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Abstract

In distributed training of deep models, the transmission vol-
ume of stochastic gradients (SG) imposes a bottleneck in
scaling up the number of processing nodes. On the other hand,
the existing methods for compression of SGs have two major
drawbacks. First, due to the increase in the overall variance
of the compressed SG, the hyperparameters of the learning
algorithm must be readjusted to ensure the convergence of
the training. Further, the convergence rate of the resulting al-
gorithm still would be adversely affected. Second, for those
approaches for which the compressed SG values are biased,
there is no guarantee for the learning convergence and thus an
error feedback is often required. We propose Quantized Com-
pressive Sampling (QCS) of SG that addresses the above two
issues while achieving an arbitrarily large compression gain.
We introduce two variants of the algorithm: Unbiased-QCS
and MMSE-QCS and show their superior performance w.r.t.
other approaches. Specifically, we show that for the same num-
ber of communication bits, the convergence rate is improved
by a factor of 2 relative to state of the art. Next, we propose to
improve the convergence rate of the distributed training algo-
rithm via a weighted error feedback. Specifically, we develop
and analyze a method to both control the overall variance of
the compressed SG and prevent the staleness of the updates. Fi-
nally, through simulations, we validate our theoretical results
and establish the superior performance of the proposed SG
compression in the distributed training of deep models. Our
simulations also demonstrate that our proposed compression
method expands substantially the region of step-size values
for which the learning algorithm converges.

1 Introduction

In recent years, the size of deep learning problems has in-
creased significantly both in terms of the number of available
training samples as well as the complexity of the model.
Hence, training deep models on a single processing node
is unappealing or nearly impossible. One viable approach
to overcome the memory, storage and computational con-
straints is distributing the training over multiple processing
units (a.k.a. workers). However, exchanging the gradients or
the parameters of the model and synchronizing the workers’
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models incur significant communication overhead which is a
major bottleneck in distributed deep learning. In recent years,
there has been a great amount of effort on reducing the com-
munication overhead. The majority of existing methods rely
on either relaxing the synchronization among workers (Dean
et al. 2012; Niu et al. 2011; Zhang, Hsieh, and Akella 2016;
Ho et al. 2013; Stich 2019) or reducing the overall transmis-
sion rate via sparsification or quantization of the gradients.

Sparsification- This approach is based on transmitting only
the important or a small subset of the gradients. (Strom
2015) was among the early works to use sparsification
in conjunction with thresholded quantization to compress
the gradients. As choosing the right threshold for gradi-
ent sparsification is difficult in practice and to improve
the performance of distributed learning, other sparsifica-
tion methods have also been proposed such as transmitting
only a fixed portion of the gradients (Dryden et al. 2016;
Aji and Heafield 2017), TopK SGD (Alistarh et al. 2018),
deep gradient compression (Lin et al. 2018), random (stochas-
tic) sparsification of the gradients (Wangni et al. 2018) and
sparsification of the gradients in the transform domain (Wang
et al. 2018).

Quantization- Reducing the number of bits in representing
SG is a well-known technique to decrease the communication
bit-rate. For example, quantizing the gradients to one-bit
(Seide et al. 2014) or SignSGD (Bernstein et al. 2018) can
significantly reduce the communication overhead. However,
the reduced accuracy of gradients and quantization bias may
impair the convergence rate. Using more quantization levels,
adaptive quantizers (Dryden et al. 2016) or exploiting error-
feedback (Wu et al. 2018; Karimireddy et al. 2019), one
can alleviate such issues. Alternatively, stochastic quantizers
such as QSGD (Alistarh et al. 2017), TernGrad (Wen et al.
2017) and Dithered Quantization (Abdi and Fekri 2019a;
2019b) provide unbiased quantization with performance and
convergence guarantees.

It is worth mentioning that these approaches can be applied
simultaneously as complement of each other to reduce the
communication overhead significantly in distributed deep
learning.

Our Contribution In this paper, we claim that the existing
methods for compressing stochastic gradients (or model’s
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Figure 1: Schematic overview of the distributed training.

updates) suffer from few drawbacks such as increase in the
total variance of SG, limited compression gains or added bias
to the SG. These issues can adversely affect the convergence
of the distributed learning algorithm. We propose a novel
approach, Quantized Compressive Sampling (QCS) for the
compression of stochastic gradients or parameters of deep
models. The algorithm employs both a dither quantization
and compressive sensing to achieve arbitrarily large compres-
sion gains while at the same time has desired properties such
as unbiasedness and having small compression error. To fur-
ther improve the convergence rate of QCS, we suggest using
weighted error feedback. We theoretically analyze the effect
of error feedback on the convergence rate and show that how
the introduction of a ’decaying factor’ in the feedback can
improve the stability of the training via 1) controlling the
variance of the residual signal in the error feedback, and 2)
forgetting the outdated gradients.

