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Abstract

We introduce a query-driven approach (qMIL) to multi-
instance learning where the queries aim to uncover the class
labels embodied in a given bag of instances. Specifically, it
solves a multi-instance multi-label learning (MIML) problem
with a more challenging setting than the conventional one.
Each MIML bag in our formulation is annotated only with a
binary label indicating whether the bag contains the instance
of a certain class and the query is specified by the word2vec
of a class label/name. To learn a deep-net model for gMIL,
we construct a network component that achieves a general-
ized compatibility measure for query-visual co-embedding
and yields proper instance attentions to the given query. The
bag representation is then formed as the attention-weighted
sum of the instances’ weights, and passed to the classifica-
tion layer at the end of the network. In addition, the gMIL
formulation is flexible for extending the network to classify
unseen class labels, leading to a new technique to solve the
zero-shot MIML task through an iterative querying process.
Experimental results on action classification over video clips
and three MIML datasets from MNIST, CIFAR10 and Scene
are provided to demonstrate the effectiveness of our method.

Introduction

Supervised learning techniques that rely on deep neural net-
works have made significant progress in active research fields
of artificial intelligence such as classification (Simonyan and
Zisserman 2014; He et al. 2016), the mainstream of com-
puter vision applications. In solving an image classification
problem, each training sample often comprises a raw image
and the corresponding class/category label. However, such
a classification setting may not be sufficient to satisfactorily
account for real-life applications nowadays. With the rapid
advances of machine learning research, it becomes feasible
to simultaneously explore all the useful information of either
an image or a batch of images. In other words, image classifi-
cation is no longer restricted to the problem where an image
is labeled as a single category. Among the variants of classi-
fication frameworks, e.g., as illustrated in Figure 1, we aim
to address the multi-instance multi-label learning (MIML)
in (Zhou et al. 2012) from a novel viewpoint of learning
through queries.
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Figure 1: Variants of supervised-learning tasks: (a) Classifi-
cation (b) Multi-instance learning (MIL) (c) Multi-instance
multi-label learning (MIML) (d) Query-driven multi-instance
learning (QMIL).

The MIML problem is characterized by that an object or a
bag consists of several instances with multiple class labels.
While MIMLSVM (Zhou and Zhang 2007) is proposed to
deal with the problem, deep MIML in (Feng and Zhou 2017)
is shown to be more effective than other traditional methods.
Notably, existing supervised learning approaches for MIML
are provided with the full binary label vector associated with
each training bag, and thus have access to the presence of any
class label in a bag. Such a learning setting requires exten-
sive manual efforts in annotating the vast amount of training
bags. In our method, a query-driven multiple instance learn-
ing (QMIL) framework is proposed to tackle MIML without
specifying the full binary label vector. In fact, the gMIL for-
mulation requires only a binary label for each bag along with
the corresponding label query. The proposed method thus
has two main advantages. First, it is flexible to introduce new
classes into the model without the need to modify the labeling
information in the existing training data and the classification
layer. Second, the query mechanism enables gMIL to inher-
ently and additionally perform zero-shot classification in a
crude way.



Related Work

For the ease of discussion, we divide the literature survey of
relevant techniques into three groups, namely, multi-instance
learning, attention mechanism, and zero-shot learning.

Multi-instance Learning The MIL paradigm deals with
those learning problems for which labels only exist for sets
of data points. A set of data points is typically termed as a
bag and each data point is considered as an instance. Follow-
ing (Dietterich, Lathrop, and Lozano-Pérez 1997), a bag is
said to be positive with respect to a certain binary label if
at least one instance within the bag is positive. The strategy
of (Chen, Bi, and Wang 2006) maps each bag into a feature
space defined by the instances in the training bags via an
instance similarity measure and ¢;-norm SVM is applied
to select important features as well as construct classifiers
simultaneously. In (Liu, Wu, and Zhou 2012), the authors
construct nearest-neighbor graphs among instances and un-
cover positive instances within positively-labeled groups. The
MIL formulation in (Pathak et al. 2014) is designed to learn
a semantic segmentation model based on weak image-level
labels. More recently, (Wang et al. 2018) employs neural
networks that aim at solving the MIL problems in an end-
to-end manner. An attention-based neural network model
is proposed in (Ilse, Tomczak, and Welling 2018) to detect
positive instances automatically. In (Dennis et al. 2018), a
recurrent neural network model called MI-RNN is developed
to find out the signature, which is linked to those positive
instances in a bag. Among the aforementioned classical MIL
problems, each bag has only one corresponding label. How-
ever, in many practical applications, a complex bag (such as
an image), which contains various instances like pixels, may
have more than one relevant label. The MIML framework of
(Zhou and Zhang 2007) is established to tackle the compli-
cated scene classification. Over the past few years, assorted al-
gorithms, ranging from traditional, e.g., SVM (Nguyen 2010;
Briggs, Fern, and Raich 2012) and k-nearest neighbor (KNN)
(Zhang 2010), to popular like deep neural network learning
(Feng and Zhou 2017), have been proposed to address the
MIML problem.

