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Abstract

Action recognition in still images poses a great challenge due
to (i) fewer available training data, (ii) absence of temporal
information. To address the first challenge, we introduce a
dataset for STill image Action Recognition (STAR), contain-
ing over 1M images across 50 different human body-motion
action categories. UCF-STAR is the largest dataset in the lit-
erature for action recognition in still images. The key charac-
teristics of UCF-STAR include (1) focusing on human body-
motion rather than relatively static human-object interaction
categories, (2) collecting images from the wild to benefit from
a varied set of action representations, (3) appending multi-
ple human-annotated labels per image rather than just the
action label, and (4) inclusion of rich, structured and multi-
modal set of metadata for each image. This departs from ex-
isting datasets, which typically provide single annotation in a
smaller number of images and categories, with no metadata.
UCF-STAR exposes the intrinsic difficulty of action recog-
nition through its realistic scene and action complexity. To
benchmark and demonstrate the benefits of UCF-STAR as
a large-scale dataset, and to show the role of “latent” mo-
tion information in recognizing human actions in still images,
we present a novel approach relying on predicting tempo-
ral information, yielding higher accuracy on 5 widely-used
datasets.

Introduction

We introduce a new large-scale multi-modal dataset, UCF-
STAR, to advance the current still image-based action recog-
nition research, and to promote future research opportunities
through its additional rich and structured metadata. UCF-
STAR contains 1,038,622 annotated still images, collected
from the wild, more than 40 times the size of the largest pre-
vious action image dataset; ı.e. BU-101 (Ma et al. 2017).
Images are annotated with multiple labels, including the ac-
tion, and are accompanied with rich textual metadata. Ex-
cerpts from UCF-STAR dataset are shown in Fig.1.

Broadly, human actions fall into two categories: (1) hu-
man body-motion actions, and (2) static actions. Actions can
be either person-centric, or group activity. UCF-STAR is fo-
cused on still images of person-centric body-motion actions.
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Hence, the choice of keywords to crawl the Web to collect
images was driven accordingly. For instance, swinging ten-
nis racket took precedence over simply tennis, as the term
swinging racket suggests body-motion compared to tennis.
We collected 50 different action categories, using Bing’s
Cognitive Services API, allowing 250 transactions per sec-
ond, where a transaction refers to a successful Bing API call
request. UCF-STAR includes a rich set of metadata including
human visibility, number of humans, human-object interac-
tion, caption, tags, bounding boxes, action labels, and other
metadata explained in section UCF-STAR Construction.

Human body-motion categories. While in existing
datasets many action classes, e.g. photography, are relatively
static and dependent on human-object interaction, our em-
phasis is on human body-motion actions, ı.e. actions depen-
dent on body motion. Thus, UCF-STAR is constructed by
collecting images of actions with body motion, and is bench-
marked in section Action Recognition Method by proposing
a new method, tackling missing motion in still images.

Person-centric action categories. Our focus is on the
actions performed by people, treated as individual agents.
There can be multiple people in a scene, however each one
serves as an individual agent. Here, the annotations are con-
structed to refer to the main agent.

The realistic complexity of UCF-STAR exposes the in-
herent difficulty of human body-motion action recognition,
overlooked by many well-known datasets. We perform com-
parative benchmarking of well-known methods on Stanford-
40 (Yao et al. 2011), Willow (Delaitre, Laptev, and Sivic
2010), WIDER (Xiong et al. 2015), BU-101 (Ma et al. 2017)
and UCF-STAR. Results confirm the more challenging na-
ture of UCF-STAR compared to other datasets.

