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Abstract

Incorporating richer human inputs including qualitative con-
straints such as monotonic and synergistic influences has long
been adapted inside AI. Inspired by this, we consider the
problem of using such influence statements in the successful
gradient-boosting framework. We develop a unified frame-
work for both classification and regression settings that can
both effectively and efficiently incorporate such constraints
to accelerate learning to a better model. Our results in a large
number of standard domains and two particularly novel real-
world domains demonstrate the superiority of using domain
knowledge rather than treating the human as a mere labeler.

1 Introduction

Machine Learning has made significant advances in many
real problems and has recently become the most vibrant tool
for several tasks (De-Arteaga et al. 2018; Hager et al. 2019;
Rolnick et al. 2019). While successful, most research in ma-
chine learning still treats the human as a mere labeler of the
target variable in training examples. Consequently, there has
been a mild surge in developing human-allied systems that
can solicit richer human inputs (Towell and Shavlik 1994;
Kunapuli et al. 2013; 2010; Fung, Mangasarian, and Shavlik
2003). These inputs range from specifying domain knowl-
edge in terms of decision-boundary constraints (Fung, Man-
gasarian, and Shavlik 2003), label preferences (Odom and
Natarajan 2018), misclassification costs (Yang et al. 2014),
and qualitative constraints (Yang and Natarajan 2013) to
name a few.

We consider the problem of learning using qualitative
constraints such as monotonicities and synergies. In many
real-world tasks such as medicine and logistics, such knowl-
edge is quite natural and easy to obtain. For instance, a
physician could easily explain that “as the A1C number in-
creases, the risk of heart attack increases”. Or a domain ex-
pert in logistics could explain that “as the distance between
the source and destination increases, the price of shipping
increases”. Ignoring such valuable advice while learning a
model appears wasteful. Several prior works exist on incor-
porating such domain knowledge in the context of learn-
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ing machine learning models, for classification task (Cano
et al. 2019) and for regression task such as isotonic regres-
sion (Robertson, Wright, and Dykstra 1988). The key ad-
vantage of employing such constraints appears to be in the
cases of noisy and sparse domains where including such
constraints can yield significantly faster and better conver-
gence compared to using only data, specifically in proba-
bilistic models like Bayesian Network (Altendorf, Restificar,
and Dietterich 2005; Yang and Natarajan 2013).

Inspired by these successes, we propose a new method
for adapting these constraints in the successful gradient-
boosting framework. Specifically, we develop a unified
approach that works for both classification and regression
settings. While an earlier work attempted to address this
problem by converting the qualitative constraints (QCs) to
a preference framework (Odom and Natarajan 2018), it had
two issues - first, the framework from QCs to preferences
is not quite natural, second, and most importantly, the pref-
erence framework reweighed examples instead of using the
QCs as constraints. From this perspective, QCs were used to
alter the data distribution as against constraining the model
as other probabilistic methods do (Altendorf, Restificar, and
Dietterich 2005; Yang and Natarajan 2013). Our current
approach follows the intuition of constraining the model.
Specifically, we change the regression values of the boosted
functions based on their violation of the advice constraints,
without reweighing the examples.

We make a few important contributions: (1) We derive
the first unified framework for gradient-boosting that can be
adapted to classification and regression settings. (2) Our gra-
dient updates are directly used to constrain the model pa-
rameters rather than alter the data distribution. (3) Inspired
by the use of knowledge for learning SVMs (Fung, Man-
gasarian, and Shavlik 2003), we provide an interpretation of
the resulting framework using margins. (4) Finally, and most
importantly, we demonstrate both the effectiveness and effi-
ciency of the proposed approach in multiple domains – 15
standard domains for classification and regression and 2 real
data sets (including a novel logistics data set).

Our code and data is available for public use1. The rest
of the paper is organized as follows. After reviewing the

1https://github.com/starling-lab/KiGB
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background work on qualitative constraints and boosting, we
present our unified algorithm. We present both the classifi-
cation and regression settings. Then we evaluate these algo-
rithms on several classification and regression tasks before
concluding by outlining future directions.

