
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Learning to Optimize Variational
Quantum Circuits to Solve Combinatorial Problems

Sami Khairy,1 Ruslan Shaydulin,2 Lukasz Cincio,3 Yuri Alexeev,4 Prasanna Balaprakash4

1Illinois Institute of Technology, 2Clemson University, 3Los Alamos National Laboratory, 4Argonne National Laboratory
skhairy@hawk.iit.edu, rshaydu@g.clemson.edu, lcincio@lanl.gov, {yuri, pbalapra}@anl.gov

Abstract

Quantum computing is a computational paradigm with the
potential to outperform classical methods for a variety of
problems. Proposed recently, the Quantum Approximate Op-
timization Algorithm (QAOA) is considered as one of the
leading candidates for demonstrating quantum advantage
in the near term. QAOA is a variational hybrid quantum-
classical algorithm for approximately solving combinatorial
optimization problems. The quality of the solution obtained
by QAOA for a given problem instance depends on the per-
formance of the classical optimizer used to optimize the vari-
ational parameters. In this paper, we formulate the problem of
finding optimal QAOA parameters as a learning task in which
the knowledge gained from solving training instances can be
leveraged to find high-quality solutions for unseen test in-
stances. To this end, we develop two machine-learning-based
approaches. Our first approach adopts a reinforcement learn-
ing (RL) framework to learn a policy network to optimize
QAOA circuits. Our second approach adopts a kernel den-
sity estimation (KDE) technique to learn a generative model
of optimal QAOA parameters. In both approaches, the train-
ing procedure is performed on small-sized problem instances
that can be simulated on a classical computer; yet the learned
RL policy and the generative model can be used to efficiently
solve larger problems. Extensive simulations using the IBM
Qiskit Aer quantum circuit simulator demonstrate that our
proposed RL- and KDE-based approaches reduce the opti-
mality gap by factors up to 30.15 when compared with other
commonly used off-the-shelf optimizers.

1 Introduction

Recently, a number of quantum computing devices have be-
come available on the cloud. Current devices, which are
commonly referred to as Noisy Intermediate-Scale Quan-
tum (NISQ) devices, operate on a small number of qubits
and have limited error-correction capabilities. Demonstrat-
ing quantum advantage on these devices, which is the ability
to solve a problem more efficiently by using quantum com-
putational methods compared with classical state-of-the-art
methods, requires the development of algorithms that can
run using a modest quantum circuit depth.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The Quantum Approximate Optimization Algorithm
(QAOA) is one of the leading candidate algorithms for
achieving quantum advantage in the near term. QAOA is a
hybrid quantum-classical algorithm for approximately solv-
ing combinatorial problems (Farhi, Goldstone, and Gutmann
2014). QAOA combines a parameterized quantum state evo-
lution that is performed on a NISQ device, with a classical
optimizer that is used to find optimal parameters. Conceiv-
ably, the quality of the solution produced by QAOA for a
given combinatorial instance depends on the quality of the
variational parameters found by the classical optimizer. De-
signing robust optimization methods for QAOA is therefore
a prerequisite for achieving a practical quantum advantage.

Optimizing QAOA parameters is known to be a hard
problem because the optimization objective is nonconvex
with low-quality nondegenerate local optima (Shaydulin,
Safro, and Larson 2019; Zhou et al. 2018). Many approaches
have been applied to QAOA parameter optimization, includ-
ing gradient-based (Romero et al. 2018; Zhou et al. 2018;
Crooks 2018) and derivative-free methods (Wecker, Hast-
ings, and Troyer 2016; Yang et al. 2017; Shaydulin, Safro,
and Larson 2019). Noting that the optimization objective of
QAOA is specific to the underlying combinatorial instance,
existing works approach the task of finding optimal QAOA
parameters for a given instance as an exclusive task, and they
devise methods that require quantum circuit evaluations on
the order of thousands. To the best of our knowledge, ap-
proaching QAOA parameter optimization as a learning task
is underexplored. To that end, we propose two machine-
learning-based methods for QAOA parameter optimization,
in which the knowledge gained from solving training in-
stances can be leveraged to efficiently find high-quality so-
lutions for unseen test instances with only a couple of hun-
dred quantum circuit evaluations. Our novel treatment of the
QAOA optimization task has the potential to make QAOA a
cost-effective algorithm to run on near-term quantum com-
puters.

The main contributions of our work are summarized as
follows. First, we formulate the task of learning a QAOA
parameter optimization policy as a reinforcement learning
(RL) task. This approach can learn a policy network that can
exploit geometrical regularities in the QAOA optimization

2367

objective of training instances, to efficiently optimize new
QAOA circuits of unseen test instances. Second, we propose
a sampling-based QAOA optimization strategy based on a
kernel density estimation (KDE) technique. This approach
can learn a generative model of optimal QAOA parameters,
which can be used to generate new parameters and quickly
solve test instances. In both approaches, we choose a train-
ing set of small-sized combinatorial instances that can be
simulated on a classical computer, yet the test set includes
larger instances. We conduct extensive simulations using the
IBM Qiskit Aer quantum circuit simulator to evaluate the
performance of our proposed approaches. We show that the
two approaches can reduce the optimality gap by factors up
to 30.15 when compared with other commonly used off-the-
shelf optimizers.

2 The Quantum Approximate Optimization

Algorithm

The idea of encoding the solution to a combinatorial opti-
mization problem in the spectrum of a quantum Hamiltonian
goes back to 1989 (Apolloni, Carvalho, and de Falco 1989).
Using this quantum encoding, one can find the optimal so-
lution to the original combinatorial problem by preparing
the highest energy eigenstate of the problem Hamiltonian.
Multiple approaches inspired by the adiabatic theorem (Kato
1950) have been proposed to achieve this. Of particular
interest is the Quantum Approximate Optimization Algo-
rithm, introduced by (Farhi, Goldstone, and Gutmann 2014),
and its generalization, the Quantum Alternating Operator
Ansatz (Hadfield et al. 2017). QAOA is arguably one of the
strongest candidates for demonstrating quantum advantage
over classical approaches in the current NISQ computers era
(Streif and Leib 2019).

