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Abstract

In two-sided markets, Myerson and Satterthwaite’s impos-
sibility theorem states that one can not maximize the gain-
from-trade while also satisfying truthfulness, individual-
rationality and no deficit. Attempts have been made to cir-
cumvent Myerson and Satterthwaite’s result by attaining
approximately-maximum gain-from-trade: the double-sided
auctions of McAfee (1992) is truthful and has no deficit, and
the one by Segal-Halevi et al. (2016) additionally has no sur-
plus — it is strongly-budget-balanced. They consider two cat-
egories of agents — buyers and sellers, where each trade set
is composed of a single buyer and a single seller.
The practical complexity of applications such as supply chain
require one to look beyond two-sided markets. Common re-
quirements are for: buyers trading with multiple sellers of dif-
ferent or identical items, buyers trading with sellers through
transporters and mediators, and sellers trading with multiple
buyers. We attempt to address these settings.
We generalize Segal-Halevi et al. (2016)’s strongly-budget-
balanced double-sided auction setting to a multilateral mar-
ket where each trade set is composed of any number of agent
categories. Our generalization refines the notion of compe-
tition in multi-sided auctions by introducing the concepts of
external competition and trade reduction. We also show an
obviously-truthful implementation of our auction using mul-
tiple ascending prices.
Full version, including omitted proofs and simulation experi-
ments, is available at https://arxiv.org/abs/1911.08094.

1 Introduction

Mechanism design for one-sided markets has been investi-
gated for several decades in economics and in computer sci-
ence. It aims to find an efficient (high social welfare) alloca-
tion of a set of items to a set of agents, while ensuring that
truthfully reporting the input data is the best strategy for the
agents. The Vickrey-Clarke-Groves (VCG) auction (Vickrey
1961; Clarke 1971; Groves 1973) is a pillar of mechanism
design. VCG auctions maximize the social welfare of the
agents. They are dominant-strategy truthful (DST) — each
agent’s dominant strategy is to truthfully report its prefer-
ences to the auction, regardless of what the other agents re-
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port. They can also be made individually rational (IR) — no
agent loses from participating in the auction.

More recently, there has been increased attention on auc-
tions for two-sided markets, in which the set of agents is
partitioned into buyers and sellers. As opposed to the one-
sided setting, where the auctioneer initially holds the items,
in the two-sided setting the items are initially held by the
set of sellers. The sellers express valuations for the items
they hold, and are assumed to act rationally and strategically.
Thus, the auctioneer is tasked with deciding which buyers
and sellers should trade and with what prices.

The growing interest in two-sided markets can be at-
tributed to various important applications. Examples range
from selling display-advertising on ad exchange platforms,
the US FCC spectrum license reallocation, and stock ex-
changes. However, little work has been done so far on the
next level of generalization, i.e., multi-sided markets.

In two-sided markets, a further important requirement is
strong budget-balance (SBB), which states that monetary
transfers happen only among the agents in the market. This
means that buyers and sellers are allowed to trade without
leaving the auctioneer any share of their gains and with-
out the auctioneer adding money into the market. A weaker
version of SBB, often considered in the literature, is weak
budget-balance (WBB). WBB only requires the auctioneer
not to add money to the market. The problem with weak
budget-balance is that the surplus of the auctioneer might
consume most of the gain-from-trade, leaving little gain for
the actual traders. This might drive traders away from the
market.1 Note that, in bilateral trade settings, VCG is usu-
ally not even WBB except in special cases (Guo et al. 2013).

For double-sided auctions, the impossibility theorem of

1The following “trick” can be used to convert any WBB auc-
tion to an SBB auction: before the auction starts, remove a random
trader from the market; after the auction ends, give that trader all
the surplus (if any). We do not support this trick since it might
induce agents who have nothing to do with the auction (e.g. “sell-
ers” with nothing to sell or “buyers” with no money) to come to
the market, only because of the chance to win all the surplus. Like
Colini-Baldeschi et al. (2017), we focus on direct-trade auctions
— auctions that give/take money only to/from agents who actually
participate in the trade.
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Myerson and Satterthwaite (1983) states that one can not
maximize gain from trade (GFT, the difference between the
total value of the sold items for the buyers and the total value
of these items for the sellers) while also satisfying IR, DST,
and no deficit.

