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Abstract

Algorithms typically come with tunable parameters that have
a considerable impact on the computational resources they
consume. Too often, practitioners must hand-tune the param-
eters, a tedious and error-prone task. A recent line of re-
search provides algorithms that return nearly-optimal param-
eters from within a finite set. These algorithms can be used
when the parameter space is infinite by providing as input
a random sample of parameters. This data-independent dis-
cretization, however, might miss pockets of nearly-optimal
parameters: prior research has presented scenarios where the
only viable parameters lie within an arbitrarily small region.
We provide an algorithm that learns a finite set of promis-
ing parameters from within an infinite set. Our algorithm can
help compile a configuration portfolio, or it can be used to se-
lect the input to a configuration algorithm for finite parameter
spaces. Our approach applies to any configuration problem
that satisfies a simple yet ubiquitous structure: the algorithm’s
performance is a piecewise constant function of its param-
eters. Prior research has exhibited this structure in domains
from integer programming to clustering.

1 Introduction

Similar combinatorial problems often arise in seemingly un-
related disciplines. Integer programs, for example, model
problems in fields ranging from computational biology to
economics. To facilitate customization, algorithms often
come with tunable parameters that significantly impact the
computational resources they consume, such as runtime.
Hand-tuning parameters can be time consuming and may
lead to sub-optimal results. In this work, we develop the
foundations of automated algorithm configuration via ma-
chine learning. A key challenge we face is that in order to
evaluate a configuration’s requisite computational resources,
the learning algorithm itself must expend those resources.

To frame algorithm configuration as a machine learning
problem, we assume sample access to an unknown distribu-
tion over problem instances, such as the integer programs an
airline solves day to day. The learning algorithm uses sam-
ples to determine parameters that, ideally, will have strong
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expected performance. Researchers have studied this config-
uration model for decades, leading to advances in artificial
intelligence (Xu et al. 2008), computational biology (DeBla-
sio and Kececioglu 2018), and many other fields. This ap-
proach has also been used in industry for tens of billions of
dollars of combinatorial auctions (Sandholm 2013).

Recently, two lines of research have emerged that ex-
plore the theoretical underpinnings of algorithm configura-
tion. One provides sample complexity guarantees, bound-
ing the number of samples sufficient to ensure that an algo-
rithm’s performance on average over the samples general-
izes to its expected performance on the distribution (Gupta
and Roughgarden 2017; Balcan et al. 2017; 2018a). These
sample complexity bounds apply no matter how the learning
algorithm operates, and these papers do not include learning
algorithms that extend beyond exhaustive search.

The second line of research provides algorithms for find-
ing nearly-optimal configurations from a finite set (Klein-
berg, Leyton-Brown, and Lucier 2017; Kleinberg et al. 2019;
Weisz, György, and Szepesvári 2018; 2019). These algo-
rithms can also be used when the parameter space is in-
finite: for any γ ∈ (0, 1), first sample Ω̃(1/γ) config-
urations, and then run the algorithm over this finite set.
The authors guarantee that the output configuration will
be within the top γ-quantile. If there is only a small re-
gion of high-performing parameters, however, the uniform
sample might completely miss all good parameters. Al-
gorithm configuration problems with only tiny pockets of
high-performing parameters do indeed exist: Balcan et al.
(2018a) present distributions over integer programs where
the optimal parameters lie within an arbitrarily small re-
gion of the parameter space. For any parameter within that
region, branch-and-bound—the most widely-used integer
programming algorithm—terminates instantaneously. Using
any other parameter, branch-and-bound takes an exponential
number of steps. This region of optimal parameters can be
made so small that any random sampling technique would
require an arbitrarily large sample of parameters to hit that
region. We discuss this example in more detail in Section 5.

This paper marries these two lines of research. We present
an algorithm that identifies a finite set of promising parame-
ters within an infinite set, given sample access to a distribu-
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tion over problem instances. We prove that this set contains a
nearly optimal parameter with high probability. The set can
serve as the input to a configuration algorithm for finite pa-
rameter spaces (Kleinberg, Leyton-Brown, and Lucier 2017;
Kleinberg et al. 2019; Weisz, György, and Szepesvári 2018;
2019), which we prove will then return a nearly optimal pa-
rameter from the infinite set.

An obstacle in our approach is that the loss function mea-
suring an algorithm’s performance as a function of its pa-
rameters often exhibits jump discontinuities: a nudge to the
parameters can trigger substantial changes in the algorithm’s
behavior. In order to provide guarantees, we must tease out
useful structure in the configuration problems we study.

The structure we identify is simple yet ubiquitous in
combinatorial domains: our approach applies to any con-
figuration problem where the algorithm’s performance as a
function of its parameters is piecewise constant. Prior re-
search has demonstrated that algorithm configuration prob-
lems from diverse domains exhibit this structure. For ex-
ample, Balcan et al. (2018a) uncovered this structure for
branch-and-bound algorithm configuration. Many corpo-
rations must regularly solve reams of integer programs,
and therefore require highly customized solvers. For ex-
ample, integer programs are a part of many mesh process-
ing pipelines in computer graphics (Bommes, Zimmer, and
Kobbelt 2009). Animation studios with thousands of meshes
require carefully tuned solvers which, thus far, domain ex-
perts have handcrafted (Bommes, Zimmer, and Kobbelt
2010). Our algorithm can be used to find configurations
that minimize the branch-and-bound tree size. Balcan et al.
(2017) also exhibit this piecewise-constant structure in the
context of linkage-based hierarchical clustering algorithms.
The algorithm families they study interpolate between the
classic single-, complete-, and average-linkage procedures.
Building the cluster hierarchy is expensive: the best-known
algorithm’s runtime is Õ(n2) given n datapoints (Manning,
Raghavan, and Schütze 2010). As with branch-and-bound,
our algorithm finds configurations that return satisfactory
clusterings while minimizing the hierarchy tree size.

