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Abstract

Previous multi-view clustering algorithms mostly partition
the multi-view data in their original feature space, the effi-
cacy of which heavily and implicitly relies on the quality of
the original feature presentation. In light of this, this paper
proposes a novel approach termed Multi-view Clustering in
Latent Embedding Space (MCLES), which is able to cluster
the multi-view data in a learned latent embedding space while
simultaneously learning the global structure and the cluster
indicator matrix in a unified optimization framework. Specif-
ically, in our framework, a latent embedding representation is
firstly discovered which can effectively exploit the comple-
mentary information from different views. The global struc-
ture learning is then performed based on the learned latent
embedding representation. Further, the cluster indicator ma-
trix can be acquired directly with the learned global structure.
An alternating optimization scheme is introduced to solve the
optimization problem. Extensive experiments conducted on
several real-world multi-view datasets have demonstrated the
superiority of our approach.

Introduction

In the past decade, multi-view clustering has become a hot
research topic in data mining and machine learning, due to
the rapid emergence of a great deal of multi-view data from
different areas (Xu, Tao, and Xu 2013; Xu, Wang, and Lai
2016; Chao, Sun, and Bi 2017; Tao et al. 2018; Li et al. 2018;
Huang, Chao, and Wang 2019; Xing et al. 2019; Wang et al.
2019; Yao et al. 2019; Huang, Wang, and Chao 2019b). In
multi-view data, the same instance is represented by multi-
ple views obtaining from multiple sources or different fea-
ture subsets (Ji et al. 2019; Huang, Wang, and Chao 2019c).
For instance, in a webpage, different types of data, such as
texts, videos and images, can be taken into consideration as
they are different aspects of the webpage. A text news can be
translated into multiple languages. Considering the diversity
of multiple views, it is essential to study how to integrate
such kind of data efficiently and cluster them effectively.
Prior to the most multi-view learning methods, a direct
way to deal with multi-view data is to concatenate all the
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features into a new feature vector, which is then fed into
a single-view clustering method to obtain the final cluster-
ing results. However, this naive strategy neglects the differ-
ent characteristics as well as the correlation among multi-
ple views. Recently, a large number of multi-view clustering
methods have been proposed to handle multi-view data by
effectively considering the rich information from multiple
views (Cai et al. 2011; Kumar and Daumé III 2011; Kumar,
Rai, and Daumé II1 2011; Xia et al. 2014; Zhang et al. 2017;
Zong et al. 2018; Zhan et al. 2018; Zhang et al. 2018;
Huang et al. 2019; Huang, Wang, and Chao 2019a). For
instance, to minimize the disagreement between each pair
of views, a co-regularization technique was introduced in
multi-view spectral clustering (Kumar, Rai, and Daumé III
2011). Similarly, inspired by the idea of co-training, Kumar
et al. proposed to generate clusters that are consistent across
the multiple views (Kumar and Daumé III 2011). However,
these methods may be easily affected by the poor quality of
the original views, thereby resulting in the degraded clus-
tering performance. Besides, most of these methods directly
compute on the original features from the dataset, in which
there may be gross noise and corruption. To handle the pos-
sible noise, Zhang et al. performed data reconstruction based
on the learned subspace (Zhang et al. 2017). Xia et al. devel-
oped a Markov chain method which takes as input a shared
low-rank transition probability matrix associated with all
views (Xia et al. 2014). Nevertheless, on the one hand, these
methods generally rely on the original features in each view,
but still lack the ability to discover a unified feature repre-
sentation for multi-view data. On the other hand, in the spec-
tral clustering phase, they mostly tend to consider the two
components of spectral clustering (i.e., affinity matrix con-
struction and cluster indicator matrix calculation) separately,
but often lack the ability to formulate these two components
simultaneously in an optimization framework.

