviate significantly from the desired one. It is robust to
the environment where the resources per request are limited
or dynamically changing over time, and therefore, it fits such
applications as in a backend server or background applica-
tions in a client. Figure 1 intuitively describes our concept.
Our model is basically a plain ResNet (He et al. 2016) archi-
tecture with additional gate modules located between neigh-
boring blocks. Our gate module is computationally very
cheap compared to the backbone network. Like the works

4569





As shown in (3), the corresponding block can be dropped
if the value of the gate is 0. The computation of the block
can then be reduced becauseF (X ) operation is omitted. For
small S, the gate values will have a good chance to be 0,
depending on the input feature mapX , resulting in a reduced
computational complexity on average. On the other hand,
largeS will mostly activate gates such that most blocks will
be used for inference, resulting in high performance.

Training CGM
Scale LossIt was mentioned that CGM can output a sigmoid
or binary gate, and can be learned through back propagation
when using sigmoid gates. However, for actual learning, an
objective function must be de“ned. The goal of our method
is not only to increase or maintain the performance of the
classi“cation, but also to allow the user to change the size of
the network according to the desired one. Thus, the objec-
tive function must also satisfy both of these requirements.
We propose ascale lossthat can be used with conventional
supervised learning methods. This loss is de“ned so that the
average of CGM gates is close to the scale parameterS, as
follows.

L s = ((
1
N

N�

n =1

gaten ) Š S)2, (4)

whereN denotes the number of residual blocks in the UR-
Net andgaten represents the output of the CGM corre-
sponding to then-th block. The full objective of URNet
is the sum of thisscale loss, L s, and the classi“cation loss
(cross entropy),L c, of ResNet:

L = L c + �L s. (5)

Here,� is a hyper parameter that controls the weights ofL c
andL s. Smaller� means a bigger weight on classi“cation,
while bigger� means a bigger weight on the scale loss. As�
increases, the actual block usage becomes similar toS, but
the classi“cation performance may be sacri“ced somewhat.
Our experiments show that the number of actual blocks used
can be controlled to be very close to the scale parameterS.
Gate Training SchemeAccording to (5), the CGMs are
optimized to increase the classi“cation performance and to
make the average value of gates similar to the input param-
eterS. However, in order to ensure that URNet operates at
various values ofS during inference, these values must be
learned during training. This is done by randomly changing
the range ofS as we want to resize. The distribution ofS is
set as a uniform distribution ofU(Smin , Smax ) during train-
ing. Here,Smin andSmax are the minimum and maximum
of the range, respectively. Through this, the value ofS and
the actual block usage are synchronized with each other.

Since we use a pre-trained ResNet as the base network,
we train only the CGM “rst, similar to BlockDrop (Wu et al.
2018) which trains the policy network “rst. This is to min-
imize the in”uence of premature CGM on the pre-trained
ResNet. After then, ResNet and CGM are jointly trained.
However, by using the supervised learning method, CGM
can be learned directly without using the method like the

curriculum learning (Bengio 2013) which is used to over-
come the instability of reinforcement learning in the Block-
Drop paper, and learning can be performed with much less
epochs. For CIFAR datasets, our method requires only 500
epochs which is a considerably smaller number compared
to the training of BlockDrop which takes a total of 7,000
epochs including curriculum learning of 5,000 epochs.

Experiments

Baselines and Experimental Setup

In the following experiments, we have trained and evaluated
our method on CIFAR-10, CIFAR-100 (Krizhevsky 2009)
and ImageNet (Deng et al. 2009) datasets with top-1 ac-
curacy. As a base network for our URNet, we have used
ResNet-110 (54 blocks) for CIFAR datasets, and ResNet-
101 (33 blocks) for ImageNet. We have chosen the chan-
nel reduction rater of CGM (see Figure 3) as 2 for CI-
FAR datasets and 16 for ImageNet. Similar to the evaluation
of other compression methods, we calculate the number of
multiply-accumulate operations of convolutional layers and
linear layers in FLOPs (”oating point operations). The total
number of FLOPs of all the CGMs in ResNet-110 is only
0.04% of the base network and 0.08% for the ResNet-101.
We train CGM only for 100 epochs on CIFAR datasets and
5 epochs on ImageNet. Then, we train CGM and the base
network jointly for 400 additional epochs on CIFAR and
15 epochs on ImageNet. The learning rate is adjusted from
10Š 3 to 10Š 5.