We now describe our algorithm at a high level. Let � be a
loss function where �(ρ, j) measures the computational re-
sources (running time, for example) required to solve prob-
lem instance j using the algorithm parameterized by the vec-
tor ρ. Let OPT be the smallest expected loss1

Ej∼Γ[�(ρ, j)]
of any parameter ρ, where Γ is an unknown distribution
over problem instances. Our algorithm maintains upper con-
fidence bound on OPT , initially set to∞. On each round t,
the algorithm begins by drawing a set St of sample problem
instances. It computes the partition of the parameter space
into regions where for each problem instance in St, the loss
�, capped at 2t, is a constant function of the parameters. On
a given region of this partition, if the average capped loss is
sufficiently low, the algorithm chooses an arbitrary param-
eter from that region and deems it “good.” Once the cap 2t

has grown sufficiently large compared to the upper confi-
dence bound on OPT , the algorithm returns the set of good

1As we describe in Section 2, we compete with a slightly more
nuanced benchmark than OPT , in line with prior research.

parameters. We summarize our guarantees informally below.
Theorem 1.1 (Informal). The following guarantees hold:

1. The set of output parameters contains a nearly-optimal
parameter with high probability.

2. Given accuracy parameters ε and δ, the algorithm termi-
nates after O

(
ln
(

4
√
1 + ε ·OPT/δ

))
rounds.

3. On the algorithm’s final round, let P be the size of the
partition the algorithm computes. The number of param-
eters it outputs is O

(
P · ln ( 4

√
1 + ε ·OPT/δ

))
.

4. The algorithm’s sample complexity on each round t is
polynomial in 2t (which scales linearly with OPT ),
logP , the parameter space dimension, 1

δ , and 1
ε .

We prove that our sample complexity can be expo-
nentially better than the best-known uniform convergence
bound. Moreover, it can find strong configurations in sce-
narios where uniformly sampling configurations will fail.

2 Problem definition

The algorithm configuration model we adopt is a gen-
eralization of the model from prior research (Kleinberg,
Leyton-Brown, and Lucier 2017; Kleinberg et al. 2019;
Weisz, György, and Szepesvári 2018; 2019). There is a set
Π of problem instances and an unknown distribution Γ over
Π. For example, this distribution might represent the integer
programs an airline solves day to day. Each algorithm is pa-
rameterized by a vector ρ ∈ P ⊆ R

d. At a high level, we
assume we can set a budget on the computational resources
the algorithm consumes, which we quantify using an integer
τ ∈ Z≥0. For example, τ might measure the maximum run-
ning time we allow the algorithm. There is a utility function
u : P × Π × Z≥0 → {0, 1}, where u(ρ, j, τ) = 1 if and
only if the algorithm parameterized by ρ returns a solution
to the instance j given a budget of τ . We make the natural as-
sumption that the algorithm is more likely to find a solution
the higher its budget: u(ρ, j, τ) ≥ u(ρ, j, τ ′) for τ ≥ τ ′.
Finally, there is a loss function � : P × Π → Z≥0 which
measures the minimum budget the algorithm requires to find
a solution. Specifically, �(ρ, j) =∞ if u(ρ, j, τ) = 0 for all
τ , and otherwise, �(ρ, j) = argmin {τ : u(ρ, j, τ) = 1}. In
Section 2.1, we provide several examples of this problem
definition instantiated for combinatorial problems.

The distribution Γ over problem instances is unknown, so
we use samples from Γ to find a parameter vector ρ̂ ∈ P
with small expected loss. Ideally, we could guarantee that

Ej∼Γ [� (ρ̂, j)] ≤ (1 + ε) inf
ρ∈P
{Ej∼Γ [� (ρ, j)]} . (1)

Unfortunately, this ideal goal is impossible to achieve with a
finite number of samples, even in the extremely simple case
where there are only two configurations, as illustrated below.
Example 2.1. [Weisz, György, and Szepesvári (2019)] Let
P = {1, 2} be a set of two configurations. Suppose that the
loss of the first configuration is 2 for all problem instances:
�(1, j) = 2 for all j ∈ Π. Meanwhile, suppose that �(2, j) =
∞ with probability δ for some δ ∈ (0, 1) and �(2, j) = 1
with probability 1 − δ. In this case, Ej∼Γ[�(1, j)] = 2 and
Ej∼Γ[�(2, j)] =∞. In order for any algorithm to verify that
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the first configuration’s expected loss is substantially better
than the second’s, it must sample at least one problem in-
stance j such that �(2, j) = ∞. Therefore, it must sample
Ω(1/δ) problem instances, a lower bound that approaches
infinity as δ shrinks. As a result, it is impossible to give a
finite bound on the number of samples sufficient to find a
parameter ρ̂ that satisfies Equation (1).