Notations

Bold lowercase letters represent vectors and the i-th element
of the vector x is denoted as xi. Matrices are denoted by
bold capital letters such as X , with the (i, j)-th element rep-
resented by Xi,j or [X]i,j . A�B is the Hadamard product
of A and B. A� v for vector v is computed by expanding
the dimension of v appropriately to make it the same size as
A. Given a real number x ∈ R, �x� is the nearest integer to
x and sign(x) is the sign of x defined as +1 for x > 0 and
−1 for x ≤ 0. log and log2 denote the natural and base 2
logarithms, respectively.

For a random variable u, u ∼ U(a, b) if its probability
distribution is uniform over interval (a, b).

Throughout the paper, usually n refers to the number of
parameters, g stochastic gradient of the parameters, P is the
number of processing nodes or workers and Q is the range
of the quantizer, i.e., the output of the quantizer would be in
{−Q, . . . , 0, . . . , Q}.

2 Problem Statement and Motivation

Let f : Rn → R be a differentiable objective function to be
minimized. We consider the distributed optimization of f(·)
as shown in Fig. 1. There are P separate workers which have
their own copy of the model to be trained. At each iteration
of training, each worker computes a stochastic gradient (SG)
of the parameters (gp) based on its own available data. It is

then transmitted to a server (in the centralized training) or
communicated with other workers (in the decentralized topol-
ogy) to compute the average. The average of all gradients
or the updates (ḡ) is then broadcasted back to all workers to
update their local copy of the model.

Quantizing the gradients (gk’s) is a well-known approach
to reduce the number of transmitted bits and mitigate the
communication bottleneck in distributed training. However,
the existing quantization methods have few drawbacks;
• Due to the quantization noise, the total variance of the

SG would be increased, and as illustrated later in the
following example, the learning algorithm with quan-
tized SG may not converge with the same set of training
hyper-parameters as the baseline (non-quantized) algo-
rithm. Hence, the hyper-parameters must be adjusted to
ensure the convergence of the learning algorithms, which
in turn can increase the required number of training itera-
tions for the convergence of the model.

• If the quantizer is biased (e.g., signSGD), the training algo-
rithm is not guaranteed to converge (see, e.g., (Karimireddy
et al. 2019)).
• Since the small gradients are suppressed by the larger

ones and thus would be most likely quantized to zero, the
parameters whose gradients are relatively small may not be
updated even if their gradients point to the same direction
in multiple consecutive iterations of training.

Although using error-feedback (Wu et al. 2018; Karimireddy
et al. 2019) can alleviate these issues to some degrees, the re-
quirement to store the residual of quantization at each worker
increases the memory footprint of the training algorithm sig-
nificantly which is undesirable in many applications esp. for
large deep models.
Example (Linear Regression). Consider learning a linear
regression model z = Wx with mean squared error (MSE)
cost function f = 0.5E

[
‖y −Wx‖22

]
, where y ∈ R

m is
the desired (target) signal and x ∈ R

n is the input. As-
sume that x is a zero-mean multivariate Gaussian random
vector with correlation matrix R whose maximum and min-
imum eigenvalues are λmax(R) = 4 and λmin(R) = 1,
respectively. It is known that gradient descent with step-size
μ < 1/λmax = 1/4 converges to the optimal solution. To
investigate the impact of compressing SG on the convergence
rate, we consider learning W via stochastic gradient descent
algorithm with batch-size 32 and using no quantization (base-
line), QSGD (Alistarh et al. 2017), Sparse-SGD (Wangni et
al. 2018), and our proposed method (presented later in the
paper). The parameters are adjusted such that compression
gains of all methods are approximately 21, except the method
labeled as ‘Proposed, Fewer Bits’ in Fig. 2b which uses ap-
proximately 40% fewer bits. We set n = 64, m = 50 and
repeated the experiments several times with different values
of learning rate to obtain the range of μ that the training
algorithm converges and the corresponding convergence rate.
Figure 2a shows the percentage of times different learning
algorithms converge vs. step-size μ. We nose that quantiza-
tion or sparsification reduces the range of μ for which SGD
converges. However, our proposed method significantly in-
creases that range compared to existing methods. Although
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Figure 2: Effect of different quantization techniques on the convergence of SGD on learning simple linear regression model. The
shaded region represents variations of ±1.5 standard deviation. Note that the scale of convergence plots is logarithmic.