Aiming to address the above limitations, in this paper,
we propose a unified framework termed Multi-view Clus-
tering in Latent Embedding Space (MCLES). The proposed
method jointly learns the latent embedding representation,
the similarity information and the cluster indicator matrix in
a unified model. The latent embedding space learned from
the multi-view features is able to explore the relationships



among different samples and avoid the possible corruption
as well as the curse of dimensionality. With the idea of self-
expression, the similarity matrix is constructed based on the
learned latent embedding representation rather than the orig-
inal features of data. Further, the cluster indicator matrix is
directly learned without the additional procedure of spectral
clustering. The main contributions of this paper are summa-
rized as follows:

e We propose a novel multi-view clustering approach
termed MCLES, which jointly learns a latent embedding
space, a robust similarity matrix and an accurate cluster
indicator matrix in a unified optimization framework.

e By leveraging the intrinsic interactions among them, our
framework extracts the global structure based on the
learned latent embedding representation, and further ac-
quires the cluster indicator matrix based on the global
structure.

e An alternating optimization scheme is developed to effi-
ciently deal with the optimization problem.

Related Work

In the past few years, many multi-view clustering methods
have been proposed, which can be classified into three main
categories, i.e., the co-training based methods, the multiple
kernel learning based methods, and the subspace learning
based methods (Xu, Tao, and Xu 2013).

The co-training based methods try to maximize the agree-
ment among different views of the data in an alternate
training manner (Blum and Mitchell 1998; Ghani 2002;
Brefeld and Scheffer 2004; Kumar, Rai, and Daumé III
2011; Kumar and Daumé 11T 2011). Based on the co-training
technique, several unsupervised multi-view clustering meth-
ods were proposed (Kumar, Rai, and Daumé III 2011;
Kumar and Daumé III 2011). These methods constructed
the graph beforehand, and then separately performed the
data clustering. The graph constructed on the original fea-
ture space of multiple views may not be suitable for the sub-
sequent clustering, and may be negatively affected by some
original single-view features.

The multiple kernel learning based methods linearly or
non-linearly combine kernels corresponding to different
views to improve their performance (Cortes, Mohri, and
Rostamizadeh 2009; Gonen and Alpaydin 2011; Tzortzis
and Likas 2012). In (Cortes, Mohri, and Rostamizadeh
2009), multiple kernels are directly and effectively com-
bined for multi-view clustering. The study in (Tzortzis and
Likas 2012) proposed to weight different kernels before the
combination. These studies performed multiple kernel learn-
ing with each kernel corresponding to each original single
view, which makes the clustering performance highly de-
pendent on the quality of the original views.

According to the assumption that the multiple views
are drawn from a latent subspace, the subspace learning
based methods expect to seek for the common latent sub-
space shared by different views (Elhamifar and Vidal 2009;
Chaudhuri et al. 2009; Liu et al. 2012; Patel, Van Nguyen,
and Vidal 2013; Xia et al. 2014; Zhang et al. 2017; Li et al.

3514

2019). In (Patel, Van Nguyen, and Vidal 2013), dimensional-
ity reduction and sparse coding for sparse subspace cluster-
ing (SSC) were performed, in which the dimensionality re-
duction was performed on the original single-view features.
Zhang et al. proposed to simultaneously recover the under-
lying multi-view subspace and the projections associated to
different views (Zhang et al. 2017).

In this paper, different from the aforementioned meth-
ods which rely on the original feature space or consider the
two components of spectral clustering separately (i.e., affin-
ity matrix construction and cluster indicator matrix calcula-
tion), our proposed method jointly learns a latent embedding
space, a robust similarity matrix and an accurate cluster in-
dicator matrix in a unified optimization framework, where
each variable boosts each other in an interplay manner to
achieve the optimal solution.

The Proposed Approach

In this section, the proposed MCLES approach will be de-
scribed in detail. First, the preliminary knowledge of global
similarity learning will be briefly introduced. Then we will
describe the proposed model and its optimization scheme in
detail. Finally, we will summarize the overall algorithm and
provide the time complexity analysis.