Attention Mechanism The attention mechanism has a
significant impact on designing deep learning architec-
ture to solve challenging applications in artificial intelli-
gence, including image captioning, e.g., (Xu et al. 2015;
You et al. 2016), visual question answering, e.g., (Lu et al.
2016), and machine translation, e.g., (Luong, Pham, and Man-
ning 2015). For solving the MIL or MIML problems, as the
individual instance labels of training data are not given, the at-
tention distribution is often learned implicitly via optimizing
the bag-level objective function.

Zero-shot Learning A critical limitation of deep learning
is that it often takes a massive amount of samples to train a
satisfactory model, and the classifier, such as trained by cats
and dogs, can only classify cats and dogs. This means that the
classifier is not able to be directly applied to recognize other
species. On the contrary, zero-shot learning (ZSL) refers to
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the learning of classifying samples of unseen categories. It
implies that the training classes and the zero-shot testing
classes are different. For example, the ZSL algorithm pro-
posed in (Lampert, Nickisch, and Harmeling 2009) guides the
model to classify unseen categories, empowering machines
the capacity for reasoning and true intelligence.

Our Approach To establish the proposed gMIL, we first
need to generate a training dataset of bags. Specifically, for
each query about a certain class label, a bag of instances
from randomly-selected classes are generated. If there exists
at least one instance from the query class, the underlying
bag is said to be positive and its binary label is set to 1.
Otherwise, it is a negative bag with label 0. Notice that only
the examples from the classes of interest can be included in a
bag. Our setting is different from that in (Dennis et al. 2018)
where a positive bag is composed of one or a few positive
instances and several negative instances, which are usually
noise, i.e., not from any of the underlying classes of interest.
In gMIL, each training sample/bag is annotated with a binary
label, rather than a binary label vector over all classes as
in the MIML setting. However, the proposed method still
satisfactorily solves the MIML problem in that a proper bag
representation for classification can be obtained by qMIL
via more effectively estimating the query-adapted attention
distribution over instances within a bag. We summarize the
main advantages of the proposed qMIL over other existing
techniques below.

1. The gMIL formulation is flexible. When new data of ad-
ditional classes are included, all binary labelings of the
existing training data remain the same, whereas annotat-
ing with a full label vector as in the conventional MIML
needs to modify all the labeling information.

. The gMIL network architecture is general. When addi-
tional new classes are introduced, the network architecture
remains the same. It can be readily fine-tuned to classify
the new classes by generating the queries of new classes
and the corresponding training bags. However, with the
MIML architecture, one would need to expand the classi-
fication layer to account for the new classes.

3. The gMIL framework enables zero-shot classification.
When data of unseen classes are added in the testing bags,
we perform iterative queries to first remove most positive
instances of seen classes from a given testing bag, and
then compute a more reliable attention distribution for
each query of an unseen class to decide if any positive
instance of an unseen class is present or not.

Our Method

The gMIL framework is developed to learn a neural network
model that adapts to the underlying query and dynamically
yields a proper bag representation for classification. To com-
prehend the main ideas, we focus on describing: 1) how
to generate the training data; 2) how to establish a gener-
alized compatibility measure to facilitate the query-visual
co-embedding; 3) how to employ label-dependent regular-
ization to yield the desirable attention distribution over bag



instances; and 4) how to use attention pooling to obtain the
query-adapted bag representation for classification. Finally,
we detail a handy procedure resulted from gMIL to carry out
zero-shot classification via iterative queries.