using smaller μ ensures the convergence for QSGD and Spar-
sified SGD (see Fig. 2b), it sacrifices the potential of higher
convergence rates that can be achieved by using larger step-
sizes (Fig. 2c). In this example, our proposed method con-
sistently outperforms the other existing algorithms. Even by
step-size μ = 0.10, the convergence time can be reduced by
a factor of 2 compared to the QSGD with μ = 0.05.

Next, we introduce our proposed Quantized Compressive
Sampling (QCS) method for the compression of stochastic
gradients or parameters of deep models. The algorithm, em-
ploys both a dither quantization and compressed sampling
to achieve arbitrarily large compression gains. We introduce
two variants of the algorithm: 1. unbiased compression of
SG (Unbiased-QCS), and 2. compression with the minimum
mean squared error (MMSE-QCS). In section 4, we intro-
duce weighted error feedback to improve the convergence
rate of the learning algorithm and show that the introduction
of a ’decaying factor’ in the feedback greatly improves the
stability of the training. In section 5, we theoretically prove
the convergence for the QCS-SGD, analyze the convergence
rates of the proposed methods and compare them with the
baseline (uncompressed) SGD. We theoretically show that
the weighted error feedback can improve the convergence
rate and close the gap from the baseline (uncompressed) SGD.
Finally, in section 6, we evaluate the theoretical results and
compare our approach against the state-of-the-art and the
baseline.

3 Quantized Compressive Sampling of

Stochastic Gradient

Let g ∈ R
n be the stochastic gradient of the model. Instead

of directly compressing g, our proposed method is based on
mapping g onto R

k, k ≤ n, via v = Tg and then compress-
ing v. Here, T is a random mixing matrix chosen from a
class of appropriate transforms T . Inspired by the work on
structured measurement matrix in compressed sensing, we
consider the following class of random mixing matrices

T =
1√
k
HR, (1)

where R is a random Rademacher diagonal matrix, i.e.,
R = diag(r), P(ri = 1) = P(ri = −1) = 0.5, and H

is constructed by picking up the first k rows1 from the
Hadamard matrix Hn ∈ R

n×n. Fore more detailed anal-
ysis of the proposed class of transforms, please refer to §2
of the Supp. document. Note that the random transformation
can be alternatively applied as

v =
1√
k
H(r � g). (2)

Lemma 1. The random mixing matrix T has the following
properties:

TT T =
n

k
I, E

[
T TT

]
= I. (3)

The quantization and compression of v is based on
dithered quantization (Schuchman 1964; Gray and Stockham
1993) (see §1 of Supp. document). Let Q be the desired range
of quantization levels and u ∼ U(−1/2, 1/2) be the random
dither signal, independent of v. The dithered quantization of
v is computed as

q = �v/ς + u� , (4)

where the scale factor ς = ‖v‖∞/Q maps the elements of v
into the range [−Q,Q]. For 1-bit dithered quantization (see
remark 2 of §1 in Supp. document), set ς = 2‖v‖∞ and

q = sign(v/ς + u). (5)

The Quantized Compressive Sampling (QCS) of g is then
computed via first dequantizing v as

v̂ = ς (q − u) , (6)

and then estimating g from v̂. Note that the quantization of
v can be written as

v̂ = v + ςε, (7)

where, as a result of Thm. I in Supp. document, the scaled
quantization noise ε is independent of the signals and ε ∼
U(−1/2, 1/2).2 Note that although T is a random matrix, the

1It is possible to choose any arbitrary or random subset of k rows
from Hn, but the performance and analysis would be the same.