2 Background and Related work

2.1 Qualitative Constraints

In most of the real-world problems such as medical research,
finance, marketing, social science, etc., human experts have
a considerable amount of domain knowledge which could
potentially improve the performance of the machine learn-
ing models in the presence of data sparsity, class-imbalance,
and/or high dimensionality. In particular, the qualitative in-
fluence between random variables has a long history of
being applied to machine learning models, traced back to
1990 (Wellman 1990) and is well studied in a broad variety
of application areas, such as finance (Kim and Han 2003;
Chen and Li 2014), housing (Potharst and Feelders 2002),
medical research (Yet et al. 2014), computer vision prob-
lems (Campos, Tong, and Ji 2008; Tong and Ji 2008), etc.
As a prevalent and vital type of qualitative constraint, mono-
tonicity has been applied to a wide range of machine learn-
ing models from Support Vector Machines (Bartley, Liu,
and Reynolds 2016b) to Deep Lattice Networks (You et al.
2017). However, most of the work has focused on using
monotonic constraints for the classification tasks (Cano et
al. 2019). This paper aims to explore and evaluate the use of
monotonic influences in regression and classification tasks
at the same time.

Definition 1. Monotonic Influence: A random variable x
has a monotonic influence on a random variable y, if higher
values of x stochastically results in higher (or lower) values
of y. It is denoted by x Q+

≺ y (or x Q−
≺ y).

Monotonic influences have been proven effective when
incorporated into the learning of tree-based models. A va-
riety of approaches proposed include: using modified split-
ting criteria which considers both the entropy and the order-
ambiguity score (Ben-David 1995), adding new corner-
elements to the dataset (Makino et al. 1999; Potharst and
Bioch 1999), pruning non-monotonic branches (Feelders
and Pardoel 2003; Bioch and Popova 2002), relabelling
the dataset to remove all non-monotonic instances (Bioch
and Popova 2002), adjusting the probability values at the
leaf nodes in case of violation using isotonic regression
functions (Van De Kamp, Feelders, and Barile 2009), etc.
These approaches have lately been adapted to random-
forest decision tree ensembles (González, Herrera, and
Garcı́a 2015; Bonakdarpour et al. 2018). Furthermore, a
recent work (Bartley, Liu, and Reynolds 2016a) leverages
the formulation of the random-forest decision tree ensem-
ble as a weighted neighbourhood function and proposes a
re-weighting scheme subject to monotonicity constraints.
However, none of these approaches have been successfully
adapted to gradient-boosting. González et al. (2016) pro-
posed a pruning mechanism for monotone AdaBoost, but it
is very inefficient since it learns whole tree, then compares

each branch split with all other splits to establish monotonic-
ity and prunes the non-monotonic branches.

Existing approaches that use monotonic influences for
gradient-boosting ensembles include the split-constrained
tree in LightGBM (Ke et al. 2017) and XGBoost (Chen and
Guestrin 2016). Both platforms constrain the splits while
performing a greedy search to learn a monotonic tree. At
each node of the tree, after the splitting variable is selected,
the mean of the left and the right sub-tree is used as the
bounding constraint for future splits. The leaf values of the
future splits in the left sub-tree are upper bounded (≤) by
the mean and the leaf values of the right sub-tree are lower
bounded (>) by the mean. This approach is very restrictive
(as shown by Bartley et al. 2019), and can overfit the train-
ing data (as illustrated in section 3.1). It can be effective for
problems which require strict monotonicities and have clean
data, without any noise.

Another recent work, Monoensemble (Bartley, Liu, and
Reynolds 2019) converts each tree to monotone rules and
then re-calculates the leaf values (coefficients) to ensure
monotonicity. They propose two methods for coefficient re-
calculation: Logistic regression and Naive Bayesian tech-
niques. Although Monoensemble was proposed for the ran-
dom forest ensemble, the implementation2 is extended to
gradient boosting but limited to classification. Random for-
est monoensemble has shown better performance than other
previous approaches for classification tasks and also guaran-
tees global monotonicity. However, the focus of our paper is
not to achieve monotonicity, rather use the loose monotonic
influences as advice to yield faster and better convergence
when the data is scarce and noisy.

The motivation of this paper can be illustrated with the
following example. Consider a typical case in logistics do-
main where even though the monotonic advice like “as the
distance between the source and destination increases, the
price of shipping increases” holds in general, a trucking
company might charge a lower price for some particular
long-distance shipping. Various reasons could lead to such
scenarios, e.g. driver returning to the home base, conve-
nient parking, next scheduled pick-up, etc. Since in the real-
world it is impractical to capture all the influencing factors
and learn a strictly monotonic function, we propose an ap-
proach to learn a loosely monotonic function which allows
the trade-off between the data and the advice. Our approach
does not guarantee monotonicity but as shown by the exper-
imental results, for most of the datasets, it has clear benefits
over approaches which guarantee global monotonicity.