While in videos one can readily infer motion (Sun, Junejo,
and Foroosh 2011; Ashraf, Sun, and Foroosh 2014; Sun,
Tappen, and Foroosh 2014; Sun et al. 2015), such informa-
tion is missing in a single image. Thus, action recognition
poses a bigger challenge in still images, due to the absence
of temporal information (Zhao, Ma, and Chen 2017; Safaei
and Foroosh 2018; Zhang et al. 2016; Oquab et al. 2014;
Gkioxari, Girshick, and Malik 2015; Khan et al. 2013). The
issue is exacerbated when there is no contextual informa-
tion, e.g. interaction with a recognizable object. To address
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Figure 1: Excerpts from UCF-STAR: (a) Examples depicting body-motion actions; (b) Examples of associated metadata and
labels, e.g. bounding boxes, action class, captions, tags, number of humans, human visibility and human-object interaction.

this gap and hence boost the accuracy, we propose a new
method of modeling the “latent” temporal information in a
still image, and use it as prior knowledge in a two-stream
deep network (Chéron, Laptev, and Schmid 2015; Don-
ahue et al. 2015; Feichtenhofer, Pinz, and Zisserman 2016;
Girdhar et al. 2017; Gkioxari, Girshick, and Malik 2015).

Related Work

Still image based action recognition datasets. Most pop-
ular action classification datasets, such as KTH (Schuldt
et al. 2012), Weizmann (Blank et al. 2005), Hollywood-2
(Marszałek, Laptev, and Schmid 2009), HMDB (Jhuang et
al. 2011), UCF101 (Soomro et al. 2012) consist of short
clips, manually trimmed to capture a single action in a video
clip. They serve a valuable purpose, but address a different
need than what UCF-STAR has to offer.

Action images in sports (Gupta, Kembhavi, and Davis
2009; Li and Li 2007) are among the earliest datasets intro-
duced for research. Daily activity datasets (Yao and Fei-Fei
2012; Le, Bernardi, and Uijlings 2013) contain common hu-
man activities in daily life. The latest version of Pascal VOC
(Maji, Bourdev, and Malik 2011) competition includes ten
categories of still image actions, with only a subset of people
annotated (bounding box + action). People in the dataset are
labeled with exactly one action class. There is a minimum
of around 400 people per action category. In contrast, UCF-
STAR is focused on human body-motion actions rather than
relatively static actions such as reading, using computer, etc.

Datasets by (Delaitre, Laptev, and Sivic 2010; Ikizler et
al. 2008; Ikizler-Cinbis, Cinbis, and Sclaroff 2009; Li, Ma,
and Gao 2011; Prest, Schmid, and Ferrari 2012; Yao and
Fei-Fei 2010) contain 968, 467, 2,458, 2,400, 341 and 2,100
images, respectively. Images were collected from different
sources like Google Image search, Flickr and PASCAL VOC
2010 to build 3 to 7 action categories. The main differ-
ences with UCF-STAR dataset are the small number of ac-
tion classes and the small number of overall images. Further-
more, classes contain actions with less human body motion
ı.e. playing/holding instruments and wearing hat, which are
not the primary focus in UCF-STAR.

Thurau and Hlavac (Thurau and Hlavác 2008) and Raja
et al. (Raja et al. 2011) extracted frames from popular action
videos to build 10 and 6 action classes, respectively. The im-
ages are usually depicting relatively static actions with clean
background. Yao et al. (Yao et al. 2011) introduced Stanford

40, containing 40 daily human actions in 9,352 images, ob-
tained from Google, Bing, and Flickr. Le et al. (Le, Bernardi,
and Uijlings 2013) assembled a dataset from the PASCAL
2012 VOC trainval set by selecting a subset of 2,038 images
with human actions, over 89 action classes.

Given the demanding nature of deep learning methods for
training data, there is a need for a larger dataset with larger
number of images in each class. This motivated the construc-
tion of UCF-STAR with a large number of action classes; ı.e.
50, and a large number of images per class; ı.e. an average
of 20,366. Finally, UCF-STAR provides not only multiple la-
bels for each image, but also a rich set of metadata further
explained in section UCF-STAR Construction. Table 1 com-
pares UCF-STAR against some well-known image datasets
for action recognition providing statistics on each dataset.