In QAOA, a classical binary assignment combinatorial
problem is first encoded in a cost Hamiltonian HC by map-
ping classical binary decision variables si ∈ {−1, 1} onto
the eigenvalues of the quantum Pauli Z operator σ̂z . For un-
constrained combinatorial problems, the initial state is a uni-
form superposition quantum state |ψ〉 = |+〉⊗n, prepared by
applying Hadamard gates on all qubits in the system. QAOA
prepares a variational quantum state |ψ(β,γ)〉 by apply-
ing a series of alternating operators e−iβkHM and e−iγkHC ,
∀k ∈ [p],

|ψ(β,γ)〉 = e−iβpHM e−iγpHC · · · e−iβ1HM e−iγ1HC |+〉⊗n
,

(1)
where β,γ ∈ [−π, π] are 2p variational parameters, n is
the number of qubits or binary variables, and HM is the
transverse field mixer Hamiltonian HM =

∑
i σ̂

x
i . Alter-

native initial states and mixer operators can be used to re-
strict |ψ(β,γ)〉 to the subspace of feasible solutions for con-
strained optimization problems (Hadfield et al. 2017). In or-
der to find the highest energy eigenstate of HC , a classical
optimizer is used to vary parameters β,γ to maximize the
expected energy of HC ,

f(β,γ) = 〈ψ(β,γ)|HC |ψ(β,γ)〉 . (2)

For p → ∞, ∃β∗,γ∗ = argmaxβ,γ f(β,γ) such that
the resulting quantum state |ψ(β∗,γ∗)〉 encodes the opti-
mal solution to the classical combinatorial problem (Farhi,
Goldstone, and Gutmann 2014). In practice, the value p is
chosen based on the trade-off between the achieved approx-
imation ratio, the complexity of parameter optimization, and
the accumulated errors. Ideally, increasing p monotonically
improves the QAOA approximation ratio (Zhou et al. 2018),
although for higher p the complexity of QAOA parameter
optimization can limit the benefits (Huang et al. 2019). On
real near-term quantum hardware, errors become a domi-
nating factor. For instance, on a state-of-the-art trapped-ion
quantum computer, increasing p beyond 1 does not lead
to improvements in the approximation ratio because of er-
rors (Pagano et al. 2019). The hardware is rapidly progress-
ing, however, and it is expected that QAOA with 1 ≤ p ≤ 5
can be run in the foreseeable future, thus motivating us to
choose p ∈ {1, 2, 4} for our benchmark.

QAOA has been applied to a variety of problems, includ-
ing graph maximum cut (Crooks 2018; Zhou et al. 2018),
network community detection (Shaydulin et al. 2019; 2018),
and portfolio optimization, among many others (Barkoutsos
et al. 2019).

2.1 QAOA for Max-Cut

In this paper, we explore QAOA applied to the graph max-
imum cut problem (Max-Cut). It is among the most com-
monly used target problems for QAOA because of its equiv-
alence to quadratic unconstrained binary optimization. Con-
sider a graph G = (V,E) where V is the set of vertices and
E is the set of edges. The goal of Max-Cut is to partition the
set of vertices V into two disjoint subsets such that the total
weight of edges connecting the two subsets is maximized.
Let binary variables sk denote the partition assignment of
vertex k, ∀k ∈ [n]. Then Max-Cut can be formulated as fol-
lows,

max
s

∑
i,j∈V

wijsisj + c, sk ∈ {−1, 1}, ∀k (3)

where wij = 1 if (i, j) ∈ E, and 0 otherwise, and c is a
constant. The objective in (3) can be encoded in a problem
Hamiltonian by mapping binary variables sk onto the eigen-
values of the Pauli Z operator σ̂z: HC =

∑
i,j∈V wij σ̂

z
i σ̂

z
j .

The optimal binary assignment s for (3) is therefore encoded
in the highest energy eigenstate of HC . Note that in the def-
inition of HC , there is an implicit tensor product with the
identity unitary, σ̂I , applied to all qubits except for qubits
i, j.

In (Crooks 2018) the author shows that QAOA for
Max-Cut can achieve approximation ratios exceeding those
achieved by the classical Goemans-Williamson (Goemans
and Williamson 1995) algorithm. A number of theoreti-
cal results show that QAOA for Max-Cut can improve on
best-known classical approximation algorithms for some
graph classes (Parekh, Ryan-Anderson, and Gharibian 2019;
Wang et al. 2018).

2368

2.2 Linear Algebraic Interpretation of QAOA

Here, we provide a short linear algebraic description of
QAOA for readers who are not familiar with the quantum
computational framework. An n-qubit quantum state is a su-
perposition (i.e., a linear combination) of computational ba-
sis states that form an orthonormal basis set in a complex
vector space C

2n ,

|φ〉 = α0 |0..000〉+ α1 |0..001〉+ · · ·+ α2n−1 |1..111〉
= [α0, α1, · · · , α2n−1]

T ,
(4)

where |αi|2, ∀i ∈ [2n−1] is the probability that the quantum
state is in |i〉, ∑2n−1

i=0 |αi|2 = 1. Quantum gates are unitary
linear transformations on quantum states. For instance, Pauli
Z and Pauli X operators and the identity operator are

σ̂z =

[
1 0
0 −1

]
, σ̂x =

[
0 1
1 0

]
, σ̂I =

[
1 0
0 1

]
. (5)

Note that the eigenvectors of the Pauli Z operator are com-
putational basis states |0〉 and |1〉 with eigenvalues 1 and
−1, respectively. Therefore, e−iβkHM and e−iγkHC are
2n × 2n linear operators, which for large n cannot be effi-
ciently simulated classically. HC is a Hermitian linear oper-
ator with eigenvalues λ0, λ1, · · · , λ2n−1. Based on the min-
max variational theorem, the minimum eigenvalue λmin =
minx {RHC

(x) : x
= 0}, and the maximum eigenvalue
λmax = maxx {RHC

(x) : x
= 0}, where RHC
(x) is the

Rayleigh-Ritz quotient, RHC
(x) = x†HCx

x†x , x ∈ C
2n\{0}.