2.2 Functional gradient boosting

Functional gradient boosting (Friedman 2001) calculates
functional gradients for each example. These gradients (ỹ)
usually correspond to the difference between the true value
(or true label in classification problems) and the predicted
value (or predicted probability in classification problems) of
an example and are used to generate a regression dataset.
Functional gradient-boosting algorithm starts with an initial
model (ψ0) and then iteratively adds the model (ψ = ψ0 +

2https://github.com/chriswbartley/monoensemble
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... + ψm−1) which best fits the current regression dataset.
In iteration m, after the regression dataset (〈xi, yi〉, ỹi) is
generated, a model ψm is fitted on this dataset to optimize
a specific objective function. ψm is then added to the final
model (ψ). This is repeated till convergence or some fixed
number of iterations. For this paper, these models are trees.

3 Knowledge Intensive Gradient Boosting

Our knowledge-intensive gradient boosting (KiGB)
approach leverages qualitative influences, provided by
human experts, to improve learning with functional gradient
boosting. Unlike previous approaches that incorporate
monotonic influences as hard constraints, KiGB naturally
incorporates the influences at each iteration during boosting
and provides a versatile framework which can adapt to the
knowledge or data as desired.

While boosting for regression, one of the most common
objective function is to minimize the L2 loss function:

argmin
ψ

N∑
i=1

(yi − ψ(xi))
2 (1)

However, such standard objective function does not account
for expert-specified monotonic influences. Such domain
knowledge provides information which could be potentially
absent from the data, KiGB introduces a way to leverage
that information. Assume a tree (ψt) splits at node n with
variable a. If there is a monotonic influence a Q+

≺ y indicated
by an expert, the expected values of the left sub-tree (ai ≤
splitting criterion) of n should be no more than the expected
value of the right sub-tree (ai > splitting criterion), i.e.
Eψt [nL] ≤ Eψt [nR], where nL (resp. nR) is the set of all ex-
amples assigned to the left (resp. right) sub-tree at n. KiGB
uses this expectation as a constraint on the leaf values and
incorporates it into the objective function. But, given the dif-
ferent degrees of the plausibility of expert’s advices and lev-
els of noise in the data, an ideal approach should allow for
different extents to which the monotonic constraints can in-
fluence ψt. The following section illustrates the significance
of the equilibrium between the experts’ knowledge and data.

3.1 Equilibrium between Advice and Data

Consider the noisy dataset as shown in Figure 1(a) with fea-
ture a on the horizontal axis, b on the vertical axis, and dif-
ferent colors representing different regression values of the
target y. Assume that some expert provided the monotonic
influence advice – a Q+

≺ y for this data. The noisy data clearly
violates this constraint in region R1 & R2. Different use
cases may require treating this anomaly as conflict or noise.
In some cases, this anomaly might be an important conflict
pattern in the data which should be captured by the model,
while in others, advice is more significant and the anomaly
may be overlooked as noisy observations. Later case is es-
pecially when it is known that some sensors collecting the
data are not sensitive enough or have failed.

Our KiGB framework allows for achieving the right bal-
ance between the advice and data. Figure 1(b) illustrates the
decision boundaries of gradient-boosted model (with 2 trees)

learned with vanilla gradient boosting algorithm that does
not incorporate the monotonic constraints. In this case, as
can be seen, the model can possibly become incorrect due to
two specific reasons - missing data (as in region R5) or with
noisy data (as in R1). Figures 1(d,e,f) illustrate the decision
boundaries learned by KiGB approach that uses the mono-
tonic constraints. λ values indicate the relative importance
given to the advice. In KiGB, with increasing λ, the regres-
sion value in the regions on the right (R2 and R3) are grad-
ually increased and the regression value in the left regions
(R1 and R4) are decreased, as shown in figures 1(d,e,f). This
shows that as the importance of the advice increases (λ in-
creases), the function learned is increasingly positive mono-
tonic w.r.t. a, i.e. biased by advice. We specifically see the
advantage of advice for the predicted regression value in the
region R5, where no training examples are available.

On the other hand, split-constrained boosted trees of
LightGBM, which uses strict monotonicity constraints,
overfits the training data by finding an unnatural split that
best optimizes the objective. Figure 1(c) illustrates the deci-
sion boundaries learned by the LightGBM with monotonic
constraints. As seen in figure such split-constrained method
overfits the training data by splitting horizontally in the re-
gion R1 & R2. So, it becomes important to clean the data
before using such monotonic boosting approaches.