Methods for action recognition in still images. Body
parts and pose-based approaches are challenging due to the
limited number of poses they can detect and the fact that
many different human actions share almost the same poses.
Moreover, the work in (Prest, Schmid, and Ferrari 2012;
Yao et al. 2011; Gkioxari, Girshick, and Malik 2015) rely
on the presence and detection of objects as additional con-
textual information, posing a challenge when the action in-
volves only a human with no object interaction.

Still image action recognition has recently benefited from
the outstanding performance of CNN models (Gao, Xiong,
and Grauman 2018; Gkioxari, Girshick, and Malik 2015;
Safaei and Foroosh 2019; Hoai 2014; Oquab et al. 2014;
Rahman and Wang 2016). The tradeoff is the need for mil-
lions of parameters and dependency on huge training sets.
UCF-STAR will thus play an invaluable role in future re-
search. To benchmark UCF-STAR, we explore the idea of
predicting the “latent” human body motion, outperforming
the state of the art (see section Action Recognition Method).

UCF-STAR Construction

Construction of UCF-STAR was a five step process involv-
ing (1) action category selection, (2) semantic grounding, (3)
collecting images from the wild, (4) image annotation, and
(5) enhancing dataset size. Below, we provide the details.

Action Category Selection

We followed two principles in selecting action categories.
First, only actions involving significant human body-motion
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Table 1: Comparison of UCF-STAR dataset with other still image action recognition datasets.

Dataset #classes #images Labels Caption Source Tag Bounding boxnumber of humans? human-object interaction? human visibility?
Stanford-40 (Yao et al.) 40 9,532 No No No No No No Yes
Willow (Delaitre et al.) 7 911 No No No No No No Yes

Pascal VOC 2010 (Maji et al.) 9 50 to 100 per class No No No No No No Yes
Pascal VOC 2011 (Maji et al.) 10 200 or more per class No No No No No No Yes
Pascal VOC 2012 (Maji et al.) 10 200 or more per class No No No No No No Yes

PPMI (Yao and Fei-Fei) 7 2,100 No No No No No No No
89 Action Dataset (Le et al.) 89 2,038 No No No No No No No

BU-101 (Ma et al.) 100 23,782 No No No No No No No
Action Images by Ikizler (Ikizler et al.) 6 467 No No No Yes No No No

Sport Dataset (Gupta et al.) 6 300 No No No Yes No No No
UCF-STAR 50 1,038,622 Yes Yes Yes Yes Yes Yes Yes

were selected. Second, key poses providing clear visual sig-
natures were considered for each action; ı.e. tennis swing or
tennis serve taking precedence over playing tennis. Needless
to emphasize on the generic nature of the term playing tennis
compared to tennis swing/serve.

Semantic Grounding

To search for images, we applied semantic grounding to find
synonymous terms for actions, leading to more accurate data
retrieval. This was done by querying WordNet synsets and
collecting synonymous terms. This step was performed to
not only expand the search space, but also help retrieve more
relevant images, minimizing search misses of conventional
keyword-only searches. To retrieve human-centric images,
we appended keywords like ”human”, ”person”, ”woman”
or ”man” to form n-grams; ı.e. human + <action>, person
+ <action>, man + <action> and woman + <action>. This
leads to a significant reduction in noise that would otherwise
include images with no visible human body.

Image Collection

To crawl the Web for images, we took advantage of Bing’s
Cognitive Services API as proposed in (Balouchian, Safaei,
and Foroosh 2019), supporting 250 transactions per second,
where a transaction is defined as a successful Bing API call
request. This API provides support for an array of filters in-
cluding face-only, include body parts, etc., as part of its Im-
age Search API. We flagged each n-gram with the relevant
filters, such as face-only and include body parts. These flags
help the final search results require less manual effort, and
reduce noise. Using this approach, we collected 29,037 im-
ages, which we refer to as the strongly labeled dataset. Even
though a dataset of 29,037 images would be considered as
the largest action image dataset in the literature, we further
enhanced the dataset size using the approach explained next.