Result on CIFAR

Table 1 shows the result of our method on CIFAR-10 and
CIFAR-100, under various values of scale parameterS. As
shown in the table, our method can be resized as desired
according to the given value ofS, without severe accuracy
degradation. The table contains two baseline results of plain
ResNet-110 which contains 54 residual blocks. It also con-
tains the results of the proposed URNet (Ours), and other
different settings with ablation. For those experiments we
have set� in equation (5) as 2.0. During training, the scale
parameterS has been uniformly sampled in the range of
[0.2, 1.0], for every iteration.

The “rst and the second rows show the result of two base-
line experiments with ResNet-110. The “rst row (ResNet-
110 with rand, val) is the plain pretrained ResNet but we ran-
domly drop the residual blocks at test time, to resize the net-
work according to the givenS. The second row (ResNet-110
with rand, train/val) is the results of the “netuned ResNet
that was trained with randomly dropping the blocks. It is
not surprising that the performance of the second row is in-
creased compared to the baseline atS = 1 .0, because this
can be interpreted as the dropout effect applied to block
units. This result is very similar to the work in (Huang et al.
2016), as they trained the ResNet with dropping each layer
by a speci“c probability and uni“ed them at test time. What
is different from (Huang et al. 2016) is that they trained dif-
ferent drop probability for each blocks but ours is the same
for all blocks.

4572



Table 1: The accuracy (%) and the number of block used under various scale conditionsS. The two row numbers in each cell
are the accuracy (“rst row) and the number of blocks used (second row). Our method URNet(Ours) can be resized to match
the user condition well, without severe accuracy degradation. Compared to the baseline withS = 1 .0 (93.2% (CIFAR-10),
72.3% (CIFAR-100)), our method performs better for a wide range ofS (0.6 � 1.0). The variance of block usage is in the
supplementary.

CIFAR-10 CIFAR-100
scale parameterS 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
ResNet-110
(rand, val)

11.8 15.4 28.0 68.6 93.2 1.3 2.4 7.3 38.1 72.3
10.80 21.65 32.34 43.21 54.00 10.77 21.56 32.46 43.19 54.00

ResNet-110
(rand, train/val)

83.3 91.0 92.8 93.3 93.7 50.0 66.2 70.8 72.2 73.0
10.80 21.65 32.38 43.16 54.00 10.83 21.58 32.40 43.24 54.00

External network
(ResNet-8)

91.5 92.6 92.7 93.1 93.0 70.3 71.1 71.4 72.5 72.5
31.15 32.30 32.92 47.34 51.00 18.73 21.00 28.56 45.25 53.94

URNet SG
(p = 1 .0)

12.7 21.4 74.9 81.7 81.3 2.2 5.3 16.6 20.0 17.7
6.75 14.05 46.69 53.64 53.88 8.58 12.26 40.58 51.87 53.49

URNet BG
(p = 0 .0)

93.2 93.1 93.0 92.9 92.8 71.5 71.6 71.7 71.8 71.7
28.55 28.60 28.67 28.81 28.84 27.97 28.20 28.54 28.81 29.03

ResNet+B/A
(rand, train/val)

83.1 91.1 92.5 93.3 93.7 50.1 66.4 70.4 72.2 73.2
10.78 21.54 32.42 43.15 54.00 10.79 21.56 32.44 43.22 54.00

URNet(Ours)
(p = 0 .1)

92.2 93.3 93.7 93.7 93.6 70.7 71.5 72.4 73.0 72.8
18.08 20.86 32.02 44.37 52.19 28.10 28.57 32.00 44.61 49.41

The URNet (Ours) is trained with the gate training proba-
bility p = 0 .1, from the pretrained ResNet-110. Our method
can match the network size to the desired value ofS very
well, without severe accuracy degradation. Note that at sizes
in the range between 60% and 100% (32 blocks to 54
blocks), our method can even perform better than the base-
line ResNet (93.2% (CIFAR-10) and 72.3% (CIFAR-100)).
Unlike the “netuned dropped ResNet in the second row, our
method does not severely degrade under very sparse block
usage. Our method does not drop the blocks randomly like
the compared method in the second row, but it drops the
blocks by the decision of CGMs. This can be the reason for
the lowered damage, as the CGMs can separate the blocks
into most usable blocks and the remainder. As shown in Fig-
ure 4, under lowS the CGMs have a tendency to open most
important blocks exclusively, and these blocks are opened at
every scale. And asS gets bigger, the rest of blocks grad-
ually start to open (color changes from blue to yellow) be-
cause more blocks are getting more affordable.