3.2 Proposed Approach

We now describe how KiGB learns boosted trees with
monotonic influences. Inspired by the work on advice con-
straints in SVMs (Fung, Mangasarian, and Shavlik 2003),
we incorporate monotonic influences through advice con-
straints of the form Eψ[nL] − Eψ[nR] ≤ ε. This repre-
sents an ε-margin constraint for node n in the regression
tree that ensures that monotonicity is enforced robustly up
to a ( potentially user-specified) tolerance of ε. We employ
a slack variable ζn = (Eψt [nL] − Eψt [nR]− ε) to mea-
sure the violation of the monotonicity constraints at each
node. We modify the standard objective of squared-error loss
to include a penalty ((ζn)2) when the advice constraint is
violated (ζn > 0), as:

argmin
ψt

N∑
i=1

(ỹi − ψt(xi))
2

︸ ︷︷ ︸
loss function w.r.t data

+
λ

2

∑
n∈N (xc)

max (ζn · |ζn|, 0)
︸ ︷︷ ︸

loss function w.r.t. advice

(2)

where N (xc) is the set of all non-leaf nodes which split on
the monotonic features (xc) influencing the target variable
and parameter λ expresses the relative importance of the ad-
vice constraint in the problem. The loss function w.r.t. the
advice is a form of hinge loss and is activated only on viola-
tion of the advice constraint (ζn > 0).

With the modified objective, the parameters for each leaf
node � ∈ ψt can be derived as:
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Figure 1: Illustration of equillibrium by proposed approach. In standard-boosting, without any monotonic influence statements,
the model learned is incorrect due to lack of data (in R5) and the presence of noisy data (in R1). By including the influence
information (a Q+

≺ y) in monotonic-boosting approach, the model overfits the training data by using unnatural split (in R1 &
R2). By using the influence information in KiGB the model converges to a better generalizable model. Different values of λ
enables identification of the right balance between the data and advice. Larger values of λ enforce the constraints aggressively.

ψ�t (x) =
1

|�|
N∑
i=1

ỹi · I(xi ∈ �)

︸ ︷︷ ︸
mean

+

λ

2

∑
n∈N (xc)

I(ζn > 0)ζn ·
(
I(� ∈ nR)

|nR| − I(� ∈ nL)

|nL|
)

︸ ︷︷ ︸
penalty for advice violation

(3)

where, I(� ∈ nR) represents whether leaf � belongs to the
right sub-tree of node n and |�| represents number of exam-
ples at the leaf node �.

Intuitively, if the advice constraint is violated for the node
n then the penalty applies a total correction of λ · ζn on
all the leaves in the sub-trees. It is worth noting that the
penalty applied on each sub-tree is inversely proportional
to the number of examples in that sub-tree. So, when there
is significant data available, the advice is scaled down. The
tree is first constructed by evaluating the splitting variable

w.r.t the standard squared-error loss and then the leaf values
are updated as per the modified objective.

High values of λ force aggressive advice-based updates
when a constraint is violated, and the influence of data is re-
duced. Alternately, small values of λ make the advice con-
straint less strict, and the trees depend more on data. When
λ = 0, the objective is a standard tree learning that relies
only on the data. Negative values of ε enforce strict mar-
gins while positive values allow overlapping margins. In
extreme cases, to enforce the expected value of left sub-
tree to be strictly less than the expected value of the right
sub-tree by some k, i.e. Eψt [nL] + k ≤ Eψt [nR], we set
ε = −k. In other cases, to allow margin of k for violation,
i.e. Eψt [nL] ≤ Eψt [nR] + k, we set ε = k. These interpre-
tations of λ and ε are also evident in the experiments with
hyperparameters.

3.3 Algorithm

Algorithm 1 presents the KiGB learning process for regres-
sion task. KiGB starts with mean value as initial estimate in
line 2 for optimizing the mean-squared error (equation 1)
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Algorithm 1 Knowledge-intensive Gradient Boosting

INPUT: Data (x, y), # trees M , monotonic features xc, λ, ε
OUTPUT: ψ(x)

1: function KiGB(x, y, M,xc, λ, ε)
2: ψ(x) = ψ0(x) = mean(y)
3: for m = 1 to M do
4: ỹ = y − ψ(x) � Compute gradient
5: ψm(x) = tree(ỹ,x) � Learn the next tree
6: for � in ψm do
7: ψ�

m(x) = ψ�
m(x) + penalty�(xc, λ, ε)

� refer equation 3
8: end for
9: ψ(x) = ψ(x) + ψm(x) � Update the function

10: end for
11: return ψ(x)
12: end function

and iteratively adds a model fitted to data and advice. In
line 4 standard functional gradient is computed. In line 5,
a tree is fit to the computed gradient w.r.t. the data, account-
ing for the mean from equation [3]. Then, for each leaf of the
regression tree, the penalty term from equation [3] is evalu-
ated (w.r.t. the monotonic features xc, relative importance λ,
and margin ε) and applied in line 7. Finally, the tree is added
to the current model (line 8). The updated leaf values (ψ�m)
guide the gradients (ỹ) in the next iteration and help achieve
faster convergence. Note that while the algorithm takes as in-
putM , the number of trees, it is easy to use any convergence
criteria such as change in likelihood to create the ensembles.
Thus, the non-parametric property of the gradient-boosting
algorithm can still be preserved.