The ¢gMIL Problem

In the classical supervised learning such as multi-class classi-
fication, the aim is to train a model that predicts a target label
y € {1,...,C} for a given test sample x € R”, where C
represents the number of classes. However, in the formulation
of gMIL, each example is represented as a bag of instances,
X ={x1,...,XK }, where K x is the number of instances
and could vary over bags with a pre-specified upper bound
K. Notice that neither dependency nor ordering relationships
are considered in generating the instances for each bag.

To incorporate the query mechanism into qMIL, we have
a set of C' queries, Q@ = {q1,...,qc}, where the query ¢,
inquires the existence of class label ¢ in a bag, and is encoded
with the corresponding class name/word. The proposed gMIL
implicitly solves a more challenging MIML problem than
the conventional one. The critical distinction is that each bag
X in the training data of qMIL comes with only a single
binary ground truth Y indicating the existence of at least
one instance of a particular class in X, while the original
MIML setting requires a full C-dimensional binary vector
describing the presence of all the class labels in X. When
C = 1, this is exactly the form of training data used for
solving a binary MIL problem. For C' > 1, we use a triplet
(X,Y, q) to indicate that the bag label Y depends on the
query ¢ € () and is defined by

v :{ 0, iff Y02 1(g = yx)

1, otherwise,

where y;, € {1,...,C} is the class label of the instance
X, in X. The notation I(¢ = y;) is an indicator function
for signaling whether the query ¢ concerns the label y;,. We
emphasize that the instance-level labels y;, are not available
in learning the gMIL model. They are included in (1) solely
for providing an analytic form in defining the bag label Y
with respect to the query q.

With (1), it is insightful to describe how the training data of
gMIL are generated. Suppose we intend to work with a query
subset, Q" C @, and N training bags. Thus, for each query
q € @', we generate N/|Q’| bags, which can be divided into
two equal-numbered positive and negative subsets, denoted
as {(X;",Y; = 1,¢)}U{(X,,Y; = 0,q)}. The total number
of instances in each bag is randomly decided with an upper
bound K, and only instances with a class label in {1, ..., C'}
are considered. These |Q’| query-dependent collections of
bags form the final training dataset S of [V bags. It indicates
that the training procedure considers equal number of positive
and negative training bags for each ¢ € @', which enables
focusing on learning to solve the classification task without
imposing any presumed distribution on the data. In the ex-
periments, we demonstrate that the inference performance
of gMIL does not significantly vary with respect to the ratio
between the numbers of positive and negative bags.

O’
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Query-adapted Attention Pooling

Although the number of instances in a gMIL bag could vary,
we hereafter assume that all bags have K instances. After
all, null instances can be introduced when needed. The uni-
fied bag size makes the batch training of learning the neural
network, as shown in Figure 2, more convenient. Now con-
sider an arbitrary training bag (X,Y, q), we use word2vec
(Mikolov et al. 2013) to represent the query ¢ as a 300-D
feature vector and pass it through a two-layer MLP to obtain
the query embedding ¢(q) € R?. On the other hand, the im-
age feature vector of each instance x is forward propagated
through a three-layer MLP to yield its visual embedding
which is denoted as 1)(x) € R The two mappings can
be aligned to achieve query-visual co-embedding. To this
end, we construct a network component .4 to function as a
generalized compatibility measure for better exploring the
co-embedding. Specifically, we have

A(9(q), ¥(x)) = o2(wTo1 (V(¥(x) © ¢(q)))), ()

where w € RE*! and V' € RE*? are network parameters, ©
denotes the element-wise product, and o1, o9 are activation
functions. When L = d and linear activation functions in (2)
are used, the generalized compatibility measure A simply
reduces to taking inner product between (x) and ¢(q) if
both V' and w are fixed as the identity versions.

It follows from (2) that we can use the compatibility
measure A to compute the unnormalized attention «y,
A(o(q), 1 (xy)) for each instance x; € X to a given query
q. Then the attention-weighted pooling is utilized to obtain
the bag representation z for X, which adapts to the query ¢
as follows:

exp{ax/7}
SR explay/T}

where 7 is the temperature parameter and [}, is the normal-
ized attention of instance x; € X to q.