Note that for any quantum state 〈φ|φ〉 = φ†φ = 1, the high-
est energy of HC in (2) is in fact λmax. That said, QAOA
constructs linear operators parameterized by the 2p param-
eters, β,γ, whose net effect is to transform the uniform su-
perposition state, |ψ〉 = 1√

2n
[1, · · · , 1]T , into a unit-length

eigenvector that corresponds to λmax.1

3 Related Works

In this section, a literature review of related research work is
presented.

3.1 QAOA Parameter Optimization

A number of approaches have been explored for QAOA
parameter optimization, including a variety of off-the-
shelf gradient-based (Romero et al. 2018; Crooks 2018)
and derivative-free methods (Wecker, Hastings, and Troyer
2016; Yang et al. 2017; Shaydulin, Safro, and Larson 2019).
QAOA parameters have been demonstrated to be hard to op-
timize by off-the-shelf methods (Shaydulin, Safro, and Lar-
son 2019) because the energy landscape of QAOA is non-
convex with low-quality nondegenerate local optima (Zhou
et al. 2018). Off-the-shelf optimizers ignore features of
QAOA energy landscapes and nonrandom concentration of
optimal parameters. Researchers have demonstrated theo-
retically that for certain bounded-degree graphs (Brandao

1Eigenvectors of a quantum Hamiltonian HC are referred to as
its eigenstates; therefore, “transforming |ψ〉 into an eigenvector of
HC corresponding to λmax” is a different way of saying “preparing
an eigenstate of HC corresponding to the energy λmax.”

et al. 2018), QAOA energy landscapes are graph instance-
independent given instances that come from a reasonable
distribution. Motivated by this knowledge, we develop two
machine-learning-based methods exploiting the geometrical
structure of QAOA landscapes and the concentration of op-
timal parameters, so that the cost of QAOA parameter opti-
mization can be amortized.

3.2 Hyperparameter and Optimizer Learning

Hyperparameter optimization, which involves the optimiza-
tion of hyperparameters used to train a machine learn-
ing model, is an active field of research (Hutter, Kotthoff,
and Vanschoren 2018). Each hyperparameter choice cor-
responds to one optimization task, and thus tuning of hy-
perparamters can be regarded as a search over different
optimization instances, which is analogous to our prob-
lem formulation. Recent methods devise sequential model-
based Bayesian optimization techniques (Feurer, Springen-
berg, and Hutter 2015) or asynchronous parallel model-
based search (Balaprakash et al. 2018), while older meth-
ods devise random-sampling-based strategies (Balaprakash,
Birattari, and Stützle 2007).

On the other hand, learning an optimizer to train machine
learning models has recently attracted considerable research
interests. The motivation is to design optimization algo-
rithms that can exploit structure within a class of problems,
which is otherwise unexploited by hand-engineered off-the-
shelf optimizers. In existing works, the learned optimizer is
implemented by long short-term memory (Andrychowicz et
al. 2016; Verdon et al. 2019) or a policy network of an RL
agent (Li and Malik 2016). Our RL-based approach to op-
timizer learning differs from that of (Li and Malik 2016)
mainly in the choice of reward function and the policy search
mechanism. In our work, a Markovian reward function is
chosen to improve the learning process of a QAOA opti-
mization policy.

4 Learning Optimal QAOA Parameters

Since evaluating a quantum circuit is an expensive task, the
ability to find good variational parameters using a small
number of calls to the quantum computer is crucial for the
success of QAOA. To amortize the cost of QAOA param-
eter optimization across graph instances, we formulate the
problem of finding optimal QAOA parameters as a learn-
ing task. We choose a set of graph instances, GTrain, which
include graph instances that are representative of their re-
spective populations, as training instances for our proposed
machine learning methods. The learned models can then be
used to find high-quality solutions for unseen instances from
a test set GTest. In Section 4.1, we propose an RL-based ap-
proach to learn a QAOA parameter optimization policy. In
Section 4.2, we propose a KDE-based approach to learn a
generative model of optimal QAOA parameters. Section 4.3
elaborates on graph instances in GTrain and GTest.

2369

4.1 Learning to Optimize QAOA Parameters
with Deep Reinforcement Learning

Our first approach aims to learn a QAOA parameter opti-
mization policy, which can exploit structure and geometri-
cal regularities in QAOA energy landscapes to find high-
quality solutions within a small number of quantum circuit
evaluations. This approach can potentially outperform hand-
engineered that are designed to function in a general setting.
We cast the problem of learning a QAOA optimizer as an
RL task, where the learned RL policy is used to produce
iterative parameter updates, in a way that is analogous to
hand-engineered iterative optimizers.

In the RL framework, an autonomous agent learns how to
map its state in a state space, s ∈ S , to an action from its
action space, a ∈ A, by repeated interaction with an envi-
ronment. The environment provides the agent with a reward
signal, r ∈ R, in response to its action. Based on the re-
ward signal, the agent either reinforces the action or avoids
it at future encounters, in an attempt to maximize the ex-
pected total discounted rewards received over time (Sutton
and Barto 2018).