The images in each class have large variations in back-
ground, appearance and pose. To further enhance UCF-
STAR, we also collected a rich set of metadata for each im-
age. Bing Image Search API returns insightsToken that can
be used to submit a second query for collecting a rich set
of metadata on each image, including: 1) BRQ which is the
best representative query that is defined as a term that best
describes the image, 2) Caption, which provides textual in-
formation that may contain entities and links to other related
entities, 3) Collections providing a list of related images,
4) PagesIncluding providing a list of webpages that include

the image, 5) RecognizedEntities representing a list of enti-
ties (people) that were recognized in the image, 6) Related-
Searches offering a list of related searches made by others,
7) SimilarImages providing a list of images that are visually
similar, and 8) Tags providing characteristics of the type of
content found in the image. For example, if the image is of
a person, the tags may indicate gender or type of clothes.

Image Annotation Process

We used Amazon Mechanical Turk (AMT) for annotating
images, with questions designed to capture (1) the observed
human action, (2) number of humans in the image, if any, (3)
whether or not there exists at least one whole human body
in the image, and (4) whether or not a human-object interac-
tion is present. To reduce noise, each image was annotated
by three independent AMT workers, and a label was con-
sidered as ground truth if confirmed by majority. Our AMT
workers flagged 57.7% of the images as correct; ı.e. 57.7%
of images matched the weak labels they initiated from, re-
sulting in 16,756 noise-reduced strongly-labeled images.

Enhancing Dataset Size

Our dataset, at this step of the process, included only the
noise-reduced images labeled by AMT workers. To enhance
the size of our dataset, we took advantage of Bing’s fea-
ture available in its Image Search API that enables queries
for visually similar images. Taking advantage of this feature,
our system re-crawled the Web and collected 1,315,714 im-
ages. Next we removed the duplicates using fdupes, result-
ing in 1,038,622 unique labeled images. We further split the
1,038,622 images into mutually exclusive 664,718 training,
166,180 validation, and 207,724 test images.

Dataset Statistics

A key characteristic of UCF-STAR is its human body-motion
based action classes. The rich set of metadata offered by
UCF-STAR would also enable the community to benefit
from its multi-modal nature, benchmarking methods relying
on both image and text modalities. Figure 2 shows UCF-
STAR’s distribution of action classes as well as the annota-
tions thereof. Even though the number of images per class is
different (averaging at 20,366), the large-scale nature of the
dataset, however, would enable us to easily sub-sample the
dataset to avoid the class imbalance problem.
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Figure 2: Distribution of UCF-STAR’s annotations per class.

Our Action Recognition Method

Popular datasets such as Standford-40, PASCAL VOC and
Willow have been widely used by recent methods in still im-
age action recognition. However, the small number of action
classes, limited number of images in each class, and the dis-
tinctive nature of action categories may present an exagger-
ated picture of the state of the art. Difficulties arise when the
number of classes are large, human-object interaction is not
a determining factor in recognition, actions are only subtly
different in poses, and background scenes are not informa-
tive. UCF-STAR has all these aspects aplenty. To prove this,
we developed a new action recognition method inspired by
recent motion prediction approaches, and compared the re-
sults with recent state-of-the-art still image action recogni-
tion methods on both UCF-STAR and other existing popular
datasets mentioned above.

Unlike previous efforts, our method learns and takes ad-
vantage of the “latent” temporal information in still images,
rather than relying solely on spatial information. The key
idea is to transfer the temporal information learned from
video frames into still images to aid action recognition. To
achieve this, we developed a two-stream spatiotemporal net-
work (TSSTN), similar to networks used in the video lit-
erature, and decomposed still image action recognition into
spatial and predicted temporal streams as described below.

Temporal stream network. Our goal is to derive a
new image representation, named dynamic-skeleton map, by
learning motion from video frames and then transferring it
to still images. Therefore, a dynamic-skeleton map serves to
model the missing temporal information. Dynamic-skeleton
represents motions of human body pixels in a predefined
time window, hallucinating the human body motion.