3.4 Classification

The loss function w.r.t advice from equation 2 can be easily
adapted to any loss function like deviance or exponential-
loss to extend it for classification. Our experiments below,
for classification tasks, used mean-squared error loss to fit
the tree and binomial-deviance to compute the gradient. This
leads to following two changes in the algorithm 1: initial es-
timate, ψ0(x) becomes median(y) in line 2, and gradient, ỹ
changes to sign(y − ψ(x)) in line 4. We show the entire
derivation of the leaf update (equation 3 ) from the modified
mean-squared error objective (equation 2) in the appendix3.

3.5 Extensions

Since KiGB loss function is w.r.t the qualitative constraint
and not tied with the gradient, it is easy to use this ap-
proach on any tree based learning methods like a decision
tree, random-forests, AdaBoost, relational regression trees
etc. As shown by Odom et al. 2018 there exists close con-
nection between qualitative constraints and preferences. In
specific cases, preferences can be reduced to qualitative con-
straints and the KiGB framework can be leveraged. Con-
sider the example advice shown in (Odom and Natarajan
2018), if any car passes an agent on the right, then agent

3https://starling.utdallas.edu/assets/pdfs/KokelAAAI20Sup.pdf

should move into the right lane. This advice is represented
as a preference rule (r = 〈F, l+, l−〉) with preferred label
l+ = move right and avoid label l− = stay. This can be
converted to monotonic influence as F Q+

≺ l+ and F Q−
≺ l−.

Once converted, the framework can be directly applied while
learning the model. Theoretically analyzing the convergence
properties of our framework, on the other hand, remains an
interesting future direction.

4 Experiments

Our evaluations explicitly aim to answer the following
questions:

Q1: Can KiGB effectively utilize monotonic knowledge?

Q2: How does KiGB compare against previous boosting
with monotonicity approach for classification?

Q3: How does KiGB compare against a monotonic
ensemble method for regression?

Q4: How sensitive are the learned models to the KiGB
hyperparameters?

Q5: How effective is KiGB on real-data (potentially
noisy)?

Q6: Does the use of advice benefit when data is scarce?

Datasets: We perform thorough evaluations of KiGB over
15 standard datasets. All of these standard datasets were
obtained from the UCI Machine Learning repository (Dua
and Graff 2017), except the following: Boston and Califor-
nia housing datasets were obtained from StatLib datasets
archives (Vlachos and Meyer 2005) and Windsor housing
dataset was obtained from JAE Data Archive (Anglin and
Gencay 1996). We utilize qualitative constraints discussed
in previous literature when available. Table 1 overviews the
datasets and the monotonic constraints used in our evalua-
tions for each dataset.

Across all of the domains, the test sets for the experiments
were created by randomly selecting 20% of the available
data. Five iterations were performed by sampling 80% of
the remaining data as the training set. The same training/test
sets were used across different methods. We fixed the num-
ber of tree estimators to 30 for our experiments and report
all the results with learning rate of 0.1.

[Q1] Standard Baselines: First, we compare the gradi-
ent boosting implementation of Scikit-learn (Pedregosa et
al. 2011) (called SGB) against our KiGB framework imple-
mented in Scikit-learn (called SKiGB). The results, Table 2
show that for 4 out of 5 classification datasets and for 6 out
of 10 regression datasets SKiGB yields significantly4 better
performance. In other domains, the performance of SKiGB
is comparable to SGB. Thus, we affirmatively answer Q1,
use of monotonic influences, while learning, certainly has
added advantage than learning only from the data in major-
ity of the domains, in both the tasks.