Mathematically, the RL problem is formalized as a
Markov decision process (MDP), defined by a tuple
(S,A,P,P0,R, ζ), where the environment dynamics, P :
S × A × S → [0, 1], that is, the model’s state-action-state
transition probabilities, P(st+1|st, at), and P0 : S → [0, 1],
which is the initial distribution over the states, are unknown;
R : S × A × S → R is a reward function that guides the
agent through the learning process; and ζ is a discount fac-
tor to bound the cumulative rewards and trade off how far-
sighted or shortsighted the agent is in its decision making.
A solution to the RL problem is a stationary Markov policy
that maps the agent’s states to actions, π(a|s), such that the
expected total discounted rewards is maximized,

π∗ = argmax
π

E[

T∑
t=0

ζtR(st, at, st+1)]. (6)

In our setting, we seek a Markov policy that can be used
to produce iterative QAOA parameter updates. This policy
must exploit QAOA structure and geometrical regularities
such that high-quality solutions can be achieved despite the
challenges pertaining to QAOA parameter optimization. To
do so, we formulate QAOA optimizer learning as an MDP
as follows.

1. ∀st ∈ S , st = {Δftl,Δβtl,Δγtl}l=t−1,...,t−L; that is,
the state space is the set of finite differences in the QAOA
objective and the variational parameters between the cur-
rent iteration and L history iterations, S ⊂ R

(2p+1)L.

2. ∀at ∈ A, at = {Δβtl,Δγtl}l=t−1; that is, the action
space is the set of step vectors used to update the varia-
tional parameters, A ⊂ R

2p.

3. R(st, at, st+1) = f(βt + Δβt,tl,γt + Δγtl) −
f(βt,γt), l = t − 1; that is, the reward is the change
in the QAOA objective between the next iteration and the
current iteration.

The motivation behind our state space formulation comes
from the fact that parameter updates at xt = (βt,γt) should
be in the direction of the gradient at xt and the step size
should be proportional to the Hessian at xt, both of which
can be numerically approximated by using the method of
finite differences. The RL agent’s learning task is there-
fore to find the optimal way of producing a step vector
at = {Δβtl,Δγtl}l=t−1, given some collection of his-
torical differences in the objective and parameters space,
{Δftl,Δβtl,Δγtl}l=t−1,...,t−L, such that the expected to-
tal discounted rewards are maximized. Note that (6) is max-
imized when R(st, at, st+1) ≥ 0, which means the QAOA
objective has been increased between any two consecu-
tive iterates. The choice of reward function adheres to the
Markovian assumption and encourages the agent to take
strides in the landscape of the parameter space that yield a
higher increase in the QAOA objective (2), if possible, while
maintaining conditional independence on historical states
and actions.

Training Procedure Learning a generalizable RL policy
that can perform well on a wide range of test instances re-
quires the development of a proper training procedure and
reward normalization scheme. We use the following strat-
egy to train the RL agent on instances in GTrain. A training
episode is defined to be a trajectory of length T = 64, which
is sampled from a depth-p QAOA objective (2) correspond-
ing to one of the training instances in GTrain. At the end of
each episode, the trajectory is cut off and restarted from a
random point in the domain of (2). Training instances are cir-
culated in a round-robin fashion, with each episode mitigat-
ing destructive policy updates and overfitting. Rewards for
a given training instance are normalized by the mean depth-
p QAOA objective corresponding to that instance, which is
estimated a priori by uniformly sampling the 2p variational
parameters. Training is performed for 750 epochs of 128
episodes each, and policy updates are performed at the end
of each epoch.

Deep RL Implementation We train our proposed deep
RL framework using the actor-critic Proximal Policy Opti-
mization (PPO) algorithm (Schulman et al. 2017). In PPO, a
clipped surrogate advantage objective is used as the training
objective,

Lclip(θ) = Êt[min(πθ(at|st)
πθold (at|st) Ât, clip(πθ(at|st)

πθold (at|st) , 1 + ε, 1− ε)Ât)]

(7)
The surrogate advantage objective, Êt[

πθ(at|st)
πθold (at|st) Ât], is a

measure of how the new policy performs relative to the old
policy. Maximizing the surrogate advantage objective with-
out constraints could lead to large policy updates that may
cause policy collapse. To mitigate this issue, PPO maxi-
mizes the minimum of an unclipped and a clipped version
of the surrogate advantage, where the latter removes the in-
centive for moving πθ(at|st)

πθold (at|st) outside of [1− ε, 1+ ε]. Clip-
ping therefore acts as a regularizer that controls how much
the new policy can go away from the old one while still
improving the training objective. In order to further ensure
reasonable policy updates, a simple early stopping method

2370

is adopted, which terminates gradient optimization on (7)
when the mean KL-divergence between the new and old pol-
icy hits a predefined threshold.

Fully connected multilayer perceptron networks with two
hidden layers for both the actor (policy) and critic (value)
networks are used. Each hidden layer has 64 neurons. Tanh
activation units are used in all neurons. The range of out-
put neurons is scaled to [−0.1, 0.1]. The discount factor and
number of history iterations in the state formulation are set
to ζ = 0.99 and L = 4, respectively. A Gaussian policy
with a constant noise variance of e−6 is adopted throughout
the training in order to maintain constant exploration and
avoid getting trapped in a locally optimal policy. At testing,
the trained policy network corresponding to the mean of the
learned Gaussian policy is used, without noise.

4.2 Learning to Sample Optimal QAOA
Parameters with Kernel Density Estimation

In our second approach, we aim to learn the distribution of
optimal QAOA parameters and use this distribution to sam-
ple QAOA parameters that can provide high-quality solu-
tions for test instances. Although previous theoretical re-
sults show that optimal QAOA parameters concentrate for
graph instances necessarily coming from the same distri-
bution (Brandao et al. 2018), we learn a meta-distribution
of optimal QAOA parameters for graph instances in GTrain,
which come from diverse classes and distributions. This ap-
proach can potentially eliminate the need for graph feature
engineering and similarity learning and can dramatically
simplify the solution methodology.