The obstacle that this example exposes is that some con-
figurations might have an enormous loss on a few rare
problem instances. To deal with this impossibility result,
Weisz, György, and Szepesvári (2018; 2019), building off
of work by Kleinberg, Leyton-Brown, and Lucier (2017),
propose a relaxed notion of approximate optimality. To de-
scribe this relaxation, we introduce the following notation.
Given δ ∈ (0, 1) and a parameter vector ρ ∈ P , let
tδ(ρ) be the largest cutoff τ ∈ Z≥0 such that the proba-
bility �(ρ, j) is greater than τ is at least δ. Mathematically,
tδ(ρ) = argmaxτ∈Z

{Prj∼Γ[�(ρ, j) ≥ τ ] ≥ δ}. The value
tδ(ρ) can be thought of as the beginning of the loss func-
tion’s “δ-tail.” We illustrate the definition of tδ(ρ) in Fig-
ure 1. We now define the relaxed notion of approximate op-
timality by Weisz, György, and Szepesvári (2018).
Definition 2.1 ((ε, δ,P)-optimality). A parameter vector ρ̂
is (ε, δ,P)-optimal if Ej∼Γ [min {� (ρ̂, j) , tδ (ρ̂)}] ≤ (1 +
ε) infρ∈P

{
Ej∼Γ

[
min

{
� (ρ, j) , tδ/2(ρ)

}]}
.

In other words, a parameter vector ρ̂ is (ε, δ,P)-optimal if
its δ-capped expected loss is within a (1+ε)-factor of the op-
timal δ/2-capped expected loss.2 To condense notation, we
write OPTcδ := infρ∈P {Ej∼Γ [min {� (ρ, j) , tcδ(ρ)}]}. If
an algorithm returns an

(
ε, δ, P̄)-optimal parameter from

within a finite set P̄ , we call it a configuration algorithm
for finite parameter spaces. Weisz, György, and Szepesvári
(2019) provide one such algorithm, CAPSANDRUNS.

2.1 Example applications

In this section, we provide several instantiations of our prob-
lem definition in combinatorial domains.

Tree search. Tree search algorithms, such as branch-and-
bound, are the most widely-used tools for solving combina-
torial problems, such as (mixed) integer programs and con-
straint satisfaction problems. These algorithms recursively
partition the search space to find an optimal solution, or-
ganizing this partition as a tree. Commercial solvers such
as CPLEX, which use tree search under the hood, come
with hundreds of tunable parameters. Researchers have de-
veloped machine learning algorithms for tuning these pa-
rameters (Hutter, Hoos, and Leyton-Brown 2009; Dicker-
son and Sandholm 2013; He, Daume III, and Eisner 2014;
Balafrej, Bessiere, and Paparrizou 2015; Khalil et al. 2016;
2017; Kruber, Lübbecke, and Parmentier 2017; Xia and Yap
2018; Balcan et al. 2018a). Given parameters ρ and a prob-
lem instance j, we might define the budget τ to cap the size

2The fraction δ/2 can be replaced with any cδ for c ∈ (0, 1).
Ideally, we would replace δ/2 with δ, but the resulting prop-
erty would be impossible to verify with high probability (Weisz,
György, and Szepesvári 2018).

of the tree the algorithm builds. In that case, the utility func-
tion is defined such that u(ρ, j, τ) = 1 if and only if the
algorithm terminates, having found the optimal solution, af-
ter building a tree of size τ . The loss �(ρ, j) equals the size
of the entire tree built by the algorithm parameterized by ρ
given the instance j as input.

Clustering. Given a set of datapoints and the distances be-
tween each point, the goal in clustering is to partition the
points into subsets so that points within any set are “similar.”
Clustering algorithms are used to group proteins by func-
tion, classify images by subject, and myriad other applica-
tions. Typically, the quality of a clustering is measured by an
objective function, such as the classic k-means, k-median,
or k-center objectives. Unfortunately, it is NP-hard to deter-
mine the clustering that minimizes any of these objectives.
As a result, researchers have developed a wealth of approxi-
mation and heuristic clustering algorithms. However, no one
algorithm is optimal across all applications.

Balcan et al. (2017) provide sample complexity guaran-
tees for clustering algorithm configuration. Each problem
instance is a set of datapoints and there is a distribution over
clustering problem instances. They analyze several infinite
classes of clustering algorithms. Each of these algorithms
begins with a linkage-based step and concludes with a dy-
namic programming step. The linkage-based routine con-
structs a hierarchical tree of clusters. At the beginning of
the process, each datapoint is in a cluster of its own. The al-
gorithm sequentially merges the clusters into larger clusters
until all elements are in the same cluster. There are many
ways to build this tree: merge the clusters that are closest
in terms of their two closest points (single-linkage), their
two farthest points (complete-linkage), or on average over
all pairs of points (average-linkage). These linkage proce-
dures are commonly used in practice (Awasthi, Balcan, and
Voevodski 2017; Saeed et al. 2003; White et al. 2010) and
come with theoretical guarantees. Balcan et al. (2017) study
an infinite parameterization, ρ-linkage, that interpolates be-
tween single-, average-, and complete-linkage. After build-
ing the cluster tree, the dynamic programming step returns
the pruning of this tree that minimizes a fixed objective func-
tion, such as the k-means, k-median, or k-center objectives.