In this paper, matrices are written as bold uppercase let-
ters. The j-th column and the (4, j)-th entry of matrix X are
denoted as X. ; and x;; respectively. The v-th view of the
matrix X is expressed as X (). Tr(X) stands for the trace
of the matrix X. The [5-norm and the Frobenius norm of the
matrix X are respectively ||X]|2 and ||X]| . In addition, 1
denotes a column vector whose elements are all one.

Global Similarity Learning

Similar to Locally Linear Embedding (LLE) (Roweis and
Saul 2000), it is assumed that data points lie on a manifold
and each data point can be expressed as a linear combina-
tion of the other data points. According to the self-expressive
property (Elhamifar and Vidal 2009), we have

X~y Xojsi, st.8Ti1=1,0<8<1, (1)
J

where s;; is the weight for the i-th sample corresponding to
the j-th sample. The weights should be larger for more sim-
ilar data points, and less similar points should be assigned
smaller weights. Therefore, S is called the learned similar-
ity matrix, which reflects the global structure of data. Note
that there is no neighborhood specified in Eq. (1), and it can
be automatically determined during the learning procedure,
which is different from LLE.

The Proposed Model

Inspired by (White et al. 2012; Guo 2013), it is assumed that
the multiple views are drawn from one underlying latent rep-
resentation, which describes the data intrinsically and dis-
covers the shared latent structure among different views. Ac-
cording to this assumption, in this paper, we consider the la-
tent embedding space in a lower dimension among multiple



views for data clustering, instead of directly using the orig-
inal single-view feature space. Given a multi-view dataset
N

X = {[Xgl);x?); ...;xgv)]}‘ . consisting of N samples
represented by V' different vielws, our method aims to dis-
cover a shared latent embedding representation h; for each
data point such that all these different views are drawn from
the latent embedding space H. To be specific, the shared la-
tent embedding space H = {hi}f\/:l can be employed to
obtain the observation from multiple views by using the cor-
responding mapping model W = {W(U)}::r which can
be denoted as

x\") = W, ()

To obtain H, the following problem needs to be solved:

Inin X — WH][%, st [|[W, ;)3 <1,

xX @ wm 3)
X=1| - |and W = oo ,

xXV) wW™)

where X and W are respectively the multi-view observa-
tions and mapping models. The constraint of W is to prevent
H from being too small while scaling. In general, the latent
embedding space H will be more comprehensive by com-
bining the complementary information from multiple views.
Unlike most of the methods that construct the similarity ma-
trix based on the original feature space of the data (Ku-
mar, Rai, and Daumé III 2011; Kumar and Daumé III 2011;
Zhan et al. 2018), the proposed method learns the similarity
matrix from the latent embedding space, which effectively
enhances the robustness and accuracy of the learned simi-
larity matrix. According to the global affinity learning, we
have

min [H-HS|[%+5[|S|F, st.Sh1=1,0<8<1, (4)

where (3 is the trade-off parameter. Ideally, the number of
connected components in S is expected to be the same as
the cluster number of dataset X, i.e. ¢. In other words, S
is a block diagonal matrix with proper permutations. How-
ever, the solution S in Eq. (4) may not satisfy the desired
property. To settle this problem, the rank constraint needs to
be introduced based on the following theorem (Mohar et al.
1991).

Theorem 1. The multiplicity c of the eigenvalue 0 of the
Laplacian matrix Lg of S is equal to the number of con-
nected components in the graph with similarity matrix S.

Theorem 1 shows that if the similarity matrix S consists
of exactly ¢ connected components, we have rank(Lg) =
N —c. Therefore, the problem in Eq. (4) can be reformulated
as

min [H — HS|% + 5]S|3 5
st.871=1,0<S < 1,rank(Ls) =N —c.