4bold values indicate statistical significance at p-value = 0.1
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Dataset Monotonic Features (xc)

Adult (You et al. 2017)
Australian (Duivesteijn and Feelders 2008)

Car (Bartley, Liu, and Reynolds 2016a)
Cleveland (Bartley, Liu, and Reynolds 2016a)
Ljubljana (Bartley, Liu, and Reynolds 2016a) + age
Abalone Length,Diameter, Height, Shell weight
Autompg (Cano et al. 2019)

Autoprice horsepower, peak-rpm,
city-mpg, highway-mpg

Boston RM, CRIM, PTRATIO

California Total Rooms, Total Bedrooms
CPU (Cano et al. 2019)

Crime
population, racepctblack, racepctWhite,
agePct65up, pctWPubAsst, PctKids2Par,

PctKids2Par, PctYoungKids2Par

Redwine volatile acidity, citric acid,
sulphates, alcohol

Whitewine volatile acidity, citric acid,
sulphates,alcohol

Windsor lot

Logistics miles, team driver, holiday, new year,
average fuel price

HELOC (FICO 2018)

Table 1: Datasets used in the experiments. First 5 datasets
have binary classification task, next 10 have regression task
and last two are non-standard datasets described later. Sec-
ond column either refers to the literature from where we
got the monotonic features and/or lists the feature names
used for experiments. Features in bold have negative influ-
ence (x Q−

≺ y) and others have positive influence (x Q+
≺ y).

Dataset SKiGB SGB Dataset SKiGB SGB
Adult 0.855 0.853 Cleveland 0.737 0.677

Australian 0.855 0.83 Ljubljana 0.696 0.621
Car 0.984 0.982

Abalone 5.377 5.491 CPU 0.185 0.204
Autompg 9.793 13.623 Crime 2.211 2.296
Autoprice 8.866 8.945 Redwine 0.381 0.419

Boston 24.065 21.493 Whitewine 0.426 0.439
California 47.159 47.468 Windsor 3.9 4.626

Table 2: Standard baselines: Comparison of performance
of SKiGB and SGB. Performance measure used is accu-
racy for classification tasks (the higher the better) and mean
squared-error for regression tasks (the lower the better).

[Q2/Q3] Monotonic Baselines: Next, we compare our
KiGB framework against two approaches that incorpo-
rate monotonic constraints for boosting: Monoensemble
(MONO) and LightGBM monotonic constraints (LMC).
Since there is a significant difference in the implementation
of gradient-boosted trees in Scikit-learn and LightGBM5, we
compare MONO which was implemented in the Scikit-learn

5LightGBM additionally uses Exclusive Feature Bundling and
Gradient-based One-Side Sampling (Ke et al. 2017)

Dataset SKiGB MONO LKiGB LMC
Adult 0.855 0.857 0.865 0.863

Australian 0.855 0.884 0.878 0.867
Car 0.984 0.765 0.971 0.959

Cleveland 0.737 0.74 0.757 0.73
Ljubljana 0.696 0.611 0.721 0.718

Table 3: Monotonic baselines: Comparison of accuracy of
KiGB and monotonic boosting approaches for classification
tasks.

Dataset LKiGB LMC Dataset LKiGB LMC
Abalone 4.786 4.797 CPU 0.206 0.208
Autompg 8.047 8.33 Crime 1.834 1.847
Autoprice 14.953 15.614 Redwine 0.382 0.397

Boston 15.496 16.292 Whitewine 0.45 0.467
California 48.517 50.94 Windsor 2.524 2.634

Table 4: Monotonic baselines: Comparison of mean
squared-error of LKiGB and LMC for regression tasks.

library with SKiGB and LMC with our KiGB framework
implemented in LightGBM (called LKiGB).

Bartley, Liu, and Reynolds (2019) proposed MONO for
binary and multi-class classification, so we could only com-
pare MONO with SKiGB for classification datasets. Table 3
shows that for 2 of the 5 datasets, SKiGB outperforms
MONO significantly and in one dataset, Australian Credit,
MONO surpasses SKiGB.

LightGBM (Ke et al. 2017), one of the popular libraries
for gradient boosting trees, has the ability to define mono-
tonic constraints for regression as well as classification set-
tings. Tables 3 and 4 compare our LKiGB with LightGBM’s
monotonic constraints (LMC) for standard datasets. LKiGB
achieves better or comparable performance for most of the
datasets. These comparisons with MONO and LMC answer
Q2 and Q3 positively.

[Q4] Hyper-parameters: From our experiments, we find
that KiGB achieves consistent performance in the follow-
ing ranges: ε ∈ [−1, 1] and λ ∈ [0, 5], but this range may
vary based on the range of the regression value of the tar-
get variable. We demonstrate the robustness of KiGB frame-
work with respect to the hyperparameters on two datasets.

We picked one classification and one regression dataset,
for which KiGB showed significant improvement over both
the baselines. Figures 2 and 3 compare a standard vanilla
gradient boosting and a monotonic boosting baseline against
KiGB for various values of the hyperparameters. Standard
gradient boosting with LightGBM is referred as LGBM. It
is visible from the figures that KiGB provides consistent im-
provement regardless of the hyperparameters used. These
figures are representative of the trend we see across datasets.
When λ = 0, KiGB is equivalent to the vanilla boosting, that
relies only on the data.