Building the full hierarchy is expensive because the best-
known algorithm’s runtime is O(n2 log n), where n is the
number of datapoints (Manning, Raghavan, and Schütze
2010). It is not always necessary, however, to build the en-
tire tree: the algorithm can preemptively terminate the link-
age step after τ merges, then use dynamic programming
to recover the best pruning of the cluster forest. We refer
to this variation as τ -capped ρ-linkage. To evaluate the re-
sulting clustering, we assume there is a cost function c :
P×Π×Z→ R where c(ρ, j, τ) measures the quality of the
clustering τ -capped ρ-linkage returns, given the instance j
as input. We assume there is a threshold θj where the cluster-
ing is admissible if and only if c(ρ, j, τ) ≤ θj , which means
the utility function is defined as u(ρ, j, τ) = 1{c(ρ,j,τ)≤θj}.
For example, c(ρ, j, τ) might measure the clustering’s k-
means objective value, and θj might equal the optimal k-
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Figure 1: Fix a parameter vector ρ. The figure is a hypothetical illustration of the cumulative density function of �(ρ, j) when
j is sampled from Γ. For each value τ along the x-axis, the solid line equals Prj∼Γ [�(ρ, j) ≤ τ ]. The dotted line equals the
constant function 1− δ. Since 100 is the largest integer such that Prj∼Γ [�(ρ, j) ≥ 100] ≥ δ, we have that tδ(ρ) = 100.

means objective value (obtained only for the training in-
stances via an expensive computation) plus an error term.

3 Data-dependent discretizations of

infinite parameter spaces
We begin this section by proving an intuitive fact: given a
finite subset P̄ ⊂ P of parameters that contains at least one
“sufficiently good” parameter, a configuration algorithm for
finite parameter spaces, such as CAPSANDRUNS (Weisz,
György, and Szepesvári 2019), returns a parameter that’s
nearly optimal over the infinite set P . Therefore, our goal is
to provide an algorithm that takes as input an infinite param-
eter space and returns a finite subset that contains at least one
good parameter. A bit more formally, a parameter is “suf-
ficiently good” if its δ/2-capped expected loss is within a√
1 + ε-factor of OPTδ/4. We say a finite parameter set P̄

is an (ε, δ)-optimal subset if it contains a good parameter.
Definition 3.1 ((ε, δ)-optimal subset). A finite set P̄ ⊂ P is
an (ε, δ)-optimal subset if there is a vector ρ̂ ∈ P̄ such that
Ej∼Γ

[
min

{
� (ρ̂, j) , tδ/2 (ρ̂)

}] ≤ √1 + ε ·OPTδ/4.

We now prove that given an (ε, δ)-optimal subset P̄ ⊂ P ,
a configuration algorithm for finite parameter spaces returns
a nearly optimal parameter from the infinite space P .
Theorem 3.1. Let P̄ ⊂ P be an (ε, δ)-optimal subset and
let ε′ =

√
1 + ε − 1. Suppose ρ̂ ∈ P̄ is

(
ε′, δ, P̄)-optimal.

Then Ej∼Γ [min {� (ρ̂, j) , tδ (ρ̂)}] ≤ (1 + ε) ·OPTδ/4.

Proof. Since the parameter ρ̂ is
(
ε′, δ, P̄)-optimal, we

know that Ej∼Γ [min {� (ρ̂, j) , tδ (ρ̂)}] ≤ √
1 + ε ·

minρ∈P̄
{
Ej∼Γ

[
min

{
� (ρ, j) , tδ/2(ρ)

}]}
. (We use a min-

imum instead of an infimum because P̄ is a finite set by
Definition 3.1.) The set P̄ is an (ε, δ)-optimal subset of
the parameter space P , so there exists a parameter vec-
tor ρ′ ∈ P̄ such that Ej∼Γ

[
min

{
� (ρ′, j) , tδ/2 (ρ′)

}] ≤√
1 + ε ·OPTδ/4. Therefore,
Ej∼Γ [min {� (ρ̂, j) , tδ (ρ̂)}]
≤ √1 + ε ·min

ρ∈P̄

{
Ej∼Γ

[
min

{
� (ρ, j) , tδ/2(ρ)

}]}
≤ √1 + ε · Ej∼Γ

[
min

{
� (ρ′, j) , tδ/2 (ρ′)

}]
≤ (1 + ε) ·OPTδ/4,

so the theorem statement holds.

4 Our main result:

Algorithm for learning (ε, δ)-optimal subsets
We present an algorithm for learning (ε, δ)-optimal subsets
for configuration problems that satisfy a simple, yet ubiq-
uitous structure: for any problem instance j, the loss func-
tion �(·, j) is piecewise constant. This structure has been ob-
served throughout a diverse array of configuration problems
ranging from clustering to integer programming (Balcan et
al. 2017; 2018a). More formally, this structure holds if for
any problem instance j ∈ Π and cap τ ∈ Z≥0, there is a
finite partition of the parameter space P such that in any one
region R of this partition, for all pairs of parameter vectors
ρ,ρ′ ∈ R, min {�(ρ, j), τ} = min {�(ρ′, j), τ}.