To learn a meta-distribution of optimal QAOA parame-
ters, we adopt a KDE technique. Suppose we have access
to a set of N optimal QAOA parameters Sp

∗ = {xi
∗ =

(βi
∗,γ

i
∗)}N−1

i=0 for graph instances in GTrain and a given
QAOA circuit depth, p. A natural local estimate for the den-
sity f̂X at x is f̂X(x) =

#Xi
∗∈B(x)
Nω , where B(x) is a neigh-

borhood of width ω around x based on some distance met-
ric. This estimate, however, is not smooth. Instead, one com-
monly adopts a Parzen-Rosenblatt approach with a Gaussian
kernel to obtain a smoother estimate,

f̂X(x) =
1

N

N−1∑
i=0

Kω(x,x
i
∗) (8)

where Kω(x,x
i
∗) =

1
(2πω2)N/2 exp(−(x−xi

∗)
T (x−xi

∗)
2ω2).

In order to generate new QAOA parameters z using (8),
a data point xi

∗ from Sp
∗ is chosen uniformly randomly

with probability 1/N , and it is added to a sample X′

∼ N (0, ω2
I), that is, a sample drawn from a multivariate

Gaussian distribution with zero mean and diagonal covari-
ance matrix ω2

I. Noting that f̂X′(x) = Kω(x,0), one can
easily confirm that this sampling strategy yields data points
z distributed according to (8),

P(Z ≤ z) = F̂Z(z) = P(X+X′ ≤ z)

=

N−1∑
i=0

P(X+X′ ≤ z|X = xi
∗)P(X = xi

∗)

=
1

N

N−1∑
i=0

P(X′ ≤ z− xi
∗)

=
1

N

N−1∑
i=0

F̂X′(z− xi
∗)

(9)
and hence, f̂Z(z) = 1

N

∑N−1
i=0 Kω(z − xi

∗,0) =
1
N

∑N−1
i=0 Kω(z,x

i
∗).

This methodology assumes that Sp
∗ is readily available. In

order to construct Sp
∗ in practice, a derivative-free off-the-

shelf optimizer is started from a large number (∼ 10, 000
as in (Zhou et al. 2018)) of random points in the domain of
(2). Because (2) is known to be a nonconvex function in the
parameter space, a portion of these extensive searches may
converge to low-quality local optima. To tackle this issue,
we admit into Sp

∗ only parameters that achieve an optimality
ratio of 99% or higher for a given training instance and a
given QAOA circuit depth.

4.3 Graph Max-Cut Instances

In this subsection, we describe graph instances in GTrain
and GTest. Four classes of graphs are considered: (1) Erdos-
Renyi random graphs GR(nR, ep), where nR is the num-
ber of vertices and ep is the edge generation probability, (2)
ladder graphs GL(nL), where nL is the length of the lad-
der, (3) barbell graphs GB(nB), formed by connecting two
complete graphs KnB

by an edge, and (4) Caveman graphs
GC(nC , nk), where nC is the number of cliques and nk is
the size of each clique. Figure 1 shows sample graph in-
stances drawn from each graph class.

Random Ladder

Barbell Caveman

Figure 1: Sample graph instances: random GR(nR =
8, ep = 0.5), ladder GL(nL = 4), barbell GB(nB = 4),
and caveman GC(nC = 2, nk = 4).

To construct GTrain, we choose one representative graph
instance of 8 vertices from each class and distribution,
amounting to |GTrain| = 7 training instances. GTest contains
94 instances with varying number of vertices, as shown in

2371

Table 1: Train and test graph Max-Cut instances.
Graph Class GTrain GTest

GR(nR, ep) nR = 8, nR ∈ {8, 12, 16, 20}, seed = {1, 2, 3, 4}
ep ∈ {0.5, 0.6, 0.7, 0.8} ep ∈ {0.5, 0.6, 0.7, 0.8}

GL(nL) nL = 4 nL ∈ {2, 3, 5, 6, 7, 8, 9, 10, 11}
GB(nB) nB = 4 nB ∈ {3, 5, 6, 7, 8, 9, 10, 11}
GC(nC , nk) (nC , nK) = (2, 4) {(nC , 4) : nC ∈ {3, 4, 5}},

{(nC , 3) : nC ∈ {3, 5, 7}},
{(2, nK) : nK ∈ {3, 5, 6, 7, 8, 9, 10}}

|GTrain| = 7 |GTest| = 94

Table 1. We choose |GTrain| < |GTest| to demonstrate that
combining our proposed machine learning approaches with
QAOA can be a powerful tool for amortizing the QAOA
optimization cost across graph instances. In addition, we
choose to train on graph instances that are smaller than test
instances, to demonstrate that our proposed approaches are
independent of instance size or complexity. We note that
GTrain ∩GTest = {}.

5 Results and Discussion

In this section, we present the results of our work. We use
Qiskit Aer to perform noiseless simulations of QAOA cir-
cuits. In Figure 2 we show the expected energy landscape
of the cost Hamiltonian for a depth (p = 1) QAOA cir-
cuit with two variational parameters β0 and γ0 for some
graph instances. We can see that the expected energy of the
cost Hamiltonian is nonconvex in the parameter space and is
noisy because it is statistically estimated based on quantum
circuit measurements. These features tend to be more severe
as the depth of the QAOA circuit increases, thus posing se-
rious challenges for commonly used derivative-free off-the-
shelf optimizers.