2Note that this is not the case for ordinary quantization or
stochastic quantization (QSG) in (Alistarh et al. 2017).
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server can reproduce it by using the same random number
generators and seed numbers. We consider two different cri-
teria for reconstructing g; 1) minimizing the mean squared
error E

[
‖g − ĝ‖22

]
and 2) finding an unbiased estimator. To

have simple yet efficient estimation of g from v̂, we restrict
ourselves to the class of linear estimators given by

ĝ = αT Tv̂, (8)

where α is a scalar which may depend on ς but is independent
of g.
Remark 1. Note that ĝ lies in the subspace of Rn spanned
by the rows of T . Therefore, if T was deterministic, the gra-
dients would always be projected into a fixed k-dimensional
subspace of Rn, preventing the training algorithm to con-
verge in general. The randomness added to T makes these
subspaces change at each iteration of training, helping the
training algorithm to explore ‘almost’ all directions in R

n in
O(nk ) iterations (see Supp. document).

Unbiased Estimator

We constraint the reconstruction matrix such that the resulting
quantizer be unbiased, E[ĝ] = g, for any arbitrary g. Using
Lemma 1, it can be easily verified that for an unbiased QCS,
the reconstruction matrix is given by

α = 1. (9)

The following theorem summarizes the properties of the pro-
posed QCS.
Theorem 2. The QCS with α = 1 is unbiased and has
bounded variance error. More specifically, for an arbitrary
g ∈ R

n, let ĝ = T Tv̂ be the QCS of g and e = g − ĝ. Then,
P1. The quantizer is unbiased, i.e., E[e] = 0.
P2. The variance of error is bounded as E

[
‖e‖22

]
≤ γ‖g‖22

where γ is a constant given by

γ =

⎧⎨
⎩

n
k − 1 + n

4Q2

log(k)
k−1 k ≥ 2

n− 1 k = 1

(10)

Thm. 2 provides a trade-off between the number of trans-
mission bits per value and the variance of QCS. Assuming
that the overhead to transmit scale factor ς is negligible, the
total transmission bits would be k log(2Q+1) and hence the
compression gain is

gain =
nb

k log2(2Q+ 1)
, (11)

where b is the number of bits used in representing each param-
eter (generally, in floating point computations b = 32). For a
fixed compression gain, minimizing (10) would result in the
optimum number of quantization levels Q and k. Figure 3
shows the minimum achievable γ using the proposed unbi-
ased QCS and compares it with QSG (Lemma 3.1 of (Alistarh
et al. 2017)) and the lower bound of the expected compres-
sion gain of the unbiased sparsification (Wangni et al. 2018).
Note that the compression gain of (Alistarh et al. 2017) is at
most 32. As shown in the figure, the variance bound of our
proposed unbiased QCS is orders of magnitude lower than
both other approaches.
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Figure 3: Variance bound γ vs. compression gain.

Minimum Mean Squared Error Estimator

In MMSE-QCS, the objective is finding the reconstruction
matrix such that E

[
‖ĝ − g‖22

]
is minimized. However the

quantizer is not necessarily unbiased. In this case, the recon-
struction matrix is given by setting

α =
1

γ + 1
, (12)

where γ is as in (10).
Lemma 3. For an arbitrary g ∈ R

n, let ĝ = αT Tv̂ be the
QCS of g and e = g − ĝ. Then, for α given by (12), we have

E
[
‖e‖22

]
≤ (1− α)‖g‖22. (13)

Algorithm 1 summarizes the proposed quantization and
reconstruction for Unbiased-QCS and MMSE-QCS. Note
that both QUANTIZE and DEQUATNIZE functions generate
the same random Rademacher and uniform sequences via
utilizing identical random number generation algorithms with
the same seed values.

Algorithm 1 Quantized Compressive Sampling of SG

1: function QUANTIZE(g,H, Q)
2: Generate random Rademacher vector r.
3: Generate random dither u ∼ U(−1/2, 1/2).
4: v ← 1√

k
H(r � g)

5: ς ← ‖v‖∞/Q
6: q ← �v/ς + u�
7: return q and ς

8: function DEQUANTIZE(q, ς,H)
9: Set α. � via (9) or (12)

10: Reproduce random Rademacher vector r.
11: Reproduce random dither u ∼ U(−1/2, 1/2).
12: v̂ = ς (q − u)
13: ĝ = α√

k
r � (HTv̂)

14: return ĝ

4 Weighted Error Feedback

Application of quantization or sparsification techniques in
deep learning may introduce two major issues: (i) increase
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in the variance of the aggregated gradients, and (ii) insertion
of a bias to the stochastic gradient. These may degrade the
convergence speed or even cause the learning algorithm fail
to converge. A key component in tackling both of these issues
is aggregating the compression residuals (i.e., quantization or
sparsification errors) and carrying forward to the next mini-
batch. This ensures that the true values of SG are eventually
applied to the parameters of the deep model, although it may
take several transmissions, i.e., it resembles stale (partial)
gradient updates. Exploiting such a feedback can speed up
the convergence rate or ensure the convergence of the learning
algorithms such as stochastic gradient descents even in the
presence of (biased) gradient compression (Stich, Cordonnier,
and Jaggi 2018; Wu et al. 2018; Karimireddy et al. 2019).