To exploit this piecewise-constant structure, we require
access to a function PARTITION that takes as input a set S
of problem instances and an integer τ and returns this par-
tition of the parameters. Namely, it returns a set of tuples
(P1, z1, τ1) , . . . , (Pk, zk, τk) ∈ 2P×[0, 1]×Z|S| such that:
1. The sets P1, . . . ,Pk make up a partition of P .
2. For all subsets Pi and vectors ρ,ρ′ ∈ Pi,

1
|S|
∑

j∈S 1{�(ρ,j)≤τ} = 1
|S|
∑

j∈S 1{�(ρ′,j)≤τ} = zi.

3. For all subsets Pi, all ρ,ρ′ ∈ Pi, and all j ∈ S ,
min {�(ρ, j), τ} = min {�(ρ′, j), τ} = τi[j].

We assume the number of tuples PARTITION returns
is monotone: if τ ≤ τ ′, then |PARTITION(S, τ)| ≤
|PARTITION(S, τ ′)| and if S ⊆ S ′, then
|PARTITION(S, τ)| ≤ |PARTITION(S ′, τ)|.

As we describe in the full version (Balcan, Sandholm, and
Vitercik 2019), results from prior research imply guidance
for implementing PARTITION in the contexts of clustering
and integer programming. For example, in the clustering ap-
plication we describe in Section 2.1, the distribution Γ is
over clustering instances. Suppose n is an upper bound on
the number of points in each instance. Balcan et al. (2017)
prove that for any set S of samples and any cap τ , in the
worst case, |PARTITION(S, τ)| = O

(|S|n8
)
, though empir-

ically, |PARTITION(S, τ)| is often several orders of magni-
tude smaller (Balcan, Dick, and Lang 2019). Balcan et al.
(2017) and Balcan, Dick, and Lang (2019) provide guidance
for implementing PARTITION.
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Algorithm 1 Algorithm for learning (ε, δ)-optimal subsets
Input: Parameters δ, ζ ∈ (0, 1), ε > 0.

1: Set η ← min
{

1
8

(
4
√
1 + ε− 1

)
, 1
9

}
, t ← 1, T ← ∞,

and G ← ∅.
2: while 2t−3δ < T do
3: Set St ← {j}, where j ∼ Γ.
4: while ηδ is smaller than√

2d ln |PARTITION (St, 2t)|
|St| +

√
8

|St| ln
8 (2t |St| t)2

ζ

do Draw j ∼ Γ and add j to St.
5: Compute tuples (P1, z1, τ1) , . . . , (Pk, zk, τk) ←

PARTITION (St, 2t).
6: for i ∈ {1, . . . , k} with zi ≥ 1− 3δ/8 do
7: Set G ← G ∪ {Pi}.
8: Sort the elements of τi: τ1 ≤ · · · ≤ τ|St|.
9: Set T ′ ← 1

|St|
∑|St|

m=1 min
{
τm, τ�|St|(1−3δ/8)�

}
.

10: if T ′ < T then Set T ← T ′.
11: t← t+ 1.
12: For each set P ′ ∈ G, select a vector ρP′ ∈ P ′.
Output: The (ε, δ)-optimal set {ρP′ | P ′ ∈ G}.

High-level description of algorithm. We now describe
our algorithm for learning (ε, δ)-optimal subsets. See Algo-
rithm 1 for the pseudocode. The algorithm maintains a vari-
able T , initially set to ∞, which roughly represents an up-
per confidence bound on OPTδ/4. It also maintains a set G
of parameters which the algorithm believes might be nearly
optimal. The algorithm begins by aggressively capping the
maximum loss � it computes by 1. At the beginning of each
round, the algorithm doubles this cap until the cap grows
sufficiently large compared to the upper confidence bound
T . At that point, the algorithm terminates. On each round
t, the algorithm draws a set St of samples (Step 4) that is
just large enough to estimate the expected 2t-capped loss
Ej∼Γ [min {�(ρ, j), 2t}] for every parameter ρ ∈ P . The
number of samples it draws is a data-dependent quantity that
depends on empirical Rademacher complexity (Koltchinskii
2001; Bartlett and Mendelson 2002).

Next, the algorithm evaluates the func-
tion PARTITION (St, 2t) to obtain the tuples
(P1, z1, τ1) , . . . , (Pk, zk, τk) ∈ 2P × [0, 1] × Z

|St|.
By definition of this function, for all subsets Pi and
parameter vector pairs ρ,ρ′ ∈ Pi, the fraction of instances
j ∈ St with �(ρ, j) ≤ 2t is equal to the fraction of
instances j ∈ St with �(ρ′, j) ≤ 2t. In other words,
1

|St|
∑

j∈St
1{�(ρ,j)≤2t} = 1

|St|
∑

j∈St
1{�(ρ′,j)≤2t} = zi.

If this fraction is sufficiently high (at least 1 − 3δ/8), the
algorithm adds Pi to the set of good parameters G (Step 7).
The algorithm estimates the δ/4-capped expected loss of
the parameters contained Pi, and if this estimate is smaller
than the current upper confidence bound T on OPTδ/4,
it updates T accordingly (Steps 8 through 10). Once the
cap 2t has grown sufficiently large compared to the upper

confidence bound T , the algorithm returns an arbitrary
parmeter from each set in G.