By integrating the latent embedding learning in Eq. (3)
and the global similarity learning in Eq. (5) into a unified

framework, we have
. _ 2 _ 2 2
Jmin X — WH; + ol H — HS|} + 5] S|}

st W ;)3 <1,871=1,0<S < 1,rank(Lg) =

x (1) w
andW = | ---
X (V) wWV)

where @ > 0 and 5 > 0 balance these three terms. As a
matter of fact, it is not easy to tackle the problem in Eq. (6),

. T . . . .
since Ly = D — 5 +S in whichD € RV*N jga diagonal

2
matrix with the i-th diagonal element being »°; *57%.

Since Lg is positive semi-definite, we have o; (Ls) > 0,
in which o; (L) represents the i-th smallest eigenvalue of
L. It is well-known that the optimization problem with rank
constraint is of combinatorial complexity (Kang, Peng, and
Cheng 2017). To solve this problem, it is suggested to in-
corporate the rank constraint into the objective function as
a regularization term (Wang et al. 2015; Nie et al. 2016).
According to (Mohar et al. 1991), rank(Ls) = N — ¢ is
equivalent to Y ;_, 0; (Ls) = 0. Thus, the constraint is re-
laxed and the problem in Eq. (6) can be rewritten as

: o 2 _ 2
min X — WHI + o [H — HS|}

N —-¢,X = ) (6)

+B[SIE +7 > 0 (L),
i=1

7
st [W;l3<1,81=1,0<8<1, @
X (1) w
X=| - |andW=] ---

xXWV) wWV)

If v is large enough, the minimization above will make
the regularization term Y ;_, 0; (Ls) — 0, which will sat-
isfy the constraint rank(Ls) = N — c. Despite of this, the
optimization problem in Eq. (7) is still challenging due to
the last term. To mitigate this problem, we introduce the Ky
Fan’s Theorem (Fan 1949). That is,

. — 3 T
;o—l (Ls) min T (PTLsP), (8)

where P € RV ¢ is the cluster indicator matrix. Therefore,
the problem in Eq. (7) is finally reformulated as

. . 2 - 2 2
Juin - [X - WH|p  +aofH —HS[% + 5]S|[;

sl

latent embedding learning global similarity learning

+ Tr (PTLP) ,
—_———
cluster indicator learning (9)
st [W;3<1,81=1,0<S<1,P"P =1,

XM wm
X=| - |andW=| --- |,
xXV) wW)

where there are three parameters « > 0, 5 > 0and v > 0
for balancing these four terms. The first term is to model the



latent embedding space H and each mapping model W (*)
for reconstructing the observations. The second term is to
penalize the construction error in similarity learning. The
third term is used to avoid the trivial solution S = I. The last
term is to guarantee the similarity matrix to meet the rank
constraint, and directly obtain the cluster indicator matrix
P. In this triangle relationship, the latent embedding learn-
ing is guaranteed by the complementary information among
multiple views and improved by the global similarity learn-
ing and the cluster indicator learning. The global similar-
ity learning is guaranteed by the latent embedding learning
and improved by the cluster indicator learning. And the clus-
ter indicator learning is guaranteed by the global similarity
learning and improved by the latent embedding learning. As
a matter of fact, there is a mutual self-taught property in our
unified framework because of the feedback among the la-
tent embedding representation, the similarity matrix and the
cluster indicator matrix.

Optimization
In this subsection, an alternating optimization scheme is in-
troduced to solve the problem in Eq. (9).

Update W By fixing all the variables except W, the prob-
lem in Eq. (9) can be reduced to solve the following problem,

w®
min||IX - WHI[%, st [[Wo,[f<1L,W=| -
w wW)
(10)
Specifically, this problem can be optimized by introduc-
ing a variable G,

min [X - WH|}, st W=G.[[G 5 <1 (1)

The optimal solution of Eq. (11) can be obtained by the
Alternating Direction Method of Multipliers (ADMM) algo-
rithm (Gu et al. 2014):

W = argmin|| X — WH| + p|W - G™ + T3,
w
G =argminp||[ W — G+ T7||%,s.t. |G, ;13 < 1,

G
T+ =T + W+l — G"+!) update p if appropriate,
(12)
where r stands for the steps of iterations and T is used as
an intermediate variable. In each step of optimization, the
ADMM based optimization of W converges rapidly due to
the good convergent performance of the ADMM algorithm.