The seminal double-auction mechanism of
McAfee (1992) is DST, IR and WBB. It circumvents
Myerson and Satterthwaite’s result by compromising on
GFT: it may remove up to one deal from the optimal trade.
In case a deal is removed, it is the one with the smallest
GFT among the deals in the optimal trade; hence it attains
at least 1 − 1/k of the optimal GFT, where k is the number
of optimal deals. Thus, it is asymptotically optimal — its
GFT approaches the optimum when k → ∞.

Recently, Segal-Halevi, Hassidim, and Aumann (2016)
presented a SBB variant of McAfee’s mechanism, with sim-
ilar GFT guarantees. Their mechanism may remove up to
one buyer from the optimal trade, and it is the buyer with
the lowest value among the buyers in the optimal trade. In
case a buyer is removed, the remaining k − 1 buyers trade
with k − 1 sellers selected at random from the k sellers in
the optimal trade.

The complexity of practical requirements in areas such
as supply chain require one to look beyond double-sided
markets. As an example (Babaioff and Walsh 2005), a mar-
ket for lemonade may contain two kinds of sellers (lemon
pickers and sugar producers), two kinds of buyers (juice
drinkers and lemonade drinkers), and some intermediary
agents (lemon squeezers, lemonade mixers, etc.) Our goal
is to address such settings while keeping the strong budget
balance requirement.

1.1 Our Contribution

Our contribution is twofold: First we generalize Segal-
Halevi, Hassidim, and Aumann (2016)’s SBB double auc-
tion to a multi-sided market where the trade set is composed
of any number of agent types and any number of copies of
any agent’s type. Our generalization refines the notion of
competition in multi-sided auctions by introducing the con-
cept of external competition — competition over who will
act as a given participant’s trade partner(s) (complementar-
ity).

The expanded notion of competition allows us to pro-
vide a simple well-performing procedure that generalizes
(McAfee 1992)’s trade reduction. The shift to thinking in
terms of competition allows us to broadly address situa-
tions common to multi-sided auctions. These settings in-
clude trading entities that may be individuals or entire mar-
kets, transactions facilitated by zero or more intermediaries,
and goods that can be exchanged individually or in bundles.

These settings also encompass many common commer-
cial mechanisms including supply chains, distributed mar-
kets, security exchanges, and business to consumer auc-
tions. Historically each of these settings has been considered
unique and each presented the complex research problem of
finding a suitable mechanism (see section 5 for details).

Second, in addition to the direct-revelation multi-sided
auction, our result presents a multi-sided ascending-prices
auction that implements the same outcome. In the theory

of one-sided auctions, it is well-known that a second-price
direct-revelation auction and an ascending-prices auction are
strategically equivalent. In both auctions, the agent with the
highest value wins and pays the second-highest value. How-
ever, an ascending-prices auction has the advantage that it is
obviously truthful (see Li (2017) for formal definitions and
proofs). The practical advantage of an obviously-truthful
auction is that it is easier for people to understand that play-
ing truthfully is best for them, even if they are not experts in
game theory. This is particularly important when one deals
with complex multi-sided markets with many entities.

1.2 Paper layout

Section 2 presents the formal definitions. Section 3 presents
a special case of our extended multilateral auctions in which
each trade requires exactly one agent of each category. Sec-
tion 4 presents a more general case of our extended multi-
lateral auctions in which each trade requires a fixed num-
ber of agents of each category, but this fixed number may
be larger than 1. Section 5 compares our work to related
work. The full version presents some simulation experi-
ments evaluating the performance of our auctions. Section
6 concludes with some future work directions. An open-
source implementation of our auctions, including exam-
ple runs and experiments, is available at https://github.com/
erelsgl/auctions.

2 Preliminaries

2.1 Agents and categories

A market is defined by a set of agents grouped into different
categories. N is the set of agents, G is the set of agent cat-
egories, and Ng is the set of agents in category g ∈ G. The
categories are pairwise-disjoint, so N = �g∈GNg .

Each deal in the market requires a certain combination
of agents. We call a subset of agents that can accomplish
a single deal a procurement-set (PS). The PS recipe of the
market is a vector of size |G|, denoted by r := (rg)g∈G,
where rg ∈ Z+ for all g ∈ G. It describes the number of
agents of each category that should be in each PS: each PS
should contain r1 agents of category 1, r2 agents of category
2, and so on. As an example, the PS recipe of a standard two-
sided market is (1, 1), since there are two agent categories —
buyers and sellers — and each PS should contain one buyer
and one seller.