For negative ε, lower λ values show improvement but
higher λ values reduce the performance. This is in unison
with our understanding of reduced performance when we
enforce wider margins. For positive ε, we see regular per-
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Figure 2: Sensitivity to hyperparameters: λ & ε for clas-
sification task and comparison of accuracy with SGB and
MONO. The higher the better.

Figure 3: Sensitivity to hyperparameters: λ & ε for regres-
sion task and comparison of negative mean-squared error
with LGBM and LMC. The higher the better.

formance even for higher λ. For datasets which do not have
noise, or there is no violation of the adviced constraints,
there will be no penalty and hence the performance for pos-
itive ε will be equivalent to the standard gradient boosting.
Autompg is one such dataset and hence the ε = 0.3 and
ε = 0.5 lines in Figure 3 are hidden behind the LGBM line.

With this, we answer Q4. KiGB framework is robust to
hyperparameters in noisy datasets and when the dataset is
not noisy, it will perform equivalent to the standard gra-
dient boosting for positive ε. We recommend using cross-
validation to tune these parameters for different problems.

[Q5] Real data sets: To evaluate the utility of KiGB on
real-world noisy data we perform experiments on two non-
standard data sets: Logistics and HELOC. We describe both
these data sets and then present the results.

In the Logistics dataset, we consider a regression task of
predicting the price of shipping goods by trucks. 859 records

Dataset LKiGB LGBM LMC
Logistics (mse) 1.851 1.898 1.889

Dataset SKiGB SGB MONO
HELOC (accuracy) 0.717 0.7 0.688

Table 5: Comparison of KiGB with standard and monotonic
baselines on real-world datasets.

for shipments from South Carolina to Florida were collected
between June 2017 and May 2018 by a logistics platform,
Turvo Inc6. These records included 10 different cities and
furnished following information: pickup location, delivery
location, distance in miles, pickup and delivery date, aver-
age fuel price, load-to-truck ratios and price of the shipment.
We use a subset of these features and some derived fea-
tures for these experiments. The dataset is made available
along with the code. Subject matter experts (SMEs) from
Turvo apprised us of general trends in the logistics industry.
Specifically, Turvo SMEs provided advice such as market
trends dictate that shipment prices will increase (1) around
major holidays; (2) when the shipment has to be driving con-
tinously by alternating drivers day and night; (3) when the
miles driven by the driver exceeds a certain threshold; (4)
finally, when the fuel prices have surged; etc. These gener-
alized advice statements that model the domain trends were
then converted to monotonic influences between various ran-
dom variables.

The second dataset is the Home Equity Line of Credit
(HELOC) applications made by real home owners, released
as part of FICO explainable machine learning (xML) Chal-
lenge found at community.fico.com/s/xml (FICO 2018). The
classification task here is to predict whether applicants will
repay their HELOC account within 2 years and classify them
into bad/good category. Consumers who have made at least
one payment past the due date of 90 days, in a period of 24
months since the credit account was opened were labelled
“bad”. Conversely, the consumers who made all the pay-
ments within the due date were labelled “good”. FICO also
released expected patterns of monotonicity for many feature
variables. In our experiments, we use these monotonic con-
straints to compare KiGB with other models.

Table 5 displays the capability of KiGB in comparison
with the vanilla gradient boosting and monotonic boosting
approaches and answers Q5. For the regression task in Lo-
gistics dataset, we report the mean-squared-error and com-
pare LKiGB with LGBM and LMC. For classification task
in HELOC dataset, we report the accuracy values of SKiGB
as compared with SGB and MONO.

[Q6] Learning curve: One major advantage of
knowledge-based learning is that it requires fewer training
examples as compared to models which learn only from
data. We test this hypothesis for KiGB framework to
answer Q6. Learning curve presented in figure 4 compares
the performance of KiGB, vanilla gradient boosting and
monoensemble on the real world data set of HELOC. We
sample specified fractions of training data and evaluate all

6https://turvo.com
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three approaches on the same training/test set. We see that
the knowledge-based models (KiGB & MONO) converge to
better performance even with fewer training samples while
the vanilla gradient boosting (GB) converges gradually
with the increasing number of samples. Specifically, KiGB
is significantly better than just using the data and the
default monotonicity method. This clearly shows that when
available, qualitative knowledge can not only accelerate
learning but could also converge to a superior performance.