Update H By fixing all the variables except H, it is equiv-
alent to solving

min||X - WH|? + o H-HS[3.  (13)

The optimal solution H* can be obtained by differentiat-
ing Eq. (13) w.r.t. H and setting it to zero, which satisfies

WIWH* + H* xa(I-S)(I-S)" =WTX. (14)

The above equation is a standard Sylvester equation
which has a unique solution and can be solved by
the Bartels-Stewart algorithm (Bartels and Stewart 1972).
Therefore, the similar method to the smooth subspace clus-
tering (Hu et al. 2014) can be used to optimize our latent
embedding representation H.
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Algorithm 1 MCLES

Input: Multi-view matrices X = {X(l), LX) } cluster
number ¢, parameters «, 3 and 7y, and the embedding dimen-
sion d of latent representation.
Initialize: W = 0, S = 0 and r = 1; Initialize H and P
with random values.

1: repeat

2 repeat

3: r<r+1;
4: Update W according to Eq. (12).
5:
6
7

until convergence
Update H according to Eq. (14).
For each i, update the i-th column of S by solving the
problem in Eq. (18).

8:  Update P, which is formed by the ¢ eigenvectors of

T

Ly = D - 58
eigenvalues.

9: until convergence

Output: W, H, S and P.

corresponding to the ¢ smallest

Update S By fixing all the variables except S, the problem
in Eq. (9) can be written as

. 8 2 Y T
H - HS|2 + &S LTr (PTLP
min | [+ S ISlE+ 2 7r (PTLP), o

st.87,1=1,0<8S<1.
For convenience, we introduce a variable K, which is

equal to HT”H. Thus, the problem in Eq. (15) can be re-
formulated as

min T'r (K — 2KS + STKS) + §||S||% + gTT (PTLsP),

st.87,1=1,0<8<1
(16)
The problem in Eq. (16) can be rewritten in a column-wise
manner as
min K;; — 2Ki7:S:7i + STZI<S7Z + é
S.i v «
st.8Ti1=1,0<8<1,

STS.. + %bfs:,i,

a7

where b; € R”*! is a column vector with the j-th element
by being b; = [Py — P |*.

Specifically, the problem in Eq. (17) can be further sim-

plified as follows,
- 2K1,> S:.ia
- (18)

bl
min S7; (51 + K) S.;+ <7 :
S;,i v Q ’ 2(1

Many existing quadratic programming packages (Kang,
Peng, and Cheng 2017) can be utilized to solve the problem
in Eq. (18).
Update P By fixing all the variables except P, the prob-
lem in Eq. (9) becomes

min7r (PTL,P), st. PP =1
P

st.87,1=1,0<8S<1.

19)



The optimal solution P can be obtained by the c eigenvec-
tors of Lg corresponding to the ¢ smallest eigenvalues. With
the help of the alternating optimization scheme, the variables
W, H, S and P can be updated iteratively in an interplay
manner until convergence.

Algorithm Summary and Complexity Analysis

For clarity, the overall algorithm of the proposed MCLES
method is outlined in Algorithm 1. In what follows, the
time complexity analysis will be provided. With the al-
ternating optimization scheme, the ADMM algorithm is
utilized for updating W, the complexity of which is

O(( 21‘;1 d(”))zd) where d*) is the dimension of the v-

th view of the dataset and d is the dimension of the la-
tent embedding representation. The computation of H re-
quires O (d®). To update S, the quadratic programming

takes O (N#). The complexity for P is O (cN?). Therefore,
for each iteration, the overall computational complexity is

O((SV_yd™)’d+ N+ d* + eN?).

Experiments

In this section, extensive experiments are conducted to vali-
date the superiority of the proposed method. The code of our
method is available on the github!.