Since adding quantization error from previous steps can
potentially increase the overall variance of SG and the stale-
ness of the gradients, we add a forgetting factor β in the error
feedback which is a crucial part in bounding the variance of
error feedback as we will show next. Let rt be the running
compression residue at the t-th iteration, with r0 = 0, and
COMPRESS(·) denote quantizing and then dequantizing us-
ing Alg. 1. At the t-th iteration of training, the compression
and residue update would be computed as

zt ← gt + βrt (14a)
ẑt ← COMPRESS(zt) (14b)
et ← zt − ẑt (14c)
rt+1 ← (1− β)rt + et (14d)

and the parameters of the model are updated using ẑt instead
of SG gt. The next lemma states the sufficient conditions on
β for the residual signal rt be �2 bounded in expectation.
Lemma 4. Assume that the SGs are �2 bounded, i.e.,
E
[
‖g‖22

]
≤ B. Then, E

[
‖rt‖22

]
≤ ηB, where

• for Unbiased-QCS and all 0 < β < min(1, 2/(1 + γ)),

η =
γ

1− ((1− β)2 + β2γ)
. (15)

• For MMSE-QCS and 0 < β ≤ 1,

η =
γ(√

γ + 1− (1− β)2 −√γ
)2 . (16)

Note that for Unbiased-QCS, since γ might be greater than
1, the residual signal’s magnitude may become unbounded
for β = 1 (i.e., the traditional error feedback method), and
hence the learning algorithm would not converge with error
feedback. On the other hand, in MMSE-QCS all values of
0 ≤ β ≤ 1 are viable choices for convergence with the error
feedback.
Remark 2. We can choose β to minimize the upper bound
on the �2 norm of the residual signal. In this case, the opti-
mum values of β and the corresponding upper bound η for
Unbiased-QCS and MMSE-QCS are given by (17) and (18),
respectively;

β∗
u =

1

γ + 1
, η∗u = γ(γ + 1) (17)

β∗
m = 1, η∗m =

γ(√
γ + 1−√γ

)2 . (18)

Moreover, as it can be easily verified, η∗u < η∗m. Hence, the
theoretical upper bound for the magnitude of the residual
signal in Unbiased-QCS with weighted error feedback is
smaller than MMSE-QCS.
Remark 3. Using Lemma 3 of (Karimireddy et al. 2019), by
simple derivations and noting that δ in their notation is the
same as 1/(γ+1) for MMSE-QCS, we realize that the upper
bound in (Karimireddy et al. 2019) equals to ηk = 4γ(γ +1)
which can be easily verified that it is larger than η∗m derived
here.

5 Convergence Analysis

In this section, we show the convergence of the proposed
SG compression algorithms with and without error feedback.
In our analysis, we consider the gradient descent algorithm
with the compressed stochastic gradients and we make the
following assumptions;
Assumption 1. The loss function is Lipschitz-smooth, i.e.,
there exists a constant L such that for all w1 and w2

‖∇f(w1)−∇f(w2)‖2 ≤ L‖w1 −w2‖2. (19)

Assumption 2. The stochastic gradients are �2 bounded in
expectation, i.e., ∃B > 0 such that

E
[
‖g‖22

]
≤ B. (20)

Remark 4. Note that Assumption 2 can be relaxed to have
bounded variance SG, i.e., E

[
‖g −∇f‖22

]
≤ σ2 for some

constant σ. The analysis would be slightly more involved,
however the convergence results would be similar to the ones
that are stated here (see supplementary document).

First, we consider training for T iterations of SGD with
fixed step-size μ using Unbiased-QCS and MMSE-QCS with-
out any error feedback, i.e., at the t-th iteration, the parame-
ters are updated as

wt+1 = wt − μĝt, (21)

where ĝt is compressed SG from either Unbiased-QCS or
MMSE-QCS.
Lemma 5. Let f∗ be the minimum of objective function f(·).
Assuming (19) and (20) hold, in training with Unbiased-QCS,
we get

1

T

T−1∑
t=0

E
[
‖∇f(wt)‖22

]
≤ f(w0)− f∗

Tμ
+

L

2
μ(1 + γ)B.