Algorithm analysis. We now provide guarantees on Al-
gorithm 1’s performance. We denote the values of t and T at
termination by t̄ and T̄ , and we denote the state of the set G
at termination by Ḡ. For each set P ′ ∈ Ḡ, we use the nota-
tion τP′ to denote the value τ�|St|(1−3δ/8)� in Step 9 during
the iteration t that P ′ is added to G.

Theorem 4.1. With probability 1 − ζ, the following con-
ditions hold, with η = min

{(
4
√
1 + ε− 1

)
/8, 1/9

}
and

c = 16 4
√
1 + ε/δ:

1. Algorithm 1 terminates after t̄ = O
(
log
(
c ·OPTδ/4

))
iterations.

2. Algorithm 1 returns an (ε, δ)-optimal set of parameters
of size at most

∑t̄
t=1

∣∣PARTITION
(St, c ·OPTδ/4

)∣∣.
3. The sample complexity on round t ∈ [t̄], |St|, is

Õ

(
d ln

∣∣PARTITION
(St, c ·OPTδ/4

)∣∣+ c ·OPTδ/4

η2δ2

)
.

Proof. We split the proof into separate lemmas. Lemma 4.3
proves Part 1. Lemma 4.5 as well as Lemma B.11 in the
full version (Balcan, Sandholm, and Vitercik 2019) prove
Part 2. Finally, Part 3 follows from classic results in learning
theory on Rademacher complexity. In particular, it follows
from an inversion of the inequality in Step 4 and the fact
that 2t ≤ 2t̄ ≤ c ·OPTδ/4, as we prove in Lemma 4.3.

Theorem 4.1 hinges on the assumption that the samples
S1, . . . ,St̄ Algorithm 1 draws in Step 4 are sufficiently rep-
resentative of the distribution Γ, formalized as follows:

Definition 4.1 (ζ-representative run). For each round t ∈
[t̄], denote the samples in St as St =

{
j
(t)
i : i ∈ [|St|]

}
.

We say that Algorithm 1 has a ζ-representative run if for all
rounds t ∈ [t̄], all integers b ∈ [|St|], all caps τ ∈ Z≥0, and
all parameters ρ ∈ P , the following conditions hold:

1. The average number of instances j
(t)
i ∈{

j
(t)
1 , . . . , j

(t)
b

}
with loss smaller than τ nearly

matches the probability that �(ρ, j) ≤ τ :∣∣∣∣ 1b ∑b
i=1 1{

�
(
ρ,j

(t)
i

)
≤τ

} − Prj∼Γ [�(ρ, j) ≤ τ ]

∣∣∣∣ ≤
γ(t, b, τ), and

2. The average τ -capped loss of the instances j(t)1 , . . . , j
(t)
b

nearly matches the expected τ -capped loss:

∣∣∣∣∣1b
b∑

i=1

min
{
�
(
ρ, j

(t)
i

)
, τ
}
− Ej∼Γ [min {�(ρ, j), τ}]

∣∣∣∣∣
≤ τ · γ(t, b, τ), where γ(t, b, τ) equals√

2d ln
∣∣∣PARTITION

({
j
(t)
1 ,...,j

(t)
b

}
,τ
)∣∣∣

b + 2
√

2
b ln

8(τbt)2

ζ .
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In Step 4, we ensure St is large enough that Algorithm 1
has a ζ-representative run with probability 1− ζ.

Lemma 4.2. With probability 1 − ζ, Algorithm 1 has a ζ-
representative run.

Lemma 4.2 is a corollary of a Rademacher complex-
ity analysis which we include in the full version (Balcan,
Sandholm, and Vitercik 2019). Intuitively, there are only
|PARTITION(S, τ)| algorithms with varying τ -capped losses
over any set of samples S . We can therefore invoke Mas-
sart’s finite lemma (2000), which guarantees that each set St
is sufficiently large to ensure that Algorithm 1 indeed has
a ζ-representative run. The remainder of our analysis will
assume that Algorithm 1 has a ζ-representative run.

Number of iterations until termination. We begin with
a proof sketch of the first part of Theorem 4.1. The full proof
is in the full version (Balcan, Sandholm, and Vitercik 2019).

Lemma 4.3. Suppose Algorithm 1 has a ζ-representative
run. Then 2t̄ ≤ 16

δ
4
√
1 + ε ·OPTδ/4.

Proof sketch. By definition of OPTδ/4, for every γ >
0, there exists a vector ρ∗ ∈ P whose δ/4-
capped expected loss is within a γ-factor of optimal:
Ej∼Γ

[
min

{
� (ρ∗, j) , tδ/4 (ρ∗)

}] ≤ OPTδ/4 + γ. We
prove this vector’s δ/4-capped expected loss bounds t̄:

2t̄ ≤ 16 4
√
1 + ε

δ
· Ej∼Γ

[
min

{
� (ρ∗, j) , tδ/4 (ρ∗)

}]
. (2)

This implies the lemma statement holds. We split the proof
of Inequality (2) into two cases: one where the vector ρ∗
is contained within a set P ′ ∈ Ḡ, and the other where
it is not. In the latter case, Lemma 4.4 bounds 2t̄ by 8

δ ·
Ej∼Γ

[
min

{
� (ρ∗, j) , tδ/4 (ρ∗)

}]
, which implies Inequal-

ity (2) holds. We leave the other case to the full version (Bal-
can, Sandholm, and Vitercik 2019).