3)

K
ZZZﬂkxk and Sy =

k=1

Loss Function and Regularization

For each training triplet (X,Y,q) € S, we now know
how to derive the bag’s feature vector z according to (3)
and the corresponding unnormalized attention vector o =
(a1,...,ak)T. To train the network to perform the (binary)
classification task for predicting the bag label with respect
to ¢, we need to define a proper loss function £ to accom-
plish the gMIL learning. Specifically, we consider a label-
dependent attention-regularized loss function:

L(S) = L1(S) + N L2(S), 4)

where ) is the weighting parameter, and the two losses for
classifying each (X,Y,q) € S are

L1(X)=Ylog p(X)+ (1-Y)log(1l—-p(X)), ()
Lo(X) = Ya(X)[ls + (1 = YV){Var(a(X))}2. (6)

L1 in (5) is the cross-entropy loss and the attention regular-
ization loss L9 in (6) plays a crucial role in the proposed
gMIL formulation. Here we justify the form of the proposed
regularization loss in (6) for the two possible cases.
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Figure 2: The proposed qMIL neural network architecture.

e When Y = 1, the training bag X has a positive label to
g and Lo = |l||1. The ¢;-norm regularization effect is
to find a sparse distribution of the instance attention. The
preference is reasonable in the case where at least one
instance is relevant to the query ¢ and the sparse prior aims
to distribute most attention to the relevant instances.

e WhenY =0, we have £5 = y/Var(a) = ||a — &l|2. In
this case all instances in the training bag X are irrelevant
to the query ¢. The use of /5-norm thus encourages the
attention to uniformly spread over all the instances.

Zero-shot Classification via Queries

Thus far we have described how to leverage with the query
mechanism to implicitly solve an MIML problem with a
(triplet) training dataset, where each training bag is annotated
only with a single binary label. We now explain how to ap-
ply a learned gqMIL model to tackle the following zero-shot
scenario. Suppose that in generating testing bags, we decide
to consider instances from both the seen and unseen classes.
Then, inquiring an arbitrary testing bag X with a query about
an unseen class would result in zero-shot classification. We
use an explicit example to depict the scenario. Let car be
a seen class and truck an unseen class. A testing bag X
includes at least one instance of car and all the other in-
stances are not t ruck. A query about t ruck for X would
most likely confuse the gMIL model and yields a positive
return for the false existence of a t ruck instance. The con-
fusion is caused by that car and truck are similar in the
space induced by word2vec. Thus, to tackle the resulting
zero-shot classification, we consider a two-stage procedure.
In stage one, we iteratively perform queries of all the seen
classes to identify strong positive instances, and exclude them
from further considerations. In stage two, now without the
severe distraction from the evident instances of seen classes,
gMIL can then estimate a proper attention distribution and
thus refine the bag representation for zero-shot classification.
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Further details are provided in the experimental results.

Experimental Results

We evaluate our method mainly on the MNIST-based dataset
(MNIST-BAGS) (Ilse, Tomczak, and Welling 2018) and
CIFAR10-based dataset (CIFAR10-BAGS). Besides the pi-
lot study on zero-shot classification, there are three groups
of experimental results. The first set of experiments con-
cerns a standard MIL problem where we compare qMIL with
the deep MIL in (Ilse, Tomczak, and Welling 2018). In this
setting, the total number of query class is just one. The sec-
ond set of experiments is then extended to dealing with the
MIML problem. As we have pointed out that despite using
less-annotated training data, qMIL yields convincing results
and shows effectiveness over the compared methods. The
third set of experiments deals with a popular real-life appli-
cation, action recognition. The proposed gMIL is applied
to determine whether a given video clip contains a specific
action to the query, where we have tested with a subset of
Activity Net (Fabian Caba Heilbron and Niebles 2015).

Learning with gMIL is advantageous, especially in cre-
ating training data. We just need to focus, in turn, on each
particular category of interest, and mark whether the bag
assumes the label or not. This can reduce human errors when
annotating multiple labels and effectively reduce data noise.
After all, in practical applications, we most likely care about
only the categories we are interested in. Finally, given a novel
query about an unseen class, the qMIL model is demonstrated
to make reasonable predictions that are significantly better
than random guesses.