The concept of dynamic image; ı.e. modeling video evo-
lution for action recognition, is inspired by (Fernando et al.
2015; Bilen et al. 2016). While they propose methods to cap-
ture video-wide temporal information for action recognition,
we generate a dynamic-skeleton map for every frame in a
video to serve as the temporal label for that frame. We then
use these labeled frames to learn a model for predicting the
dynamic-skeleton maps of still images.

Generating dynamic-skeletons for video frames is essen-

tially done as a ranking process (Fernando et al. 2017),
where the parameters of the linear ranking function are used
to encode pixel evolution. To learn such a ranking machine,
we use the supervised learning proposed in (Yu and Kim
2012). In ranking algorithms, a training set represents an
ordering of data. Let V = [vt1 , vt2 , ..., vtn ] represent a se-
quence of frames, where the frame order also dictates the
evolution of the frame appearances. We focus on the relative
orderings of the frames, ı.e. vt+1 > vt if vt+1 succeeds vt.

A linear Rank-SVM represents a pairwise linear rank-
ing machine that learns a linear mapping of the form
Ψ(V ;M) = MTV (Yu and Kim 2012; Fernando et al.
2017). We envision the order of the sequence in the train-
ing set V as vtn < ... < vt2 < vt1 . The ranking score of
vt is derived by Ψ(vt;m) = mT vt and satisfies the pairwise
constraints (vt+1 < vt), while avoiding over-fitting. Conse-
quently, we aim to learn a parametric vector m ∈ M such
that it satisfies all constraints.

Ψ(vti ;m) = mT vti > Ψ(vtj ;m) = mT vtj (1)

∀vti , vtj , vti > vtj

The problem of learning the optimal linear kernel for V re-
duces to solving the following optimization problem (Yu and
Kim 2012):

argmin
M

1

2
‖ M ‖2 +W

∑

∀vti ,vtj ,vti≥vtj

εij (2)

s.t. MT (vti − vtj ) ≥ 1− εij , εij ≥ 0,

where εij are slack variables and W represents a regulariza-
tion parameter. Solving this optimization problem leads to
learning a vector of parameters M . As the parameters of M
define the order of frames in V , they encode the evolution of
pixels. Therefore, we used vector M learned on sequence of
skeletons as the dynamic-skeleton map, ds for short. There-
fore, dsi represents the dynamic skeleton associated with the
ith frame in training sequence of V = [vt1 , vt2 , ..., vti ]. dsi
represents a compact temporal representation of all skeleton
frames from t1 to ti.

To make use of the learned dynamic-skeleton models
in still image action recognition, we need to transfer the
learned model from videos to still images, i.e. predict the
ds for a still image. As described next, we show that this can
be done through a process similar to semantic segmentation
(Badrinarayanan, Kendall, and Cipolla 2015), using a deep
convolutional encoder-decoder architecture.

Every prior dynamic-skeleton, generated from video
frames is first quantized into C clusters by k-means. The
problem is then treated in a manner similar to semantic seg-
mentation, where each pixel in the image is classified as a
particular cluster of the dynamic-skeleton map. The output
is generated as softmax probabilities over the clusters for
each pixel. The loss is summed over all pixels in a mini-
batch. This implicitly assumes a uniform probability mass
function (pmf) for the segmentation classes, which is prone
to noise. We, therefore, developed a custom loss function
in order to minimize the noise by taking into account only
the k most-likely clusters; ı.e. the k clusters with the high-
est probability, and optimized the pretrained network using
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Figure 3: Two-stream still image action recognition network, using predicted dynamic-skeleton map as input to temporal stream.