In the next lemma, we prove the upper bound on 2t̄ that
we use in Lemma 4.3. The full proof is in the full ver-
sion (Balcan, Sandholm, and Vitercik 2019).

Lemma 4.4. Suppose Algorithm 1 has a ζ-representative
run. For any parameter vector ρ �∈ ⋃P′∈Ḡ P ′, 2t̄ ≤ 8

δ ·
Ej∼Γ

[
min

{
�(ρ, j), tδ/4(ρ)

}]
.

Proof sketch. The last round that Algorithm 1 adds any
subset to the set G is round t̄ − 1. For ease of no-
tation, let S̄ = St̄−1. Since ρ is not an element of
any set in G, the cap 2t̄−1 must be too small com-
pared to the average loss of the parameter ρ. Specifi-
cally, it must be that 1

|S̄|
∑

j∈S̄ 1{�(ρ,j)≤2t̄−1} < 1 −
3δ
8 . Since Algorithm 1 had a ζ-representative run, the

probability the loss of ρ is smaller than 2t̄−1 converges
to the fraction of samples with loss smaller than 2t̄−1:
Prj∼Γ

[
�(ρ, j) ≤ 2t̄−1

] ≤ 1

|S̄|
∑

j∈S̄ 1{�(ρ,j)≤2t̄−1} + ηδ,

so Prj∼Γ

[
�(ρ, j) ≤ 2t̄−1

]
< 1−(3/8−η)δ. Since η ≤ 1/9,

it must be that Prj∼Γ

[
�(ρ, j) ≥ 2t̄−1

] ≥ δ/4, so by defini-
tion of tδ/4(ρ), we have that 2t̄−1 ≤ tδ/4(ρ). Therefore,
Ej∼Γ

[
min

{
�(ρ, j), tδ/4(ρ)

}] ≥ δ
4 · tδ/4(ρ) ≥ 2t̄−3δ.

Optimality of Algorithm 1’s output. Next, we provide a
proof sketch of the second part of Theorem 4.1, which guar-
antees that Algorithm 1 returns an (ε, δ)-optimal subset. The
full proof is in the full version (Balcan, Sandholm, and Viter-
cik 2019). For each set P ′ ∈ Ḡ, τP′ denotes the value of
τ�|St|(1−3δ/8)� in Step 9 of Algorithm 1 during the iteration
t that P ′ is added to G.

Lemma 4.5. If Algorithm 1 has a ζ-representative run, it
returns an (ε, δ)-optimal subset.

Proof sketch. By definition of OPTδ/4, for ev-
ery γ > 0, there is a vector ρ∗ ∈ P such that
Ej∼Γ

[
min

{
�(ρ∗, j), tδ/4(ρ∗)

}] ≤ OPTδ/4 + γ. Let
P∗ be the output of Algorithm 1. We claim there exists a
parameter ρ′ ∈ P∗ such that

Ej∼Γ

[
min

{
� (ρ′, j) , tδ/2 (ρ′)

}]
≤ √1 + ε · Ej∼Γ

[
min

{
�(ρ∗, j), tδ/4(ρ∗)

}]
, (3)

which implies the lemma statement. There are two cases:
either the vector ρ∗ is contained within a set P ′ ∈ Ḡ, or it is
not. In this sketch, we analyze the latter case.

By Lemma 4.4, we know that
Ej∼Γ

[
min

{
� (ρ∗, j) , tδ/4(ρ∗)

}] ≥ 2t̄−3δ. When
Algorithm 1 terminates, 2t̄−3δ is greater than
the upper confidence bound T̄ , which means that
Ej∼Γ

[
min

{
�(ρ∗, j), tδ/4(ρ∗)

}]
> T̄ . We next de-

rive a lower bound on T̄ : we prove that there exists a
set P ′ ∈ Ḡ and parameter vector ρ ∈ P ′ such that
4
√
1 + ε · T̄ ≥ Ej∼Γ [min {� (ρ, j) , τP′}]. Our upper

bound on T̄ implies that Ej∼Γ [min {� (ρ, j) , τP′}] ≤
4
√
1 + ε · Ej∼Γ

[
min

{
� (ρ∗, j) , tδ/4(ρ)

}]
. Finally, we

prove that there is a parameter ρ′ ∈ P ′ ∩ P∗ whose
δ/2-capped expected loss is within a 4

√
1 + ε-factor of the

expected loss Ej∼Γ [min {� (ρ, j) , τP′}]. This follows from
a proof that τP′ approximates tδ/4(ρ

′) and the fact that ρ
and ρ′ are both elements of P ′. Stringing these inequalities
together, we prove that Equation (3) holds.

The second part of Theorem 4.1 also guarantees that the
size of the set Algorithm 1 returns is bounded (see Lemma
B.11 in the full version (Balcan, Sandholm, and Vitercik
2019)). Together, Lemmas 4.3 and 4.5, as well as Lemma
B.11 in the full version (Balcan, Sandholm, and Vitercik
2019), bound the number of iterations Algorithm 1 makes
until it returns an (ε, δ)-optimal subset.