Similarly, for MMSE-QCS we have

1

T

T−1∑
t=0

E
[
‖∇f(wt)‖22

]
≤ (1 + γ)

f(w0)− f∗

Tμ
+

L

2
μB.

In both cases, by appropriate choice of step size, we can
achieve O(1/

√
T ) convergence rate

min
t

E
[
‖∇f(wt)‖22

]
≤

f(w0)− f∗ + L
2 (1 + γ)B√

T
. (22)
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Comparing the convergence rates of Unbiased-QCS and
MMSE-QCS with that of the SGD with uncompressed gradi-
ents, we observe that both achieve asymptotically the same
rate of convergence O(1/

√
T ), however the constant term in

the rate is slightly larger due to the compression.
Next, we consider the effect of using weighted error feed-

back on the convergence of the training algorithm. At the
t-th iteration of SGD learning algorithm with compressed
gradients and weighted error feedback, the parameters are
updated as

zt ← gt + βrt

ẑt ← COMPRESS(zt)

et ← zt − ẑt
rt+1 ← (1− β)rt + et

wt+1 ← wt − μẑt

The following lemma proves the convergence of the training
algorithm.
Lemma 6. Let f∗ be the minimum of objective function f(·)
and assume (19) and (20) hold. Then,

1

T

T−1∑
t=0

E
[
‖∇f(wt)‖22

]
≤ f(w0)− f∗

Tμ/2
+ LB

(
μ+ 4Lημ2

)

where η is given by (15) for Unbiased-QCS and by (16) for
MMSE-QCS.

With a slightly tighter analysis and setting μ =
√
1+ε√
T

for
arbitrary ε > 0, we have

min
t

E
[
‖∇f(wt)‖22

]
≤

f(w0)− f∗ + L
2B(1 + ε)√

T
+

L2B
(1 + ε)2√
1 + ε− 1

η

T
. (23)

Comparing the convergence rates of (22) and (23) with that
of SGD, we observe that the excess term in the convergence
rate due to the compression of SG are proportional to γ/

√
T

and η/T , respectively, for training without and with feedback.
When γ � 1, η ≈ γ and using error feedback dwarfs the
effect of the compression on the convergence by an additional
factor 1/

√
T . On the other hand, for high compression gains

and hence large γ, we have η ≈ γ2. Using error feedback
reduces the term in (23) due to the compression of SG from
O(1/

√
T ) to O(1/T ), resulting in faster diminishing of the

extra term and closing the gap with the SGD.

6 Experiments and Discussions

Our experiments are divided into three parts. First, we eval-
uate the performance of the proposed quantization methods.
Next, we investigate the execution time of training with the
proposed quantizers and finally, we evaluate the performance
of distributed learning using different number of workers and
various quantization parameters. To evaluate our algorithms,
we considered a fully connected neural network with hidden
layers of sizes 1000− 300− 100 (herein, referred to as FC)
and a Lenet-5 like convolutional network (LeCun et al. 1998)

Accuracy

(a) compression gain = 21

Accuracy

(b) compression gain = 14

Figure 4: Relative quantization error vs. accuracy of model
during training of Lenet over MNIST. Shaded areas represent
1σ variations.

over MNIST, a convolutional network on Cifar10 (referred
to as CifarNet) and Alexnet (Krizhevsky, Sutskever, and Hin-
ton 2012) over Imagenet database. We compare QCS-SG
with various communication bit-rates against the baseline
(no quantization of gradients), 1-bit quantization (Seide et al.
2014), QSG (Alistarh et al. 2017) and Sparse-SGD (Wangni
et al. 2018). In most cases, the experiments were repeated
10-100 times to obtain reliable results for mean and variance
of the behavior of the desired quantities.

In our implementation of QCS, we divided the gradients
into partitions to reduce the complexity of the algorithm and
improve its performance, similar to the approach suggested in
(Alistarh et al. 2017). Depending on the size of each layer’s
parameters, the partition sizes were chosen to be a power
of 2 or from the set {96, 100, 192, 200, 288, 320, 384}. For
these choices, the Hadamard matrices are designed using
Sylvester’s, Payley’s or Williamson’s construction algorithm.