Data Sampling

We follow the similar data sampling method in (Ilse, Tom-
czak, and Welling 2018) to create the MNIST-BAGS MIL
dataset from MNIST (LeCun, Cortes, and Burges 1998) and
analogously from CIFAR10 (Krizhevsky and Hinton 2009).



Table 1: Single query results on MNIST/CIFAR over ten runs of training/testing data sampling.

MNIST CIFAR10
Query GatedAttnDMIL gqMIL | Query GatedAttnDMIL qMIL

accuracy  attention acc.  accuracy  attention acc. | accuracy  attention acc.  accuracy  attention acc.
0 954+37 996+12 969+22 99.6+1.2 plane 824 +1.7 827+32 899+17 848+1.5
1 97.0 £ 4.1 99.6+12 98.0+24 99.8+0.6 car 89.6+18 957+129 90.7+14 951+14
2 937+£3.6 99.6+12 95.7+£27 99.6+1.2 bird 724+2.6 60.0+£227 73.6+24 69.7+9.0
3 932+3.6 998+06 96.0+23 100.0+0.0 cat 754 +3.0 541+128 763+29 59.7+103
4 947+£25 9924+09 965+13 994109 deer 7144%3.1 66.6+59 73.8+24 67.61+5.6
5 940+5.8 100000 97.0+22 100.0 0.0 dog 74.1+£23 622+200 743+18 69.8+6.9
6 947+41 990013 971+24 992+13 frog  822+3.0 878+19 82.6+24 884+25
7 942 +3.1 100000 961+1.6 100.0+0.0 | horse 827+29 778+196 828+19 828+79
8 893 £69 9920+09 921+59 99.6 +0.8 ship  87.8£25 89.1+£1.8 884+19 898+14
9 913+3.6 982019 929+31 982+19 truck 855+18 904+26 859+16 91.6+24

The standard MIL problem with one single query proceeds
as follows. In MNIST or in CIFAR10, each of the ten cate-
gories will be chosen in turn as the one of interest, and the
remaining are treated as background/noise. The instances in
each bag are randomly included, and the number of instances
is an integer arbitrarily sampled from the normal distribu-
tion N (10,2). To speed up the training process, after data
sampling and when necessary, zero images are generated to
ensure that each bag has exactly K image instances. We next
turn to the MIML scenario. For each image we now have
multiple labels but do not indicate the specific label of each
instance. (We have described how we construct such training
data in establishing the qMIL problem.) There are two kinds
of inference tasks for MIML. One is the classical MIML
problem, and the other is ours, which is query-driven. For
fair comparisons, we adopt the MIML Scene dataset (Zhou
and Zhang 2007) as the benchmark and report 10-fold cross-
validation results. Note that the numbers of positive bags
and negative bags to a query in the MIML Scene dataset is
unbalanced. The ratio between positive and negative bags is
about 3 : 1. The last experiment is about action recognition.
In this case, a video clip can be thought of as a bag, while
each frame is an instance.

Training and Inference

In the experiments of MNIST-MIL and CIFAR10-MIL, the
hyperparameters can be kept the same. This implies that the
proposed attention regularization in (6) is general and not
data-sensitive. In MNIST, our CNN model conforms to the
LeNet architecture (LeCun, Cortes, and Burges 1998) which
comprises two conv layers for MNIST, and three conv layers
for CIFAR10. The learning rate is 10~* at initialization and
the optimization method is Adam (Kingma and Ba 2014).
The weight decay is 10~°, while X in (4) is 10~ for all the
experiments. We fix 7 in (3) as 0.5. o1 and o3 in (2) are tanh
and linear mapping. For single query, the results are reported
with the mean and standard deviation from ten different runs
of random data sampling. For multiple queries, five random
runs are instead evaluated for the sake of efficiency.