In Figure 3, we present training results associated with our
proposed deep RL- and KDE-based approaches for a depth
(p = 1) QAOA circuit. The RL learning curve during the
training procedure is shown in Figure 3(a). We can see that
the expected total discounted rewards of the RL agent starts
around 1 at the beginning of training, which means the RL
agent is performing as well as random sampling. As train-
ing progresses, the performance of the learned optimization
policy on the training set improves. This can also be seen in
Figure 3(b), which shows the best objective value for one of
the training instances versus time steps of an episode at dif-
ferent stages of training. The optimization policy learned at
the end of training, namely, epoch 750, produces a trajectory
that rises quickly to a higher value compared with the trajec-
tories produced by the optimization policies learned at the
middle and beginning of training. On the other hand, Figure
3(c) shows contour lines for the learned bivariate probability
density based on S1

∗ using our proposed KDE technique. We
can see that optimal QAOA parameters for a depth (p = 1)
QAOA circuits of training instances in GTrain concentrate in
some regions in the domain of (2).

Next, we benchmark the performance of our trained RL-
based QAOA optimization policy and the sampling-KDE-
based QAOA optimization strategy by comparing their per-
formance with common derivative-free off-the-shelf opti-
mizers implemented in the NLopt nonlinear optimization
package (Johnson 2019), namely, BOBYQA, COBYLA,

and Nelder-Mead, as well as a purely random sampling-
based strategy. Starting from 10 randomly chosen variational
parameters in the domain of (2), each optimizer is given 10
attempts with a budget of B = 192 quantum circuit eval-
uations to solve QAOA energy landscapes corresponding
to graph instances in GTest. In each of the 10 attempts, the
random sampling B variational parameters are sampled uni-
formly (random), and in the KDE-based approach they are
based on the learned density (KDE); and the parameters with
the highest objective value are chosen as the solution. Since
our primary focus is to devise methods that find high-quality
parameters with a few quantum circuit evaluations, we use
the learned optimization policy by RL to generate trajecto-
ries of length B/2, and we resume the trajectory from the
best parameters found by using Nelder-Mead for the rest
of B/2 evaluations. This approach is motivated by our ob-
servation that the RL-based approach reaches regions with
high-quality solutions rather quickly, yet subsequent quan-
tum circuit evaluations are spent without further improve-
ments on the objective value (Khairy et al. 2019). The visu-
alizations of the RL agent as it navigates the QAOA land-
scape for p = 1 and the results of the pure RL-based method
are reported in (Khairy et al. 2019).

We compare our results with gradient-free methods for
the following reasons. First, analytical gradients are in gen-
eral not available, and evaluating gradients on a quan-
tum computer is computationally expensive (Crooks 2018;
Guerreschi and Smelyanskiy 2017). Under reasonable as-
sumptions about the hardware (Guerreschi and Matsuura
2019), one evaluation of the objective takes 1 second. There-
fore, minimizing the number of objective evaluations needed
for optimization is of utmost importance. Estimating gra-
dient requires at least two evaluations for each parameter,
making gradient-based methods noncompetitive within the
budget of 192 objective evaluations (≈ 200 sec projected
running time on a real quantum computer) that we chose for
our benchmark. Second, gradients are sensitive to noise (Zhu
et al. 2019), which includes stochastic noise originating
from the random nature of quantum computation, and the
noise caused by hardware errors. This is typically addressed
by increasing the number of samples used to estimate the
objective. On the other hand, optimizers employed for hy-
perparameter optimization, such as Bayesian optimization,
require a few hundred evaluations simply to initialize the
surrogate model, ruling out these optimizers from our bench-
mark where the evaluation budget is 192.

To report the performance, we group graph instances in
GTest in three subgroups, (1) Random graphs, which con-
tains all graphs of the form GR(nR, ep), 2) Community
graphs, which contains graphs of the form GC(nC , nk) and
GB(nB), and 3) Ladder graphs, which contains graphs of
the form GL(nL). In Figure 4, we report a boxplot of the
expected optimality ratio, E[τG] = E[f/fopt], where the ex-
pectation is with respect to the highest objective value at-
tained by a given optimizer in each of its 10 attempts. The
optimal solution to a graph instance in GTest is the largest
known f value found by any optimizer in any of its 10 at-
tempts for a given depth p. One can see that the median
optimality ratio achieved by our proposed approaches out-

2372

(a) GR(nR = 16, ep = 0.5) (b) GL(nL = 8) (c) GB(nB = 8) (d) GC(nC = 2, nk = 8)

Figure 2: QAOA energy landscapes for p = 1 (a) random graph, (b) ladder graph, (c) barbell graph, and (d) Ccveman graph.

(a) Learning curve of RL agent. At the
beginning of training, RL performance on
training instances is as good as a random-
based sampling strategy. As training pro-
gresses, the learned RL policy collects
higher expected discounted rewards.

(b) Performance of RL agent on one training
instance during training. The policy network
at the end of training (epoch 740) could pro-
duce a trajectory that reaches a high value
quickly.

(c) Optimal QAOA parameters density
learned via KDE. Concentration of optimal
parameters in some regions of the parame-
ters space is evident.

Figure 3: RL and KDE training-related results (p = 1)

performs that of other commonly used optimizers. While
the performance of derivative-free optimizers, random sam-
pling, and the RL-based approach degrades as the dimen-
sion of parameters increase from p = 1 to p = 4, the
KDE-based approach maintains high optimality ratios and
is the superior approach in all cases and across different
graph classes. The RL-based approach and random sampling
rank second and third, respectively, in the majority of cases.
Random sampling turns out to be a competitive candidate
for sampling of variational parameters, especially for low -
epth p = 1 circuits, and for random graph instances. We
note that this finding hasd not been identified prior to our
work because random search was not included in the ex-
perimental comparison (Shaydulin, Safro, and Larson 2019;
Nakanishi, Fujii, and Todo 2019; LaRose et al. 2019; Ver-
don et al. 2019). In Table 2, we summarize the median op-
timality gap reduction factor with respect to Nelder-Mead,
attained by our proposed RL- and KDE-based approaches,
namely, (1−ENM[τG]

1−ERL[τG]) and (1−ENM[τG]
1−EKDE[τG]). As the table shows,

our proposed approaches reduce the optimality gap by fac-
tors up to 30.15 compared with Nelder-Mead, and the gap
reduction factor is consistently larger than 1.