As another example, consider a market with three cate-
gories of agents — buyers, sellers and transporters, and PS
recipe (1, 2, 2). In such a market, each deal requires a buyer,
two sellers and two transporters.

In general, one could think of markets with multiple PS
recipes; however, in the present paper we restrict our atten-
tion to markets with a single PS recipe, denoted by r.

Each agent i ∈ N has a value vi ∈ R, which represents
the monetary gain of an agent from participating in the trade.
The value of an agent is the agent’s private information. It
may be positive or negative. For example, in a two-sided
market, the value of a buyer is typically positive while the
value of a seller is typically negative. The agents are quasi-
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linear in money: the utility of agent i participating in some
PS and paying pi is ui := vi − pi.

2.2 Trades and Gains

The gain-from-trade of a procurement-set S, denoted
GFT (S), is the sum of values of all agents in S:

GFT(S) :=
∑

i∈S

vi.

In a standard two-sided market, the GFT of a PS with a buyer
b and a seller s is vb − vs, since the seller’s value is −vs.

Given a market (N,G, r), a trade is a collection of
pairwise-disjoint procurement-sets. I.e, it is a collection of
agent subsets, S1, . . . , Sk ⊆ N , such that for each j ∈ [k],
the composition of agents in Sj corresponds to the recipe r.
The total GFT is the sum of the GFT of all procurement-sets
participating in the trade:

GFT(S1, . . . , Sk) :=

k∑

j=1

GFT(Sj)

A trade is called optimal if its GFT is maximum over all
possible trades.

2.3 Competition

Our direct-revelation auctions are based on the concept of
competition between agents. Given a trade (S1, . . . , Sk), let
Nrm := N \ (S1 ∪ · · · ∪Sk) be the subset of agents who do
not participate in the trade (the “remaining market”).

Consider a single PS Sj , and an agent i ∈ Sj who belongs
to category g, i.e, i ∈ Ng . Then, a subset of agents T ⊆ Nrm

is called an external competition for i if adding i to T yields
a PS consistent with the recipe r, with a positive GFT:

GFT (T ∪ {i}) ≥ 0

In a simple two-sided market, the external competition of
a trading buyer is a non-trading seller whose value is suffi-
ciently high such that, combining the trading buyer with the
non-trading seller yields a pair with a GFT above 0.

In a three-sided market with buyers, sellers and mediators,
with r = (1, 1, 1), an external competition of a trading buyer
is a pair of a non-trading seller and a non-trading mediator,
such that the GFT of the buyer+seller+mediator is at least 0.

3 One Agent Per Category
This section presents our two auctions for a special case in
which the single PS recipe in the market is a vector of ones,
so each PS must contain a single agent from each category.

Both auctions are parametrized by an ordering on the cat-
egories: each of the |G|! possible orderings yields a different
auction. The ordering should be fixed in advance and not de-
pend on the agents’ values.

We present the auctions using a running example with
three categories in the following order: buyers, sellers and
mediators. The recipe is (1, 1, 1). In each category there are
five agents. The agents’ values are:
• Buyers: 17, 14, 13, 9, 6.
• Sellers: -1, -4, -5, -8, -11.
• Mediators: -1, -3, -4, -7, -10.

3.1 External-competition auction

The auction requests the agents to report their values, and
then proceeds as follows.

Step 1: Optimal trade calculation. Order the agents in
each category by descending order of their value. Combine
the highest-value agents in each category to a PS. Combine
the next-highest-value agents in each category into a PS.
Keep constructing PS as long as the GFT of the constructed
PS is positive. The resulting set of PS is the optimal trade.
We denote by k the number of PS in the optimal trade.

In the running example, k = 3 and the optimal trade
contains the following PS: (17,−1,−1) with GFT 15,
(14,−4,−3) with GFT 7, and (13,−5,−4) with GFT 4.
The remaining market, denoted by Nrm, contains two buy-
ers 9, 6, two sellers −8,−11 and two mediators −7,−10.