Metrics In both our model and the compared method, the
output of the bag-level prediction to the MIL problem is a

probability p. Thus to compute the accuracy of the bag-level
prediction, the decision threshold is set as p > 0.5 with label
Y = 1and p < 0.5 with label Y = 0. Consider now an
arbitrary bag X = (x1,...,Xx ). In both MNIST-MIL and
CIFAR10-MIL, we indeed have access to the class label of
each instance, i.e., (y1, ...,y ). The instance-level ground
truth can be used to evaluate the accuracy of the predicted
instance attention in each bag. We name the resulting quan-
tity as the instance-level accuracy. The attention accuracy is
evaluated as follows. Each time we predict the bag label as
Y =1 for a triplet (X, Y, ¢), we check the instance label gy
of the most manifest instance xj« where k* = arg max;, O
from (3). If y~ = 1, then we have correct instance attention.

Standard MIL

In standard MIL experiments, for each single query to a
specific class label we first sample 500 training bags, in-
cluding 250 positive and 250 negative bags from MNIST.
Analogously, another 1000 bags (500 “+” & 500 “-) are
also generated for testing. The setting for CIFAR10 is the
same. We compare our method with the state-of-the-art deep
MIL model, denoted as Gated AttnDMIL (Ilse, Tomczak, and
Welling 2018) and report the results in Table 1. The proposed
gMIL achieves better performances in both bag-level accu-
racy and instance-level attention accuracy. In Table 2, we
report the performance versus different numbers of training
bags for the CIFAR10 dataset. The results are on 500 testing
bags. To achieve bag-level predictions of high confidence,
gMIL needs 5000 training bags (2500 “+” & 2500 “-”) for a
single query. Our method also achieves better results in both
accuracy metrics.

MIML

In the MIML problem, we have two ways of testing. One
is to make the testing data the same form by our labeling
scheme on training data, and the other is the standard MIML
task that a bag of instances has several labels to be predicted.
Table 3 shows the performances with respect to the num-
bers of query classes. When excluding the use of £, in (6)
(shown as gMIL™ in Table 3), we have trained with many
different hyperparameters and report the best results. It can
be observed that with the attention regularization term, Lo,
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Table 2: Single query on CIFAR10. N: total # of training bags. (acc: accuracy, att: attention)

N bags 100 500 1000 2000 5000
GatedAttnDMIL 551+86 621+£67 612+62 70.6+43 824+1.7
gqMIL 563+45 628+39 634+t41 718+28 899+17
GatedAttnDMIL att acc 492 +20.1 582+134 667+83 768+44 827432
gMIL 553+113 61.2+81 67.2+52 782+21 848+1.5

Table 3: Performance with respect to # of queries on CIFAR10. The notation qMIL ™~ denotes that the regularization loss L, in
(6) is not used in training. For each query, we sample 5000 training bags.

# queries 1 3 5 7 10

gMIL~™ ace 824 +17 8122+1.8 7123 +£34 65.66 4.6 7833 +23

gMIL 89.9 +1.7 81.77+14 79.45 £+ 2.7 82.09 2.1 86.14 +1.3

gqMIL~ att ace 827+32 6552+99 532141037 45.66+203 70.64+54

gMIL 848 +1.5 87.22+1.1 83.30 1.3 86.01 =12 89.18 +1.0

Table 4: 10-fold cross validation on MIML Scene dataset.
e

deep MIML (Feng and Zhou 2017) 89.45 £+ 1.22 input 0.00 1.00 1.00 0.00 0.01
gMIL 90.20 + 0.96 desert mountains sea sunset  trees

learning the model becomes easier and more stable during
training. (Further details about the regularization effect with
Lo can be found in the supplementary material.)

We have also tested according to the standard MIML task
by evaluating the model with each query for a given bag.
Table 4 and Figure 3 include the results of the MIML task on
the MIML Scene dataset and the comparison with the deep
MIML (Feng and Zhou 2017) which is shown to outperform
MIML SVM, MIML KNN, MIML RBF and MIML Boost
(Zhou et al. 2012). We adopt a pre-trained ResNet50 (He et
al. 2016) and re-implement the deep MIML by following
the details described in the paper. The resulting deep MIML
architecture consists of the pre-trained ResNet50, 2D sub-
concept layer for multiple instances, and max pooling twice
to yield the multi-label prediction. It is trained from scratch
and learned end-to-end.