Figure 4: Mapping examples from RGB to skeleton, and
then to predicted dynamic-skeleton domain.

the custom loss function. Let I represent the image and Y
be the ground truth; ı.e. ds labels, represented as quantized
clusters. Then the loss function L(I, Y ) is:

L̂(I, Y ) = −
M×N∑

i=1

C∑

r=1

ωrPi,(r), (3)

where ωr are some weight factors, and
Pi,(r) = (Yi = (r)) logFi,(r)(I) (4)

is the pmf in descending order of values; ı.e. Pi,(1) ≥
Pi,(2) ≥ ... ≥ Pi,(C). We set k = 3 and assumed ωr = 1

K
for Pi,(1), . . . , Pi,(K), and ωr = 0 otherwise. The F i,r(I)
represents the probability that the ith pixel belong to cluster
r, and (Y i = r) is an indicator function.

A predicted ds represents a compact temporal representa-
tion of a a still image, as a hallucinated sequence of human
skeleton images. These temporal patterns can then be used
as auxiliary information for action recognition in still im-
ages. Fig. 4 depicts examples of predicted dynamic-skeleton
maps for some still images. Predicted dss are used as the
input to the temporal stream in our two-stream action recog-
nition network depicted in Fig. 3.

Spatial stream network. The spatial stream network op-
erates on individual RGB images, performing action recog-
nition from still images. The static appearance by itself is a
useful cue, and improves the final classification score.Since
the spatial stream is essentially an image classification net-
work, we can build upon the recent advances in large-scale
image recognition methods.

We build TSSTN using a CNN architecture similar to
(Simonyan and Zisserman 2014). Our temporal and spa-
tial streams are trained to selectively focus on the corre-
sponding features, respectively. Each stream is formed by

sixteen successive convolutional layers followed by three
fully connected layers. We denote the convolutional layers
as CON(k,s), indicating that there are k kernels, of size s×s.
The input to our CNN is a fixed-size 224×224 image. The
convolution stride is fixed to 1 pixel. Max-pooling is per-
formed over a 2×2 pixel window, with stride 2. Finally,
FC(n) denotes a fully connected layer with n neurons. We
change the last FC layer, used smaller learning rates for lay-
ers that are being fine-tuned to further promote our goal to
inject the predicted motion prior into still images.

Final classification score. Stacked generalization is a
method of using a high-level model to combine lower-level
models to achieve greater accuracy. Stacking with Multi-
response regression (MRR) uses linear regression to perform
classification (Ting and Witten 1999). If the original classi-
fication problem has I classes, it is converted into I separate
regression problems.

Given a data set D = {(yn, xn), n = 1, ..., N}, where yn
is the class value and xn is a vector representing the attribute
values of the n-th instances, randomly split the data into J
almost equal parts, the linear regression for class c is simply:

Rc(x) =

K∑

k

αkcPkc(x) (5)

let Pkc(x) denote the probability of the cth output class ob-
tained by the kth model for an instance x. Next, we choose
the linear regression coefficients {αkc} to minimize

∑

d

∑

(yn,xn)∈Dj

(yn −
∑

k

αkcP−j
kc (xn))

2 (6)

A least-square algorithm under non-negativity constraint is
then employed to derive the linear regression for each action
class. Finally, to classify a new instance x, Rc(x) for all C
classes is computed and the instance x is assigned to that
class c with the greatest value:

Rc(x) > Rć(x) for all c �= ć (7)

Since diversity is relatively high among the two classifiers
before fusion, simply averaging fusion produces poor results
compared to the MLR fusion.

Experiments

In this section, we experimentally analyze the key features
of UCF-STAR and the challenges it introduces.
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Datasets and Metrics