Step 2. Order the procurement-sets in the optimal trade by
ascending GFT, such that, GFT(S1) ≤ · · · ≤ GFT(Sk). In
the running example, S1 is the PS (13,−5,−4).

Step 3. Consider the agents in S1 in the pre-determined
order of categories. Initialize i to the first agent in S1 by this
ordering. In the running example, it is the buyer 13.

Step 4. Look for an external competition to i with a largest
GFT. There are two cases.

Case 4a. No external competition for i is found. Then, i
is removed from the trade (and added to Nrm), and we go
back to step 4 with i being the next agent in S1.

In the running example, we consider first the buyer 13.
The maximum GFT of a PS that contains this buyer and
agents from Nrm is −2, for the PS (13,−8,−7). This GFT
is negative so it is not considered an external competition.
Hence, the buyer 13 is removed from trade.

Case 4b. An external competition for i is found; denote it
by T1. From now on we call this agent i the pivot agent and
its category the pivot category. Denote the pivot category by
go. For each g 
= go, denote by vTg the value of the single
agent in T1 ∩Ng . Trade prices are calculated as follows:

• The price pg for each agent in category g 
= go is set to
the value vTg .

• The price po for each agent in category go is set to: po :=
−∑

g �=go
vTg .

In the running example, the next member of S1 (after the
buyer 13 is removed) is the seller −5. The maximum GFT
of a PS that contains this seller and agents from Nrm is +1,
for the PS (13,−5,−7); note that the removed buyer 13 par-
ticipates in this PS. This GFT is positive so it is an external
competition; the pivot category go is the sellers’ category.

The prices are set to 13 for the buyers (like the buyer
in T1), −7 for the mediators (like the mediator in T1), and
−6 = −(13−7) for the sellers. The final price-vector is thus
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(13,−6,−7), i.e., all buyers pay 13, all sellers receive 6 and
all mediators receive 7.

Step 5. Once the prices are calculated, the final trade is
determined as follows:

• For each category, count the number of members remain-
ing in the trade.

• In each category with the smallest count, all agents par-
ticipate in the trade.

• In each category with a larger count, there is a lottery de-
termining who will participate in the trade.

In the running example, there are two remaining buyers
(17, 14) all of whom trade at price 13; there are three re-
maining sellers (−1,−4,−5) two of whom (selected at ran-
dom) trade at price −6; similarly, there are three remaining
mediators (−1,−3,−4) two of whom trade at price −7.

Note that selecting a different one of the 6 category-orders
leads to a different outcome. A-priori, there is no reason to
prefer one ordering over the other — our auction has the
same desirable properties (proved below) for any ordering.

The SBBA auction of Segal-Halevi, Hassidim, and Au-
mann (2016) is a special case of our auction, where the
recipe is (1, 1). Their two variants correspond to the two or-
derings — buyers-sellers or sellers-buyers.

3.2 Proof of correctness

First, note that there must be an agent i ∈ S1 for whom an
external competition exists. In the worst case, when only one
last agent of S1 remains in the trade, the other agents of S1

(who were previously removed from trade) form an external
competition for this agent. This is because their total GFT is
GFT(S1), which is positive since S1 is in the optimal trade.

Lemma 1. For each category g ∈ G, denote by vSg the value
of the single agent in S1 ∩Ng . Then:

∑

g �=go

vTg ≤
∑

g �=go

vSg

Proof. For g < go, the agent in S1 ∩Ng had been removed
from trade before the pivot was found, and was later used as
an external competition for the pivot, so it is the same agent
as in T1 ∩Ng and thus vTg = vSg .

For g > go, the agent in S1 ∩ Ng had not been removed
from trade, and thus, another (non-trading) agent was used
as an external competition. Since the values of non-trading
agents are smaller than that of trading agents, vTg ≤ vSg .

Now we prove the properties of the auction.

Theorem 1. The external-competition auction of Subsec-
tion 3.1 is strongly-budget-balanced, individually-rational
and dominant-strategy truthful, and its gain-from-trade ap-
proaches the optimum when the optimal market size (k) ap-
proaches ∞.

Proof. Strong budget balance is obvious: the price po is cal-
culated such that the sum of prices in each PS is 0.