Datasets Description

Yale?: It is a widely used face image dataset consisting
of 165 gray-scale images belonging to 15 distinct subjects,
with each subject consisting of 11 images. Variations of the
dataset are composed of left light, center light, right light,
with glasses or not, happy or sad, normal, sleepy, wink and
surprised. In our experiments, three views are used, whose
dimensions are respectively 4096, 3304 and 6750.

MSRCyv1 (Winn and Jojic 2005): It is an image dataset
consisting of 210 objects belonging to seven classes. The
seven classes are composed of tree, building, airplane, cow,
face, car, and bicycle. In our experiments, the MSRCvl
dataset consists of four views, which are the CM feature
(view 1), the GIST feature (view 2), the LBP feature (view
3) and the GENT feature (view 4).

ORL?: It is a widely used face image dataset consisting
of 400 face images belonging to 40 distinct subjects with 10
images for each subject. For each subject, images were taken
at different times, lights, facial expression (open or closed
eyes, smiling or not smiling) and facial details (with glasses
or not). In our experiments, three kinds of features, namely,
intensity feature (view 1), LBP feature (view 2), and Gabor
feature (view 3) are used to represent the images.

BBCSport (Xia et al. 2014): It is a document dataset con-
sisting of 544 documents from the BBC Sport website of
the sports news in five topical areas in 2004-2005. The five
topical areas are business, entertainment, politics, sport and
tech. In our experiments, the BBCSport dataset contains two
views, whose dimensions are respectively 3183 and 3203.

"https://github.com/Ttuo123/MCLES
2http://cve.yale.edu/projects/yalefaces/yalefaces.html
3http://www.cl.cam.ac.uk/research/dtg/
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Table 1: The default values of the four parameters.

Parameter | Yale | MSRCvl | ORL | BBCSport
d 30 70 50 40
o 0.8 0.8 0.8 0.8
Jé] 0.4 0.4 0.5 2
vy 0.004 0.004 0.004 0.004

Baselines and Evaluation Metrics

In comparison experiments, we compare our method with
two classical single-view methods and six state-of-the-art
multi-view clustering methods.

1. Spectral Clustering (SC) (Ng, Jordan, and Weiss 2002):
The single-view SC method is conducted on each view.

2. ConcatePCA-SC: It is an extended SC method which
firstly concatenates the features of all views and then ap-
plies the PCA method to extract the low-dimensional rep-
resentation, and finally feeds the low-dimensional repre-
sentation into the spectral clustering algorithm to obtain
the final clustering results.

3. Co-Regularized Spectral Clustering (Co-Reg) (Kumar,
Rai, and Daumé III 2011): It co-regularizes the cluster-
ing hypotheses to enforce the same cluster membership
among views.

4. Co-Training Multi-view Clustering (Co-Training) (Ku-
mar and Daumé IIT 2011): It assumes that a point would
be assigned by the true underlying clustering to the same
cluster regardless of the views.

5. Spectral ~ Clustering  with  two  views (Min-
Disagreement) (De Sa 2005): Based on the spectral
clustering algorithm, it constructs a bipartite graph with
the “minimizing-disagreement” strategy.

6. Robust Multi-view Spectral Clustering (RMSC) (Xia et
al. 2014): It is a robust multi-view spectral clustering
method which uses the standard Markov chain for clus-
tering.

7. Latent Multi-view Subspace Clustering (LMSC) (Zhang
et al. 2017): It discovers a subspace representation based
on the common latent structure of multiple views, and
then feeds it into the spectral clustering algorithm.

8. Graph  Learning  for  Multi-view  Clustering
(MVGL) (Zhan et al. 2018): It obtains a global
graph based on the optimized graph of each view.

For the above eight methods, the parameters are tuned as
suggested in the original papers to generate the best results.
For evaluation metrics, three widely used metrics, namely
ACC (accuracy), NMI (normalized mutual information) and
PUR (purity) are adopted (Wang, Lai, and Yu 2016). For
each metric, higher values indicate better performance. In
the experiments, we run 20 times for each experiment and
report the average performance and standard deviations.