Ablation Study In Table 1, there are 4 other experiments
for ablation study. The External network method uses an ex-
ternal small network with 3 residual blocks (equivalent to
ResNet-8), which is separated from the base network, sim-
ilar to the method presented in (Wu et al. 2018), but it is
not trained using reinforcement learning. This external net-
work is trained similar to the CGMs, by switching between
sigmoid and binary activation with a rate ofp. However, an
important difference is that this module handles all of the
gating at once with input data. It needs more computation
compared to ours, but it is hard to expect them to extract rich
features as it is smaller than the base network. As shown in
the Table, the external network method does not work well
to meet our purpose and the network usage deviates much

Figure 4: The block usage map of URNet-110 on the
CIFAR-10 test set with� = 4 .0. The horizontal axis is the
scale parameterS and the vertical axis is the index of 54
residual blocks. AsS increases, the usage of blocks gradu-
ally increases. Also, the presence of blocks whose usage is
not 1 or 0, means that the usage of the block varies according
to the input image even on the same scale.

from the scale parameterS.
The URNet with sigmoid only (URNet-SG) is a special

case of URNet withp = 1 .0, where the network is never
trained with binary activation. But at inference time, all the
CGMs are binary activated because our purpose is to drop
some blocks. This experiment is a counter example that
shows why the binary activation is needed during gate train-
ing. It shows that if we gate the block by just using a sigmoid
value, the performance degrades severely. The URNet-BG
is trained withp = 0 , which indicates that the network is
trained with only binary activations. In this case, the CGMs

4573



(a) Accuracy (b) Block usage (c) FLOPs

Figure 5: Accuracy, Block usage, and FLOPs versus scale parameter S under various βs, result of URNet-110 on CIFAR-10
dataset. The block usage and FLOPs follow the scale parameter S well, and better if β is bigger. For accuracy, too big β can
downgrade the accuracy, so a moderate value of β can perform better.

are actually not trained and the block features are just mul-
tiplied by the untrained CGM output. The URNet-BG ex-
periment shows that without sigmoid activation, the URNet
can not resize to the desired size S at all, and the result is
just from an additional training (400 epochs) of an arbitrary
subgraph of ResNet.

The ResNet+B/A always uses plain sigmoid function for
the activation of CGM, which can be considered that p = 1 .0
at both train and test time. Note that the variants of URNet
set p = 0 .0 at test time. In this case, it can learn the continu-
ous block-wise attention (0∼1), so possibly it gains more ac-
curacy than the baseline ResNet. However, the ResNet+B/A
has no binary function, thus it should calculate all the blocks,
which means that it is not resizable. Resizing it with a ran-
dom drop during training (ResNet+B/A(rand, train/val)) re-
sults in similar performance with the second row of the Ta-
ble. It shows that the model can get accuracy gain with block
attention, but suffers such a degradation when trying to re-
size by applying a random drop. If we force the B/A module
output to hard attention by thresholding the continuous at-
tention at test time, it is identical to URNet-SG, which also
fails to our purpose. Even if the CGMs in URNet does not
utilize the gain from continuous block-attention (0∼1), it
outperforms the ResNet+B/A for most values of S . How the
URNet does not suffer such degradation (and even gain ac-
curacy) is that it can learn whether the block is necessary
or can be abandoned, under given S , by the proposed gate
training scheme. As can be inferred from Figure 4.