Individual rationality: we prove that the price paid by
each trading agent is at most the agent’s reported value.
• Each trading agent in a category g 
= go pays the value vTg

of a non-trading agent in the same category g. The agents
in each category are ordered by descending value, and the
value of each trading agent is at least as large as the value
of each non-trading agent in the same category, so it is at
least vTg .

• Let vSo be the value of the pivot agent (who is an agent
in S1). By definition of external competition, the sum of
values of agents in T1 plus vSo is at least 0, so

vSo +
∑

g �=go

vTg ≥ 0

=⇒ vSo ≥ −
∑

g �=go

vTg = po

Since agents are ordered by descending value, the values
of other trading agents are at least vSo which is at least po.

Truthfulness: By Myerson’s theorem, it is sufficient to
prove that the choice rule is monotone, and each trading
agent pays his/her threshold value.

Monotonicity is obvious: an agent increasing his reported
value (while other reports are fixed) is more likely to par-
ticipate in the optimal trade, more likely to have an external
competition, and thus more likely to remain in the trade.

To calculate the threshold value of an agent i from cate-
gory g, we consider three cases, depending on the fixed or-
dering of the categories:
1. The category g comes before the pivot-category go. This

means that an agent from g had been removed from S1

before the pivot was found. All agents whose value is
higher than vTg are in PS Sj for j ≥ 2, they do not af-
fect the auction in any way, and they remain in the trade.
Any such agent whose value drops below vTg , replaces
the vTg agent in the PS S1, and has no external competi-
tion, and so is removed from the trade. Therefore, vTg is a
threshold-value for all agents of g, and indeed pg = vTg .

2. g = go. All agents whose value is higher than vSo (the
value of the pivot agent) are in PS Sj for j ≥ 2, they
do not affect the auction in any way, and they remain in
the trade. Consider an agent of go whose value vo drops
below vSo but above po (recall that vSo ≥ po). We claim
that this agent remains in the trade. First, vo is still in the
optimal trade (it replaces the pivot agent in S1), since:

vo +
∑

g �=go

vSg ≥ vo +
∑

g �=go

vTg (by Lemma 1)

= vo − po (by definition of po)
≥ 0 (by assumption on vo),

so the GFT of vo plus the other agents in S1 is still above
0. Second, T1 is still an external competition for vo, since:

vo +
∑

g �=go

vTg = vo − po ≥ 0.
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But, once vo drops below po, the set T1 is no longer an
external competition, so the agent is removed from the
trade. Hence, po is a threshold value for all agents of go.

3. The category g comes after the pivot-category go. This
means that no agent from g had been removed from the
trade before the pivot was found. As shown in Lemma 1,
in this case vSg ≥ vTg . All agents whose value is higher
than vSg are in PS Sj for j ≥ 2, they do not affect the
auction in any way, and they remain in the trade.
Consider an agent of g whose value vg drops below vSg
but above vTg . We claim that this agent remains in the
optimal trade (it replaces the agent vSg in S1), since:

GFT (S1)− vSg + vg ≥ GFT (S1)− vSg + vTg

= vSo +
∑

g �=go

vSg − vSg + vTg

≥ vSo +
∑

g �=go

vTg (by Lemma 1)

≥ 0 (T1 is external competition)

so the GFT of vg plus the other agents in S1 is above 0.
But, once vg drops below vTg , it is replaced by the agent
vTg in S1, and does not enter the optimal trade. Hence, vTg
is a threshold-value for all agents of g, and pg = vTg .

Gain-from-trade: For each g ∈ G and j ∈ {1, . . . , k},
denote by vjg the value of the single agent in Ng ∩ Sj . Then
the optimal GFT is:

OPT =
∑

g∈G

k∑

j=1

vjg

If no traders are removed, then all these k PS are trading,
and the GFT equals OPT. If some traders are removed, they
are removed from S1 which is the least profitable PS. In this
case, k − 1 deals are made, where in each deal, the trader
from each category g is:
• If g is before the pivot — one of the k − 1 high-value

traders in g;
• If g is the pivot or after the pivot — one of the k high-

value traders in g, selected at random.
Hence, the expected GFT is at least:

∑

g<go

k∑

j=2

vjg +
∑

g≥go

k − 1

k

k∑

j=1

vjg

≥
∑

g∈G

k − 1

k

k∑

j=1

vjg

=
k − 1

k
OPT.