Figure 4: Learning curve for classification task in HELOC
dataset with KiGB, standard boosting and monoensemble

There are a few important takeaways: (1) KiGB is better
than learning from only data in most of the domains and
is never worse. This clearly shows that even in the cases
where the knowledge is not well informed or is imperfect
(such as wine datasets), KiGB does not suffer. (2) When
the knowledge is indeed relevant as in the case of HELOC,
KiGB achieves a jump start, better slope for learning and
most importantly, a higher asymptote in performance.
This clearly illustrates the need for knowledge-injunction in
learning systems.

5 Conclusion

We considered the problem of providing rich domain
knowledge to the successful gradient-boosting algorithm.
Specifically, we presented the use of qualitative constraints
such as monotonicities and synergies in learning a ro-
bust, generalized model. Our KiGB framework is general-
purpose, one that can be adapted easily for both classifi-
cation and regression tasks. Our comprehensive evaluations
across several benchmarks and real-world data sets demon-
strate the efficiency and effectiveness of the proposed ap-
proach. Extending the evaluation to include synergies (the
formulation already allows for these) is an immediate re-
search problem. Considering multi-class problem is our next
future direction. Incorporating the framework to handle re-
lational data is another task. Finally, employing this system
in the context of a compelling task such as clinical-decision
making is an important and essential next direction.
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González, S.; Herrera, F.; and Garcı́a, S. 2016. Manag-
ing monotonicity in classification by a pruned adaboost. In
International Conference on Hybrid Artificial Intelligence
Systems. Springer.
Hager, G. D.; Drobnis, A. W.; Fang, F.; Ghani, R.; et al.
2019. Artificial intelligence for social good. CoRR.
Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.;
Ye, Q.; and Liu, T.-Y. 2017. Lightgbm: A highly efficient
gradient boosting decision tree. In NIPS.
Kim, M.-J., and Han, I. 2003. The discovery of experts’
decision rules from qualitative bankruptcy data using genetic
algorithms. Expert Systems with Applications.
Kunapuli, G.; Bennett, K. P.; Maclin, R.; and Shavlik, J. W.
2010. The adviceptron: Giving advice to the perceptron. In
ANNIE. Citeseer.
Kunapuli, G.; Odom, P.; Shavlik, J. W.; and Natarajan,
S. 2013. Guiding autonomous agents to better behaviors
through human advice. In ICDM.
Makino, K.; Suda, T.; Ono, H.; and Ibaraki, T. 1999. Data
analysis by positive decision trees. IEICE Transactions on
Information and Systems.
Odom, P., and Natarajan, S. 2018. Human-guided learning
for probabilistic logic models. Frontiers in Robotics and AI.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; et al. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research.
Potharst, R., and Bioch, J. C. 1999. A decision tree algo-
rithm for ordinal classification. In International Symposium
on Intelligent Data Analysis. Springer.
Potharst, R., and Feelders, A. J. 2002. Classification trees
for problems with monotonicity constraints. ACM SIGKDD
Explorations Newsletter.
Robertson, T.; Wright, F. T.; and Dykstra, R. 1988. Order
restricted statistical inference. New York: Wiley.
Rolnick, D.; Donti, P. L.; Kaack, L. H.; Kochanski, K.; et al.
2019. Tackling climate change with machine learning. arXiv
preprint arXiv:1906.05433.
Tong, Y., and Ji, Q. 2008. Learning Bayesian networks with
qualitative constraints. In CVPR.
Towell, G. G., and Shavlik, J. W. 1994. Knowledge-based
artificial neural networks. Artificial intelligence.

Van De Kamp, R.; Feelders, A.; and Barile, N. 2009. Iso-
tonic classification trees. In International Symposium on In-
telligent Data Analysis. Springer.
Vlachos, P., and Meyer, M. 2005. Statlib datasets archive.
URL http://lib. stat. cmu. edu/datasets.
Wellman, M. 1990. Fundamental concepts of qualitative
probabilistic networks. Artificial Intelligence.
Yang, S., and Natarajan, S. 2013. Knowledge intensive
learning: Combining qualitative constraints with causal in-
dependence for parameter learning in probabilistic models.
In ECML-PKDD.
Yang, S.; Khot, T.; Kersting, K.; Kunapuli, G.; Hauser, K.;
and Natarajan, S. 2014. Learning from imbalanced data
in relational domains: A soft margin approach. In ICDM.
IEEE.
Yet, B.; Perkins, Z. B.; Rasmussen, T. E.; Tai, N. R.; and
Marsh, D. W. R. 2014. Combining data and meta-analysis to
build bayesian networks for clinical decision support. Jour-
nal of Biomedical Informatics.
You, S.; Ding, D.; Canini, K.; Pfeifer, J.; and Gupta, M.
2017. Deep lattice networks and partial monotonic func-
tions. In NIPS.

4468