Resize Ability The hyper-parameter β in (5) can represent
how strictly we want the network to follow the desired scale
S . If we set β higher, the network is more strongly affected
by the scale loss. As shown in Figure 5(b), the higher β be-
comes, the more strict the network becomes in following the
target scale. For lower β, the block usage is slowly fixed at
the boundary of S , especially when S = 0 .2. If β is too
big, the accuracy of the network seems to be downgraded as
shown in the case of β = 8 .0 in Figure 5 (a). This is because
too much scale loss can constrain the network capacity lead-
ing to a poor classification loss. But Figure 5 (a) shows that
β and the accuracy does not have a complete negative corre-
lation for relatively small β (β = 1 , 2, 4), and the maximum

Table 2: The accuracy and the block usage under various
scale condition. The baseline accuracy of ResNet-101 on
ImageNet is 76.4. It uses downsample option ’B’ in (He et
al. 2016). Our best accuracy is achieved at S > 0.95, which
is 76.9%.

ImageNet
#Blocks FLOPs(E+10) Accuracy

ResNet-72 24.0 1.17 75.8
ResNet-75 25.0 1.21 75.9
ResNet-84 28.0 1.34 76.1
ResNet-101 33.0 1.56 76.4
S 0.2 0.4 0.6 0.8 1.0
Accuracy 74.0 74.9 75.7 76.4 76.9
Block usage 18.78 19.77 22.01 26.94 32.00
FLOPs(E+10) 0.94 0.98 1.08 1.30 1.52

accuracy point lies between β = 1 .0 and β = 4 .0. Because
our scale loss can work like regularization of the weight,
under the proper choice of β, the network accuracy can be
increased.

Result on ImageNet

Table 2 is our result on ImageNet (ILSVRC2012). We
trained the URNet from ResNet-101 which total 33 blocks.
The downsample option ’B’(He et al. 2016) is applied to
the (Wu et al. 2018), and we use it too for fair compari-
sion. The result of ResNet-{72, 75, 84, 101} are brought
from (Wu et al. 2018). In this experiment, β is set to 4.0.
Our method performs better than ResNets with the same
amount of computation in all the cases. When S is about
0.72, our URNet performs equal to ResNet-101 (accuracy:
76.4%) using about 1.24E+10 FLOPs. The accuracy keeps
increasing gradually with S , and our best accuracy 76.9%
is achieved at S > 0.95. Note that the accuracy of ResNet-
101+B/A(rand, train/val) is {26.2%, 49.9%, 64.1%, 71.6%,
76.0%} for each S={0.2, 0.4, 0.6, 0.8, 1.0} (see B/A module
in Ablation Study section).

4574



(a) American egret (b) Golden retriever

(c) Peacock (d) Koala

Figure 6: ImageNet samples that activate the blocks differ-
ently with an equal scale parameter (S = 0 .6). In each ob-
ject class, the left ones activate 19 blocks of the network,
whereas the right ones activate 23 blocks.

(a) Brambling
(Night snake)

(b) Turtle
(Alligator)

(c) Mouse
(Jack O lantern)

Figure 7: Samples in ImageNet that was correctly classified
for large S (0.8) but misclassified as S gets reduced (0.6).
The misclassified label is written in parentheses. These sam-
ples can be regarded as hard samples.

Qualitative Results

Our CGMs not only considering the given S , also consider
the input features from the previous layer to decide whether
to use the corresponding block or not. In Figure 4, there
is green, blue area that represents the block usage is about
0.2∼0.8. These blocks are dynamically opened or closed de-
pending on the input image. These blocks may contain mi-
nor but detailed features for hard samples. Figure 6 is the ex-
amples of pair of samples that induce the model to activate
blocks differently during inference under given S = 0 .6. In
the Figure, the pair of samples look very different visually.
The left ones, which use the minimum number of blocks
have very distinctive and remarkable features. Whereas the
samples on the right, which need the maximum number of
blocks, are hard samples that have too small object (a), too
large object (b), too noisy (c), interrupted by other object (d).