3.3 Ascending-prices auction

Our ascending-prices auction holds a price pg for each cat-
egory g ∈ G. All prices are initialized to −∞, and initially

all agents are in the trade (since every agent will be happy to
pay −∞). While the prices increase, each agent in category
g with value vg remains in the trade as long as pg < vg ,
and exits the trade when pg > vg (since the prices increase
monotonically, agents never return to the trade after exiting).
When pg = vg , the agent is indifferent between trading and
not trading; for simplicity, we assume that in this case the
agent does not trade. Also, for simplicity we assume that the
agents’ valuations are generic in the sense that, for each cat-
egory g ∈ G, all agents have different values. During the
presentation of the ascending auction, we use the same run-
ning example as in Subsection 3.1.

Step 1: Initialization. For each category g, count the
number of agents in Ng; let nmin be the size of the smallest
category. For each category g with more than nmin agents,
increase the price pg such that some agents leave the trade,
until the number of remaining agents in all categories is
nmin.

In the running example, this step is not needed since ini-
tially there are 5 agents in each category.

Step 2. Loop over the categories in the pre-specified order.
For each category g, increase pg continuously until one of
the following happens:

(a) an agent from category g exits the trade, or —
(b) the sum of prices increases to zero:

∑
g∈G pg = 0.

In case (a), repeat the step with the next category (after the
last category, return to the first one). If a category becomes
empty, the auction stops and there is no trade.

In case (b), stop and have the agents trade in the final
prices: each agent in category g ∈ G trades at price pg . If, in
some category, there are more remaining agents than in other
categories, then a lottery is used to select who will trade.

In the running example, at the first round, the buyers’
price increases to 6, the sellers’ price increases to -11, the
mediators’ price increases to -10; after the first round, there
are 4 agents remaining in each category, and the sum of
prices is still negative, so we continue. At the second round,
the prices increase to 9, -8, -7 and the sum is still negative.
At the third round, the buyers’ price increases to 13 and the
sellers’ price is increased towards -5, but when it hits -6, the
sum of prices becomes 0 so the auction stops. The final trade
is exactly the same as in the external-competition auction.

Theorem 2. The ascending-prices auction of Subsection 3.3
is strongly-budget-balanced, individually-rational and obvi-
ously truthful, and its gain-from-trade approaches the opti-
mum when the optimal market size (k) approaches ∞.

Proof. SBB and IR are immediate from the description.
As for obvious-truthfulness: Li (2017) defines a strategy

S as obviously-dominant (for a given agent) if “for any de-
viating strategy T , starting from an earliest information set
where S and T diverge, the best possible outcome from T
is no better than the worst possible outcome from S”. We
show that, in the ascending-prices auction, for each agent
i in category g, the strategy S of exiting when pg = vi is
obviously-dominant.
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The worst outcome from S has a value of 0. We now show
that, for any deviation T , the best possible outcome from T
when S and T diverge has a value of at most 0. Indeed, if
T is exiting too early (at some v′i < vi), then the point at
which S and T diverge is when pg = v′i, and at that point
the outcome from T has a value of 0. If T is exiting too late
(at some v′′i > vi), then the point at which S and T diverge is
when pg = vi, and at that point all possible outcomes from
T have a value of 0 or less.

We now analyze the gain-from-trade.
Let go be the category in which the protocol stops. Let

no be the number of traders of this category that remain in
the trade. Then, in each category g < go, there are no − 1
remaining traders, and in each category g ≥ go, there are no

remaining traders.
Recall that k is the number of deals in the optimal trade;

we claim that k = no:

• First, suppose that the price pg of each category g ≥ go is
increased up to the value of the next agent in g (who did
not exit the trade in the actual auction). Since the auction
stopped when the sum of prices hit 0, the sum of prices
after the increase is positive. Each price pg equals the no-
th highest value in category g. This means that there are at
least no procurement-sets with a positive GFT, so k ≥ no.

• Second, suppose that the price pg of each category g ≤ go
is decreased down to the value of the previous agent in g
(who did exit the trade in the actual auction). Now the sum
of prices is negative. Each price pg equals the (no + 1)-
th highest value in category g. This means that there are
not (no + 1) procurement-sets with a positive GFT, so
k < no + 1. Hence, k = no.