In Figure 5, we show a boxplot of the expected approx-
imation ratio performance, E[ηG] = E[f/Copt], of QAOA
with respect to the classical optimal Copt found using brute
force methods across different graph instances in GTest. We
can see that increasing the depth of QAOA circuit improves

Table 2: Median optimality gap reduction factor w.r.t
Nelder-Mead.

Graph Class Proposed Optimizer p = 1 p = 2 p = 4

Random RL 3.07 1.81 1.37
KDE 7.06 8.07 6.52

Community RL 2.66 1.47 1.05
KDE 26.20 14.15 9.31

Ladder RL 5.59 1.87 1.12
KDE 17.68 30.15 8.15

the attained approximation ratio, especially for structured
graphs (i.e., community and ladder graph instances).

6 Conclusion

In this paper, we formulated the problem of finding optimal
QAOA parameters for approximately solving combinatorial
problems as a learning task. Two machine-learning-based
approaches have been proposed: an RL-based approach,
which can learn a policy network that can efficiently opti-
mize new QAOA circuits by exploiting geometrical regulari-
ties in QAOA objectives, and a KDE-based approach, which
can learn a generative model of optimal QAOA parameters
that can be used to sample parameters for new QAOA cir-
cuits. Our proposed approaches have been trained on a small
set of small-sized training instances, yet they are capable of
efficiently solving larger problem instances. When coupled

2373

(a) p = 1 (b) p = 2 (c) p = 4

Figure 4: Expected optimality ratio performance of different optimizers on graph instances in GTest for a given QAOA circuit
depth p ∈ {1, 2, 4}. Test graph instances are grouped in three subgroups: random graphs, community graphs, and ladder
graphs. Our proposed machine-learning-based methods, RL and KDE, outperform commonly used derivative-free off-the-shelf
optimizers such as COBYLA, BOBYQA, and Nelder-Mead.

Figure 5: Approximation ratio performance of QAOA with
respect to classical optimal on GTest. With higher-depth
QAOA circuit, the attained approximation ratio increases.

with QAOA, our proposed approaches can be powerful tools
for amortizing the QAOA optimization cost across combina-
torial instances.

In our future work, we will investigate machine-learning-
based methods for QAOA applied to constrained combina-
torial optimization problems such as maximum independent
set and max κ colorable subgraphs, which have important
applications in many disciplines.

Acknowledgments

This material is based upon work supported by the U.S. De-
partment of Energy, Office of Science, Office of Advanced
Scientific Computing Research, under Contract DE-AC02-
06CH11357. This research was funded in part by and used
resources of the Argonne Leadership Computing Facility,
which is a DOE Office of Science User Facility supported
under Contract DE-AC02-06CH11357. We gratefully ac-
knowledge the computing resources provided on Bebop, a
high-performance computing cluster operated by the Lab-
oratory Computing Resource Center at Argonne National
Laboratory. LC acknowledges support from LANL’s Lab-
oratory Directed Research and Development (LDRD) pro-
gram. LC was also supported by the U.S. Department of En-
ergy, Office of Science, Office of Advanced Scientific Com-

puting Research, under the Quantum Computing Applica-
tion Teams program.

The submitted manuscript has been created by
UChicago Argonne, LLC, Operator of Argonne Na-
tional Laboratory (“Argonne”). Argonne, a U.S. De-
partment of Energy Office of Science laboratory, is
operated under Contract No. DE-AC02-06CH11357.
The U.S. Government retains for itself, and others
acting on its behalf, a paid-up nonexclusive, irre-
vocable worldwide license in said article to repro-
duce, prepare derivative works, distribute copies to
the public, and perform publicly and display pub-
licly, by or on behalf of the Government. The Depart-
ment of Energy will provide public access to these
results of federally sponsored research in accordance
with the DOE Public Access Plan. http://energy.gov/
downloads/doe-public-access-plan

References

Andrychowicz, M.; Denil, M.; Gomez, S.; Hoffman, M. W.;
Pfau, D.; Schaul, T.; Shillingford, B.; and De Freitas, N.
2016. Learning to learn by gradient descent by gradient de-
scent. In Advances in Neural Information Processing Sys-
tems, 3981–3989.

Apolloni, B.; Carvalho, C.; and de Falco, D. 1989. Quan-
tum stochastic optimization. Stochastic Processes and Their
Applications 33(2):233–244.

Balaprakash, P.; Salim, M.; Uram, T.; Vishwanath, V.; and
Wild, S. 2018. DeepHyper: Asynchronous hyperparameter
search for deep neural networks. In 2018 IEEE 25th Interna-
tional Conference on High Performance Computing (HiPC),
42–51.

Balaprakash, P.; Birattari, M.; and Stützle, T. 2007. Im-
provement strategies for the F-Race algorithm: Sampling
design and iterative refinement. In et al, B.-B., ed., Hy-
brid Metaheuristics, 108–122. Berlin, Heidelberg: Springer
Berlin Heidelberg.