Resizable Range

Our URNet can obtain accuracy/FLOPs similar to state-of-
the-art compression methods, even though ours has addi-
tional characteristics of resizability. As stated previously, we
have trained S with 0.2 ∼ 1.0, but it is hard to satisfy both
high performance and large range of S simultaneously and

Figure 8: Accuracy vs FLOP. This figure compares UR-
Net(Ranged) and URNet(Fixed) on ImageNet with other
methods (Wu et al. 2018; Figurnov et al. 2017). The dot rep-
resents one model, and the solid horizontal line represents
the standard deviation of one model. URNet(Ranged) repre-
sents user resized results at test time by one model. Those of
ResNet-{72, 75, 84, 101} and other results are all brought
from (Wu et al. 2018).

there exists trade-off between them. In an environment that
accepts a more narrow range of S , there is a room to boost
performance.

If we train a network with a fixed S (Sfixed), our method
can be considered as a static compression method. In this
scenario, there is no need to consider the model architecture
(number of blocks, kernel size, channel size, etc.) and we
just need to set Sfixed as a desirable size.

While the resizable one (URNet(Ranged)) uses various
values of S during training, the fixed scale URNet(Fixed)
uses only a small fraction of entire range of S , so there may
be the case where only a few blocks are selected to use from
the beginning of the training, rather than considering var-
ious blocks. To prevent this, the scale parameter Sfixed is
initially set to 1, and then gradually reduced to a desirable
size. This is called Scale Annealing and Sfixed is decayed
with the cosine annealing schedule (Loshchilov and Hutter
2016) for specific epochs. In addition, to keep the ability
of selectively using blocks, the Gaussian noise is added so
Sfixed is sampled from N (Sfixed, σ

2) but restricted not to
exceeds 1.

Figure 8 shows the accuracy versus FLOPs of URNet and
other compression methods on ImageNet. The solid hori-
zontal line in the figure represents the standard deviation
of FLOPs of one model at test time. Note that the UR-
Net(Ranged) is just one model, and can be resized according
to user’s demand, that others cannot. The URNet(Fixed) is
trained with Sfixed = 0.5, 0.6 and 0.7, and the Gaussian
noise with σ = 0 .1 is added to Sfixed at training time. 5
epochs of scale annealing is applied. Our URNet(Ranged)
performs almost equal to BlockDrop, and URNet(Fixed)
performs better than that.

Conclusion

We showed that our User-Resizable Residual Networks
(URNet) can resize itself as a response to the demand of

4575



a user, at any inference time. Experimental results show that
our URNet can change its computational cost without severe
accuracy degradation. Unlike other methods, using part of
the computational graph according to the pre-defined rules,
URNet can determine its computational path by the network
itself. Our method can be applied to any ResNet-based net-
work with very little (<0.1%) additional computational bur-
den. Using our method, the user of a network can dynami-
cally balance the number of requests executed per time, by
dynamically adjusting the amount of resources per request.

Acknowledgment
This work was supported by Next-Generation Information
Computing Development Program through the NRF of Ko-
rea (2017M3C4A7077582).

References
Bengio, Y. 2013. Deep learning of representations: Looking for-
ward. In International Conference on Statistical Language and
Speech Processing, 1–37. Springer.
Bolukbasi, T.; Wang, J.; Dekel, O.; and Saligrama, V. 2017.
Adaptive neural networks for efficient inference. arXiv preprint
arXiv:1702.07811.
Chang, S.; Yang, J.; Park, S.; and Kwak, N. 2018. Broadcast-
ing convolutional network for visual relational reasoning. In Pro-
ceedings of the European Conference on Computer Vision (ECCV),
754–769.
Chen, X.; Duan, Y.; Houthooft, R.; Schulman, J.; Sutskever, I.; and
Abbeel, P. 2016. Infogan: Interpretable representation learning by
information maximizing generative adversarial nets. In Advances
in neural information processing systems, 2172–2180.
Chen, C.-F.; Fan, Q.; Mallinar, N.; Sercu, T.; and Feris, R. 2018.
Big-little net: An efficient multi-scale feature representation for vi-
sual and speech recognition. arXiv preprint arXiv:1807.03848.
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-Fei,
L. 2009. Imagenet: A large-scale hierarchical image database.
In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, 248–255. Ieee.
Figurnov, M.; Collins, M. D.; Zhu, Y.; Zhang, L.; Huang, J.; Vetrov,
D.; and Salakhutdinov, R. 2017. Spatially adaptive computation
time for residual networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 1039–1048.
He, Y., and Han, S. 2018. Adc: Automated deep compres-
sion and acceleration with reinforcement learning. arXiv preprint
arXiv:1802.03494.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, 770–778.
He, Y.; Zhang, X.; and Sun, J. 2017. Channel pruning for accel-
erating very deep neural networks. In Proceedings of the IEEE
International Conference on Computer Vision.
Herbst, N. R.; Kounev, S.; and Reussner, R. H. 2013. Elasticity
in cloud computing: What it is, and what it is not. In ICAC, vol-
ume 13, 23–27.
Hinton, G.; Vinyals, O.; and Dean, J. 2015. Distilling the knowl-
edge in a neural network. stat 1050:9.
Howard, A. G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.;
Weyand, T.; Andreetto, M.; and Adam, H. 2017. Mobilenets: Effi-
cient convolutional neural networks for mobile vision applications.
arXiv preprint arXiv:1704.04861.