Quantizer Evaluation. To examine the effectiveness of
the quantization scheme, we measured the relative quantiza-
tion error, defined as ‖g−˜g‖2

2

‖g‖2
2

, for different models, datasets
and with different number of quantization levels. Figure 4
compares the relative quantization error of Unbiased-QCS
against QSG (Alistarh et al. 2017) during training of Lenet
over MNIST for different compression gains. We have ob-
served similar behavior with other models and at different
compression gains. The results confirm our findings in Thm. 2
and theoretical comparisons in Fig. 3. It is worth noting that
unlike QSG, the relative quantization error of QCS is highly
concentrated around the mean value. This suggest that train-
ing with QCS-SG is similar to training with unquantized SG
corrupted by a (Gaussian) noise with fixed signal to noise
ratio.

Processing Time. We measured the required time to com-
pute and quantize the gradients for processing 100 batches of
training data using different batch-sizes (not accounting for
loading data from HDD or communicating among workers)
and compared with the baseline (no quantization), QSG and
Sparse-SGD over a Titan Xp GPU. Figure 5 shows the results
for different batch-sizes per worker. We note that although
the compression gain of our proposed QCS can become arbi-
trarily large, its processing time is only slightly higher that
QSG and much lower than the random sparsification (Wangni
et al. 2018).
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(a) Cifarnet (b) Alexnet

Figure 5: Time to process and compress SG for 100 batches

As an example, 100 iterations of decentralized distributed
training of Alexnet with 4 workers, batchsize 128 per worker
using Titan Xp GPUs connected via InfiniBand links would
take approximately 22 seconds employing QCS with com-
pression gain 100, compared to 27 seconds by QSG (compres-
sion gain of approximately 21), 42 seconds by Sparse-SGD
(with compression gain of 100), and 55 seconds by Baseline
(no SG compression), while centralized single node train-
ing with the same total batch-size takes approximately 90
seconds to execute.

It is worth noting that as the models become more com-
plex and the number of parameters increases, the overhead of
applying transforms to the partitions of SG, which have small
size d < 500, becomes negligible relative to the computa-
tional complexity of the backpropagation algorithm. Hence,
the more desirable properties of QCS and its relatively neg-
ligible overhead compared to QSG and other quantization
or sparsification methods make QCS a favorable choice for
distributed learning of large deep models.

Performance in Distributed Deep Learning. We evalu-
ate the convergence and the number of communication bits
in a distributed learning system with different number of
workers. In our simulations, the batch-size per worker is
fixed at 128. Hence, by increasing the number of workers,
the effective total batch-size increases. Although it is pos-
sible to evaluate the performance of the quantization and
compression schemes in both synchronous and asynchronous
settings, here we assume that the workers and server are syn-
chronous. The main reason for such a setting is to cancel-out
the performance degradation (in terms of training accuracy
or speed) that may be caused by the stale gradients in asyn-
chronous updates, and to solely investigate the effect of the
quantization/compression algorithms.

We consider two different settings: QCS-1 achieves com-
pression gain of approximately 32 by optimally setting k
and Q (see Thm. 2 and the discussion after), and in QCS-
2 k = n and Q = 1. Hence, QCS-2 achieves the same
compression gain as QSG. We evaluate the performance of
distributed training using the proposed compression method
with both stochastic gradient descent and Adam learning
algorithms. We use initial learning rate of 0.05 for SGD
and 0.001 for Adam, both using a decay rate of 0.99 per
epoch. Figure 6 shows the accuracy of the final trained model
vs different number of workers for FC and Lenet models,
using QCS-1 and QCS-2 and compares them with the base-
line. Moreover, in Figures 7 and 8, we have compared the
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Figure 6: Accuracy of distributed training vs number of work-
ers, using SGD learning algorithm

convergence rate of QCS w.r.t. baseline (no quantization)
for different settings. It is interesting to note that QCS im-
proves the convergence rate of the training as well as the
final accuracy in some occasions compared to the baseline
(no quantization). We believe this is mainly due to the char-
acteristics of the quantization noise. Since the noise from
the QCS behaves similar to a (Gaussian) noise with fixed
signal to noise ratio, our method is likely to result in a
better convergence property than the aforementioned tech-
niques for complex training data (Neelakantan et al. 2015;
Noh et al. 2017).

(a) FC (b) Lenet

Figure 7: Convergence rate of distributed training of FC and
Lenet models, 4 workers with SGD learning algorithm

Figure 8: Convergence rate of distributed training of CifarNet,
4 workers with Adam learning algorithm
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