Parameter Analysis

In this subsection, we conduct parameter analysis on the four
parameters d, «, 8 and «y by varying the four parameters in



0.1
10 20 30 40 50 60 70 80 90 100
d

(a) Parameter d

077"~ T &% 0.
205 205
Yale
03 MSRCv1 03
-=-ORL
BBCSport

BBCSport

(b) Parameter «

0.1
02040608 1 12141618 2
a

.1
02040608 1 12141618 2
]

(¢) Parameter (3

0.1
0.001  0.003 0.005 0.007 0.009

i

(d) Parameter

Figure 1: Parameters analysis on d, «, § and ~ in terms of NMI on all the four benchmark datasets.

Table 2: Comparison results in terms of ACC on all datasets. The best results are highlighted in bold.

Method Yale MSRCv1 ORL BBCSport
SC1 0.549710.0351 0.410540.0151 0.657140.0242 0.845340.0012
SC2 0.563040.0346 0.684510.0446 0.7735£0.0261 0.511419.0011
SC3 0.6318-10.0346 0.6167+0.0045 0.697310.0319 —
ConcatePCA-SC 0.5618i0.0404 0'6155j:0.0067 0.6607i0,0215 —
CO-Reg 0.5956:|:0_0055 0.6233:‘:0.0057 0.6921;‘;0_0037 0.6928:|:0_0070
Co-training 0.622310.0039 0.6918-+0.0099 0.7539+0.0058 0.697940.0039
Min—Disagreement 0-5974i0.0066 0'5923j:0.0071 O~7259i0.0062 0~8507i0.0087
RMSC 0.56250.0426 0.2998_5.0189 0.7603_£0.0259 0.7737 £0.0098
LMSC 0.66731.0176 0.67439.0591 0.8013_. 0333 0.85121¢.1203
MVGL 0.6303£0.0000 0.671410.0000 0.7350-0.0000 0.4191£0.0000

Table 3: Comparison results in terms of NMI on all datasets. The best results are highlighted in bold.

Method Yale MSRCvl1 ORL BBCSport

SC1 0.5885¢.0281 0.32299.0222 0.80539.0109 0.671719.0018
SC2 0.59681¢.0223 0.5961 10,0344 0.891040.0102 0.234514.0004

SC3 0.6507 10.0256 0.510310.0103 0.8407 1.0.0169 —

SC4 — 0.535510.0151 — —

ConcatePCA-SC 0.6076i0‘0269 0.5087:‘:0.0092 0.8069:‘:0.0113 —
Co—Reg 0.6362i0_0041 0'510410.0036 0.8376io,0017 0~5375i0.0021
Co-training 0.6561i0,0049 0.6156:‘:0.0064 0.8813i0_0031 0-5657:|:O.0017
Min—Disagreement 0.6303:|:0‘0048 0'517410.0046 0.8617:‘:0.0030 0.7843:&0.0055
RMSC 0‘5242i0.0373 0.281910.0138 0-7200i0.0209 0.7645i0_0117
LMSC 0.6896i0,0155 0~5776:t0.0606 0.9066i0_0204 0-7448:|:O.1356
MVGL 0.6381:&0‘0000 0.5775:‘:0.0000 0.8651:‘:0.0000 O.OSSOio,OOOO
MCLES 0.7254 0 0148 0.79764.0.0089 0.9022 14,0120 0.80710.0114

Table 4: Comparison results in terms of PUR on all datasets. The best results are highlighted in bold.