Hu, J.; Shen, L.; and Sun, G. 2018. Squeeze-and-excitation net-
works. In Proceedings of the IEEE conference on computer vision
and pattern recognition, 7132–7141.
Huang, G., and Chen, D. 2018. Multi-scale dense networks for
resource efficient image classification. ICLR 2018.
Huang, G.; Sun, Y.; Liu, Z.; Sedra, D.; and Weinberger, K. Q. 2016.
Deep networks with stochastic depth. In European Conference on
Computer Vision, 646–661. Springer.
Iandola, F. N.; Han, S.; Moskewicz, M. W.; Ashraf, K.; Dally, W. J.;
and Keutzer, K. 2016. Squeezenet: Alexnet-level accuracy with
50x fewer parameters and¡ 0.5 mb model size. arXiv preprint
arXiv:1602.07360.
Krizhevsky, A. 2009. Learning multiple layers of features from
tiny images. Technical report, Citeseer.
Lin, J.; Rao, Y.; Lu, J.; and Zhou, J. 2017. Runtime neural prun-
ing. In Advances in Neural Information Processing Systems, 2181–
2191.
Lin, M.; Chen, Q.; and Yan, S. 2013. Network in network. arXiv
preprint arXiv:1312.4400.
Liu, L., and Deng, J. 2018. Dynamic deep neural networks: Op-
timizing accuracy-efficiency trade-offs by selective execution. In
Thirty-Second AAAI Conference on Artificial Intelligence.
Loshchilov, I., and Hutter, F. 2016. Sgdr: Stochastic gradient de-
scent with warm restarts. arXiv preprint arXiv:1608.03983.
Luo, J.-H.; Wu, J.; and Lin, W. 2017. Thinet: A filter level prun-
ing method for deep neural network compression. arXiv preprint
arXiv:1707.06342.
Mirza, M., and Osindero, S. 2014. Conditional generative adver-
sarial nets. arXiv preprint arXiv:1411.1784.
Odena, A.; Lawson, D.; and Olah, C. 2017. Changing model be-
havior at test-time using reinforcement learning. arXiv preprint
arXiv:1702.07780.
Pham, H.; Guan, M.; Zoph, B.; Le, Q.; and Dean, J. 2018. Efficient
neural architecture search via parameter sharing. In International
Conference on Machine Learning, 4092–4101.
Sohn, K.; Lee, H.; and Yan, X. 2015. Learning structured out-
put representation using deep conditional generative models. In
Advances in Neural Information Processing Systems, 3483–3491.
Wu, Z.; Nagarajan, T.; Kumar, A.; Rennie, S.; Davis, L. S.; Grau-
man, K.; and Feris, R. 2018. Blockdrop: Dynamic inference paths
in residual networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 8817–8826.
Yu, R.; Li, A.; Chen, C.-F.; Lai, J.-H.; Morariu, V. I.; Han, X.; Gao,
M.; Lin, C.-Y.; and Davis, L. S. 2017. Nisp: Pruning networks us-
ing neuron importance score propagation. Preprint at https://arxiv.
org/abs/1711.05908.
Yu, J.; Yang, L.; Xu, N.; Yang, J.; and Huang, T. 2018. Slimmable
neural networks. arXiv preprint arXiv:1812.08928.
Zoph, B., and Le, Q. V. 2016. Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578.

4576