Barkoutsos, P. K.; Nannicini, G.; Robert, A.; Tavernelli, I.;

2374

and Woerner, S. 2019. Improving variational quantum opti-
mization using CVaR. arXiv preprint arXiv:1907.04769.
Brandao, F. G.; Broughton, M.; Farhi, E.; Gutmann, S.; and
Neven, H. 2018. For fixed control parameters the quantum
approximate optimization algorithm’s objective function
value concentrates for typical instances. arXiv:1812.04170.
Crooks, G. E. 2018. Performance of the quantum approxi-
mate optimization algorithm on the maximum cut problem.
arXiv:1811.08419.
Farhi, E.; Goldstone, J.; and Gutmann, S. 2014. A quantum
approximate optimization algorithm. arXiv:1411.4028.
Feurer, M.; Springenberg, J. T.; and Hutter, F. 2015. Ini-
tializing Bayesian hyperparameter optimization via meta-
learning. In Twenty-Ninth AAAI Conference on Artificial
Intelligence.
Goemans, M. X., and Williamson, D. P. 1995. Improved ap-
proximation algorithms for maximum cut and satisfiability
problems using semidefinite programming. Journal of the
ACM 42(6):1115–1145.
Guerreschi, G. G., and Matsuura, A. Y. 2019. QAOA for
max-cut requires hundreds of qubits for quantum speed-up.
Scientific Reports 9(1).
Guerreschi, G. G., and Smelyanskiy, M. 2017. Practi-
cal optimization for hybrid quantum-classical algorithms.
arXiv:1701.01450.
Hadfield, S.; Wang, Z.; O’Gorman, B.; Rieffel, E. G.; Ven-
turelli, D.; and Biswas, R. 2017. From the quantum ap-
proximate optimization algorithm to a quantum alternating
operator ansatz. arXiv preprint arXiv:1709.03489.
Huang, C.; Szegedy, M.; Zhang, F.; Gao, X.; Chen, J.; and
Shi, Y. 2019. Alibaba cloud quantum development platform:
Applications to quantum algorithm design. arXiv preprint
arXiv:1909.02559.
Hutter, F.; Kotthoff, L.; and Vanschoren, J., eds. 2018. Au-
tomated Machine Learning: Methods, Systems, Challenges.
Springer. available at http://automl.org/book.
Johnson, S. G. 2019. The NLopt nonlinear-optimization
package.
Kato, T. 1950. On the adiabatic theorem of quantum me-
chanics. Journal of the Physical Society of Japan 5(6):435–
439.
Khairy, S.; Shaydulin, R.; Cincio, L.; Alexeev, Y.; and Bal-
aprakash, P. 2019. Reinforcement-learning-based varia-
tional quantum circuits optimization for combinatorial prob-
lems. arXiv preprint arXiv:1911.04574.
LaRose, R.; Tikku, A.; O’Neel-Judy, É.; Cincio, L.; and
Coles, P. J. 2019. Variational quantum state diagonaliza-
tion. npj Quantum Information 5(1):8.
Li, K., and Malik, J. 2016. Learning to optimize. arXiv
preprint arXiv:1606.01885.
Nakanishi, K. M.; Fujii, K.; and Todo, S. 2019. Sequen-
tial minimal optimization for quantum-classical hybrid al-
gorithms. arXiv:1903.12166.
Pagano, G.; Bapat, A.; Becker, P.; Collins, K.; De, A.; Hess,
P.; Kaplan, H.; Kyprianidis, A.; Tan, W.; Baldwin, C.; et al.

2019. Quantum approximate optimization with a trapped-
ion quantum simulator. arXiv preprint arXiv:1906.02700.
Parekh, O. D.; Ryan-Anderson, C.; and Gharibian, S. 2019.
Quantum optimization and approximation algorithms. Tech-
nical report.
Romero, J.; Babbush, R.; McClean, J.; Hempel, C.; Love, P.;
and Aspuru-Guzik, A. 2018. Strategies for quantum com-
puting molecular energies using the unitary coupled cluster
ansatz. Quantum Science and Technology.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.
Shaydulin, R.; Ushijima-Mwesigwa, H.; Safro, I.;
Mniszewski, S.; and Alexeev, Y. 2018. Community
detection across emerging quantum architectures. Proceed-
ings of the 3rd International Workshop on Post Moore’s Era
Supercomputing.
Shaydulin, R.; Ushijima-Mwesigwa, H.; Safro, I.;
Mniszewski, S.; and Alexeev, Y. 2019. Network community
detection on small quantum computers. Advanced Quantum
Technologies 1900029.
Shaydulin, R.; Safro, I.; and Larson, J. 2019. Multistart
methods for quantum approximate optimization. 2019 IEEE
High Performance Extreme Computing Conference (HPEC).
Streif, M., and Leib, M. 2019. Comparison of QAOA
with quantum and simulated annealing. arXiv preprint
arXiv:1901.01903.
Sutton, R. S., and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT Press.
Verdon, G.; Broughton, M.; McClean, J. R.; Sung, K. J.;
Babbush, R.; Jiang, Z.; Neven, H.; and Mohseni, M. 2019.
Learning to learn with quantum neural networks via classi-
cal neural networks. arXiv preprint arXiv:1907.05415.
Wang, Z.; Hadfield, S.; Jiang, Z.; and Rieffel, E. G. 2018.
Quantum approximate optimization algorithm for MaxCut:
a fermionic view. Physical Review A 97:022304.
Wecker, D.; Hastings, M. B.; and Troyer, M. 2016. Training
a quantum optimizer. Physical Review A 94(2):022309.
Yang, Z.-C.; Rahmani, A.; Shabani, A.; Neven, H.; and Cha-
mon, C. 2017. Optimizing variational quantum algorithms
using Pontryagin’s minimum principle. Physical Review X
7(2):021027.
Zhou, L.; Wang, S.-T.; Choi, S.; Pichler, H.; and Lukin,
M. D. 2018. Quantum approximate optimization algorithm:
Performance, mechanism, and implementation on near-term
devices. arXiv:1812.01041.
Zhu, D.; Linke, N. M.; Benedetti, M.; Landsman, K. A.;
Nguyen, N. H.; Alderete, C. H.; Perdomo-Ortiz, A.; Korda,
N.; Garfoot, A.; Brecque, C.; et al. 2019. Training of quan-
tum circuits on a hybrid quantum computer. Science ad-
vances 5(10):eaaw9918.

2375