UCF-STAR. As shown in Fig. 2, all classes are of sufficient
and roughly equal size, therefore there are no issues of un-
balanced classes. Our resulting benchmark consists of a total
of 664,718 training, 166,180 validation and 207,724 test ex-
amples on 50 classes.
Other Datasets. We fully compare UCF-STAR with exist-
ing image datasets in terms of their challenges. Stanford-40
(Yao et al. 2011) contains 40 classes and 9,532 images. We
split this dataset into 2 categories with 11 and 29 actions, re-
spectively1. Willow (Delaitre, Laptev, and Sivic 2010) con-
tains 911 images split into 7 action categories. We divided
the 7 action categories into two main groups, Body-Motion
and Non-Body-Motion actions. Interacting with computer,
Photographing, Playing music are considered as Non-Body-
Motion actions, since they are relatively static and highly
dependent on human-object interactions. WIDER (Xiong et
al. 2015) dataset includes 14 human attribute labels and 30
event class labels containing 13,789 images. We considered
6 actions as the Body Motion category; ı.e. running, bas-
ketball, football, soccer, skiing, hockey. The BU101 (Ma et
al. 2017) consists of 23.8K images that correspond to the
101 action classes in the UCF101 video dataset. We used the
train and test splits provided by the original authors for all
datasets.
Metrics. For evaluation, we compute the average precision
per class and report the average over all classes.

Dynamic-skeleton prediction and analysis

In order to learn the “latent” motion prior from video frames,
we extracted over 36,000 frames from UCF-101 (Soomro,
Zamir, and Shah 2012), UCF-Sport (Rodriguez, Ahmed, and
Shah 2008), WEIZMANN (Blank et al. 2005), KTH (Schuldt,
Laptev, and Caputo 2004) video datasets categorized in 50
different action classes. These extracted frames, after the
sampling process, were post-processed to eliminate frames
with no clearly-visible human subject. The extracted frames
were also augmented by flipping images, resulting in 57,600
frames. We labeled these frames with the video action they
were sampled from. Next, RGB frames were converted to
human body skeleton representation using Stacked Hour-
glass Networks (Newell, Yang, and Deng 2016). Skeleton
is a lower dimensional shape description of an object. Con-
sequently, the domain of inferred motion, based on human
skeletons, helps to get rid of irrelevant information, and mit-
igate over-fitting.

Since the video data are available for the 57,600 extracted
frames, we generate ds labels for them as described earlier in
section Action Recognition Method (Temporal Stream Net-
work). Generated dss, using the Rank-SVM algorithm, form
our labels for training a model to predict ds for a still image
with no video data available. As discussed in section Action
Recognition Method, we devise a pixel-wise semantic seg-
mentation encoder-decoder architecture for ds prediction.

1Body Motion categories: climbing, jumping, cleaning floor,
riding bike, riding horse, rowing boat, running, walking dog, shoot-
ing arrow, throwing frisby and waving hands.

Table 2: mAP of predicted ds for different epochs.

Model 50 Epochs 200 Epochs 500 Epochs

Training from scratch 43% 54% 65%
Fine-tuning using VGG model 48% 64% 76%
Fine-tuning with custom loss function 55% 72% 83%

Table 2 shows prediction accuracy of ds by modifying
the loss function as described in section Action Recognition
Method, compared with using default softmax loss layer.

Table 3: Action classification performance for UCF-STAR.

Method mAP(%)

Object Bank (Li et al. 2010) 26.7
LLC (Wang et al. 2010) 31.5
R*CNN (Gkioxari, Girshick, and Malik 2015) 65.3
im2flow (Gao, Xiong, and Grauman 2018) 70.9
Temporal Stream-Trained from scratch 61.3
Temporal Stream-Fine-tuned all layers 68.3
Temporal Stream-Fine-tuned 7 top layers 86.2

Spatial Stream-Fine-tuned 7 top layers 26.3

TSSTN 91.9

Table 4: mAP(%) results on Stanford-40.