Method Yale MSRCvl1 ORL BBCSport

SC1 0.56061¢.0348 0.459510.0164 0.6931 10.0200 0.8453_10.0012
SC2 0.572140.0295 0.7262 10,0297 0.802510.0205 0.5717+9.0000

SC3 0.6367 10.0341 0.650040.0045 0.732640.0263 —

SC4 — 0.6945 10,0186 — —

ConcatePCA-SC 0.5764:|:0,0348 0.6490:‘:0.0069 O.6932i0_0180 —_—
Co—Reg 0.6065i0.004g 0.6448i0.0048 O~7294i0.0028 0.7348i0.0033
Co-training 0.6287i0_0051 0-7179i0.0071 0-7879i0.0050 0.7601i0_0020
Min—Disagreement 0.6026:|:0,0070 0.6075:‘:0.0067 0.7625 4+0.0051 0.8715:|:0_0046
RMSC 0.551 ]i0.0355 0.2826i0.0163 0-7387i0.0169 0-7597i0.0106
LMSC 0.670610.0169 0.69004.0.0624 0.837910.0203 0.856040.1053
MVGL 0.64241.0000 0.7048+0.0000 0.795040.0000 0.4228_9.0000
MCLES 0.7055_ 0125 0.8819.0040 0.8402_ 0181 0.8798_0.0032
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Figure 2: Convergence analysis: the log of the objective value as a function of the iteration step.

the ranges [10 100], [0.2 2], [0.2 2] and [0.001 0.01] re-
spectively. When analyzing one parameter, the other three
parameters are set as the default values. The default values
of the four parameters are listed in Table 1, which are also
used in the comparison experiments and convergence anal-
ysis. Notice that, since the view dimension of the original
multi-view datasets varies from one dataset to another, the
default values of d differ significantly on different datasets.
Figure 1 plots the results in terms of NMI when different
parameters are used on the four datasets. It can be observed
that for all the datasets our model is relatively insensitive to
the four parameters over the corresponding ranges of values.
In addition, there exists a wide range for each parameter in
which relatively stable and good results can be obtained.

Comparison Results

The experimental results obtained by different clustering
methods on the four benchmark datasets are reported in
terms of ACC, NMI, and PUR in Table 2, 3, 4 respectively.
As shown in the three tables, we can see that the proposed
method achieves the best clustering results on most of the
testing datasets. Specifically, the proposed method signif-
icantly outperforms other state-of-the-art methods on the
Yale and MSRCv1 datasets. For instance, on the MSRCv1
dataset, the performance improvements over the second-best
method are 19.01%, 18.2% and 16.4% respectively in terms
of ACC, NMI and PUR. In addition, our method performs
much better than the two single-view baseline methods,
namely SC and ConcatePCA-SC, which demonstrates the
effectiveness of the latent embedding learning and the clus-
ter indicator learning in our model. Note that we can not per-
form ConcatePCA-SC on the BBCSport dataset, since the
features on the BBCSport dataset are too sparse to run SVD.
In conclusion, the proposed method obtains more robust and
accurate clustering results by means of directly learning the
similarity matrix and the cluster indicator matrix based on
the latent embedding representation.

Convergence Analysis

To verify the convergence property of the proposed method,
convergence analysis is conducted in this subsection. The
optimization algorithm can be guaranteed to converge ul-
timately, since the objective function in Eq. (9) is non-
increasing with the iterations. Figure 2 plots the log of the
objective value as a function of the iteration step. From the
subfigures, we find that the log of the objective value de-
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creases rapidly during the iterations on all the four bench-
mark datasets. It can be obviously observed that, the conver-
gence can be reached within the 10 steps of iterations.

Conclusion

In this paper, a novel Multi-view Clustering in Latent
Embedding Space (MCLES) is proposed to jointly learn
a latent embedding space, a robust similarity matrix and
an accurate cluster indicator matrix in a unified optimiza-
tion framework. Within this unified framework, a latent em-
bedding representation from multiple views is discovered
to better explore the multi-view data, and simultaneously
the global structure and the cluster indicator matrix can be
obtained. An alternating optimization scheme is developed
to solve the optimization problem. Experimental results on
both image and document datasets have demonstrated the
superiority of the proposed method when compared with the
state-of-the-art approaches.
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