To better capture the effect of attention regularization, we
investigate how the attention weights of a bag vary with
respect to different queries of a class label. Table 5 shows the
bag-level prediction of probability p and the attention weight
distribution according to each query at testing.

MIML for Video Applications

The proposed qMIL can be readily applied to deal with video-
related applications. Particularly, we explore the problem
involving the Activity Net (Fabian Caba Heilbron and Niebles
2015) and convert the problem into our formulation described
in the proposed gMIL. Following (Wang et al. 2016), each
snippet comprises 16 consecutive frames, and a video clip
can thus be represented as a sequence of snippets. Under such
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Figure 3: From column 2 to column 6: Each includes an
attention heatmap and its bag-level probability, while the
input image is shown in the first column.

a setting, a video clip is a bag and each snippet is an instance,
while its bag label is defined with respect to the query. In
our experiment, we consider those video clips related to the
following three action classes, namely, shot put, discus throw,
and tumbling. Figure 4 shows the result of the proposed gMIL
approach to action recognition.

Zero-shot Scenarios

We also test gMIL for zero-shot classification on CIFAR10.
Specifically, we train the proposed qMIL with seven seen
classes and test on the remaining three unseen classes. Each
bag in the training data is randomly composed of instances
from the seven seen classes, and the testing data are formed
based on two kinds of sampling methods. The fist scenario is
that the testing bags are sampled only from the three unseen
classes, and the other is sampled from all of the ten classes
(seen & unseen). For the latter case, the learned qMIL is
carried out with the help of iterative queries as described
in Zero-shot Classification via Queries. The experimental
results of zero-shot classification are shown in Table 6 and
Figure 5. We remark that the zero-shot scenario is essen-
tially different from the conventional formulation. Therefore,
it is not appropriate to directly compare it with other spe-
cific zero-shot learning techniques, which are cast in a very
different way. The application demonstrates that the advan-
tages and flexibility of the proposed qMIL formulation over



Table 5: Given a testing bag (13 instances), the instance attention weights vary w.r.t. different queries.
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plane 0.04 0.07 002 001 002 001 003 005 00l 012 055 005 001 0.99
car  0.00 000 001 081 00l 000 001 00l 000 011 001 00l 000 0.99
bird 003 007 003 001 002 003 002 054 003 001 002 003 015 098
cat 007 024 0.9 001 005 011 002 004 008 001 002 002 016 096
deer 0.15 0.09 008 001 003 004 033 007 006 003 003 003 005 001
dog 004 009 029 001 001 008 001l 002 037 001 001 001 006 099
frog 007 008 0.11 011 004 014 005 006 007 007 003 004 012 001
horse  0.06 0.03 005 001 001 002 068 002 006 002 001 002 002 096
ship 001 002 000 001 053 001 000 001 000 00l 004 036 001 099
truck 005 005 007 013 005 003 008 005 004 026 008 009 002 001

Bag: video (16 snippets), IrEtance: snippet (16 frames)

Query: Shot put
Query: Discus throw
Query: Tumbling

P

M‘*‘ 0.96

e 0.98

Attention weight

e, 003
Snippet

Figure 4: gMIL for action recognition. Each video clip comprises 16 snippets. Three different queries are chosen for testing. p is

the bag-level probability prediction for supporting a query.
. e -
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v m
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Table 6: Zero-shot testing accuracy with seven seen classes
and three unseen classes. Test data are sampled from
seen—+unseen (ten classes) or from unseen (seven classes).
IQP denotes the iterative query process.
0.04 0.03 0.05

horse  ship  truck total

seen & unseen 58.80 6220 59.60 60.20
seen & unseen (IQP) 57.80 64.20 63.00 61.67
unseen 66.66 72.00 66.33 68.33 == r.
0.13 0.03 0.03 0.05 0.03 0.43
conventional MIL frameworks. Figure 5: The “truck” class is not in the training data. Given
the query of unseen “truck”, qMIL with IQP will pay more
Conclusions attention to the “truck” image in a bag and the bag-level prob-

bility i = 0.96. Th b the attenti ights.
From the viewpoint of problem reduction, the proposed gqMIL ability is p = 0.96. The numbers are the attention weights

framework indeed can be considered as decomposing MIML
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