Method Body-Motion Non-Body-Motion All

Gkioxari et al. (Gkioxari, Girshick, and Malik 2015) 93.87 89.73 90.9
Khan et al. (Khan et al. 2014a) 56.92 51.51 53
Khan et al. (Khan et al. 2013) 53.51 51.28 51.9
Yan et al. (Yan, Smith, and Zhang 2017) 92.26 87.07 88.5
Zhao et al. (Zhao, Ma, and You ) - - 83.4
Zhao et al. (Zhao, Ma, and Chen 2017) - - 54.5
Zhao et al. (Zhao, Ma, and Chen 2016) - - 80.6
Zhou et al. (Zhou et al. 2014) - - 55.3
Sharma et al. (Sharma, Jurie, and Schmid 2017) - - 72.3
Khan et al. (Khan et al. 2015) - - 75.4
Gao et al. (Gao, Xiong, and Grauman 2018) 0 0 74.9
Ours-TSSTN 97.8 80.2 86.3

Comparison to the state of the art Tables 3-6 show
action recognition performance of the proposed TSSTN
method on UCF-STAR, as well as 4 other standard im-
age datasets. TSSTN obtains state-of-the-art performance
on Stanford-40, Willow, WIDER and BU-101, outperform-
ing well-established baselines. However, table 3 shows that
models in (Li et al. 2010; Wang et al. 2010; Gkioxari, Gir-
shick, and Malik 2015; Gao, Xiong, and Grauman 2018) ob-
tain relatively low performance on UCF-STAR. We attribute
this to 1) the human body-motion characteristics of UCF-
STAR, and 2) existence of visually similar poses performing
different actions. Therefore, rich temporal prediction mod-
els may be needed to succeed at UCF-STAR, posing a new
challenge for visual action recognition.

A very key observation is that unlike conventional ac-
tion classification methods, TSSTN treats actions with sim-
ilar poses, e.g. running vs. walking, differently. This is due
to presence of temporal information in dynamic-skeletons
carrying information on the pixels evolution, which would
otherwise be missing. Our promising performance on body-
motion categories in tables 4-6 shows the impact of the tem-
poral prediction models in our action recognition method.
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Table 5: mAP(%) results on the Willow dataset.

Method Bike-ride Horse-ride Run Walk Overall (Body-Motion)

Delaitre et al. (Delaitre, Laptev, and Sivic 2010) 82.43 69.60 44.53 54.18 62.7
Delaitre et al. (Delaitre, Sivic, and Laptev 2011) 90.39 75.03 59.73 57.64 70.7
Sharma et al. (Sharma, Jurie, and Schmid 2012) 87.8 84.2 56.1 56.5 71.1
Sharma et al. (Sharma, Jurie, and Schmid 2013) 91.0 87.6 55.0 59.2 73.2
Khan et al. (Khan et al. 2014b) 87.2 77.2 63.7 60.6 72.2
Khan et al. (Khan et al. 2014a) 93.8 87.9 67.2 63.3 78.05
Liang et al. (Liang et al. 2014) 98.17 92.72 46.16 58.88 74.0
Zhao et al. (Zhao, Ma, and Chen 2017) 93.0 86.2 65.7 72.6 79.3
Khan et al. (Khan et al. 2013) 90.3 84.3 64.7 64.6 76.0
Ours-TSSTN 80.6 89.8 84.6 83.8 84.6

Table 6: Left: mAP (%) results on WIDER. - Right: mAP
(%) results BU101 by categories.

Method mAP (%) Categories mAP (%)
RCNN 80.0 Human-Object 59.6

R*CNN 80.5 Body-Motion 93.8
DHC 81.3 Human-Human 68.9

ResNet-SRN 86.2 Playing-Instrument 67.0
VeSPA 82.4 Sport 74.7

Ours-TSSTN Body-Motion Non-Body-Motion
90.3 71.7

Conclusion

This paper introduces UCF-STAR, the largest annotated still
image dataset for action recognition, having over 1M im-
ages annotated with multi-modal set of metadata. In addi-
tion, we propose TSSTN, a two stream spatiotemporal net-
work that outperforms the current state of the art on stan-
dard benchmarks to serve as a baseline. TSSTN proves that
predicting the “latent” temporal information in still images
improves action recognition performance. Moreover, UCF-
STAR highlights the need for developing new action recog-
nition approaches based on predicting temporal information
in still images.
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