5 Comparison to prior research

We now provide comparisons to prior research on algorithm
configuration with provable guarantees. Both comparisons
revolve around branch-and-bound (B&B) configuration for
integer programming (IP), overviewed in Section 2.1.
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Uniformly sampling configurations. Prior research pro-
vides algorithms for finding nearly-optimal configurations
from a finite set (Kleinberg, Leyton-Brown, and Lucier
2017; Kleinberg et al. 2019; Weisz, György, and Szepesvári
2018; 2019). If the parameter space is infinite and their al-
gorithms optimize over a uniformly-sampled set of Ω̃(1/γ)
configurations, then the output configuration will be within
the top γ-quantile, with high probability. If the set of good
parameters is small, however, the uniform sample might
not include any of them. Algorithm configuration problems
where the high-performing parameters lie within a small re-
gion do exist, as we illustrate in the following theorem.

Theorem 5.1 (Balcan et al. (2018a)). For any 1
3 < a <

b < 1
2 and n ≥ 6, there are infinitely-many distributions Γ

over IPs with n variables and a B&B parameter3 with range
[0, 1] such that:

1. If ρ ≤ a, then �(ρ, j) = 2(n−5)/4 with probability 1
2 and

�(ρ, j) = 8 with probability 1
2 .

2. If ρ ∈ (a, b), then �(ρ, j) = 8 with probability 1.

3. If ρ ≥ b, then �(ρ, j) = 2(n−4)/2 with probability 1
2 and

�(ρ, j) = 8 with probability 1
2 .

Here, �(ρ, j) measures the size of the tree B&B builds using
the parameter ρ on the input integer program j.

In the above configuration problem, any parameter in the
range (a, b) has a loss of 8 with probability 1, which is
the minimum possible loss. Any parameter outside of this
range has an abysmal expected loss of at least 2(n−6)/2. In
fact, for any δ ≤ 1/2, the δ-capped expected loss of any
parameter in the range [0, a] ∪ [b, 1] is at least 2(n−6)/2.
Therefore, if we uniformly sample a finite set of parameters
and optimize over this set using an algorithm for finite pa-
rameter spaces (Kleinberg, Leyton-Brown, and Lucier 2017;
Kleinberg et al. 2019; Weisz, György, and Szepesvári 2018;
2019), we must ensure that we sample at least one parame-
ter within (a, b). As a and b converge, however, the required
number of samples shoots to infinity, as we formalize below.
This section’s omitted proofs are in the full version (Balcan,
Sandholm, and Vitercik 2019).

Theorem 5.2. For the B&B configuration problem in
Theorem 5.1, with constant probability over the draw of
m = �1/(b− a)� parameters ρ1, . . . , ρm ∼ Uniform[0, 1],
{ρ1, . . . , ρm} ∩ (a, b) = ∅.

Meanwhile, Algorithm 1 quickly terminates, having
found an optimal parameter, as we describe below.

Theorem 5.3. For the B&B configuration problem in Theo-
rem 5.1, Algorithm 1 terminates after Õ(log 1/δ) iterations,
having drawn Õ((δη)−2) sample problem instances (where
η = min

{
1
8

(
4
√
1 + ε− 1

)
, 1
9

}
), and returns a set contain-

ing an optimal parameter in (a, b).

3As we describe in the full version (Balcan, Sandholm, and
Vitercik 2019), ρ controls the variable selection policy. The the-
orem holds for any node selection policy.

Similarly, Balcan et al. (2018b) exemplify clustering con-
figuration problems—which we overview in Section 2.1—
where the optimal parameters lie within an arbitrarily small
region, and any other parameter leads to significantly worse
performance. As in Theorem 5.2, this means a uniform sam-
pling of the parameters will fail to find optimal parameters.

Uniform convergence. Prior research has provided uni-
form convergence sample complexity bounds for algorithm
configuration. These guarantees bound the number of sam-
ples sufficient to ensure that for any configuration, its aver-
age loss over the samples nearly matches its expected loss.

We prove that in the case of B&B configuration, Algo-
rithm 1 may use far fewer samples to find a nearly opti-
mal configuration than the best-known uniform convergence
sample complexity bound. Balcan et al. (2018a) prove uni-
form convergence sample complexity guarantees for B&B
configuration. They bound the number of samples sufficient
to ensure that for any configuration in their infinite parame-
ter space, the size of the search tree B&B builds on average
over the samples generalizes to the expected size of the tree
it builds. For integer programs over n variables, the best-
known sample complexity bound guarantees that (2n/ε′)2

samples are sufficient to ensure that the average tree size
B&B builds over the samples is within an additive ε′ factor
of the expected tree size (Balcan et al. 2018a). Meanwhile,
as we describe in Theorem 5.3, there are B&B configuration
problems where our algorithm’s sample complexity bound
is significantly better: our algorithm finds an optimal param-
eter using only Õ((δη)−2) samples.

6 Conclusion

We presented an algorithm that learns a finite set of promis-
ing parameters from an infinite parameter space. It can be
used to determine the input to a configuration algorithm for
finite parameter spaces, or as a tool for compiling an algo-
rithm portfolio. We proved bounds on the number of itera-
tions before our algorithm terminates, its sample complex-
ity, and the size of its output. A strength of our approach
is its modularity: it can determine the input to a configura-
tion algorithm for finite parameter spaces without depending
on specifics of that algorithm’s implementation. There is an
inevitable tradeoff, however, between modularity and com-
putational efficiency. In future research, our approach can
likely be folded into existing configuration algorithms for
finite parameter spaces.
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