So at least k − 1 deals are done. From here, the proof is
identical to the gain-from-trade proof in Theorem 1.

4 General Procurement-Set Recipes

This section extends the previous one by allowing the PS
recipe to be an arbitrary vector of positive integers, rather
than just a vector of ones. For each category g there is an
integer rg ≥ 1, and every PS must contain exactly rg traders
from this category.

The external-competition auction can be extended to the
setting of an arbitrary vector of positive integers. However,
as the proof is somewhat involved, we choose to focus here
on the ascending-prices auction extension.

We present the mechanisms using a running example in
which there are two categories — buyers and sellers, and
the recipe is (1, 2), so that each PS should contain one buyer
and two sellers. The market contains:

• Five buyers with values: 17, 14, 13, 9, 6.

• Nine sellers with values: -1, -2, -3, -4, -5, -7, -8, -10, -11.

Note that the optimal trade in this setting can be calcu-
lated just like in Section 3: the agents in each category are
ordered by descending value, and then grouped greedily into
procurement-sets. In the running example, the optimal trade
contains three PS: (17;−1,−2) with GFT 14, (14;−3,−4)
with GFT 7, and (13;−5,−7) with GFT 1.

4.1 Ascending-prices auction

Similarly to subsection 3.3, the auction maintains a price pg
for each category g. All prices are initialized to −∞, and
initially all agents are in the trade.

Step 1: Initialization. For each category g, let cg :=
floor(|Ng|/rg); this is the largest number of PS that can be
composed of agents of category g. Let cmin := ming∈G cg;
this is the largest number of PS that can be composed
of the existing agents. For each category g for which
floor(|Ng|/rg) > cmin, increase the price pg such that some
agents leave the trade, until the number of remaining agents
in each category g decreases such that floor(|Ng|/rg) =
cmin. Note that, when g is the category for which the min-
imum of cg is attained, we already have floor(|Ng|/rg) =
cmin without any increase, so the price of this category (at
least) remains −∞, and the initial price-sum is negative.

Initialize c := cmin. Informally, c is the number of
procurement-sets that we aim to construct from the traders
currently in the market. Note that initially, for every category
g, we have floor(|Ng|/rg) = cmin so |Ng| ≥ rg · c.

In the running example, cbuyers = floor(5/1) = 5 and
csellers = floor(9/2) = 4 and cmin = 4. In the initializa-
tion step, pbuyers increases to 6 so that the low-value buyer
leaves. The market now has 4 buyers and 9 sellers. The value
of c is initially 4.

Step 2. Loop over the categories in the pre-specified order.
For each category g, increase pg until one of the following
happens:

(a) The number of agents in g drops to rg · c, or —
(b) The weighted sum of prices increases to zero, where

the weights are the recipe constants, i.e.:
∑

g∈G rg · pg = 0.
In case (a), repeat the step with the next category in the

pre-specified order. After the last category, set c := c − 1
and cycle back to the first category. If c drops to 0 then the
auction ends and there is no trade.

In case (b), the auction terminates and the agents trade in
the final prices. If, in some category, there are more remain-
ing agents than needed to fill the procurement-sets, then a
lottery is used to select who will trade.

In the running example, at the first round, psellers in-
creases to −11 so that one seller leaves. Now there are 4
buyers and 8 sellers so exactly 4 PS are supported. How-
ever, the price-sum is 6+2 · (−11) < 0. Hence, we decrease
c to 3 and continue.

In the second round, pbuyers increases to 9 such that one
buyer leaves, and psellers increases to −8 such that two sell-
ers leave. The weighted sum of prices is 9 + 2 · (−8) < 0,
so we decrease c to 2 and continue.

In the third round, pbuyers increases to 13 such that one
buyer leaves. We start increasing psellers towards −5 such
that two sellers would leave, but during the increase, the
price hits −6.5, and then the sum of prices is 13 + 2 ·
(−6.5) = 0, so the auction stops.

There are now two remaining buyers (17, 14) and five re-
maining sellers (−1,−2,−3,−4,−5). All remaining buyers
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trade and pay 13; 4 out of 5 remaining sellers are selected at
random, they trade and receive 6.5.

Theorem 3. The ascending-prices auction of Subsection 4.1
is strongly-budget-balanced, individually-rational and obvi-
ously truthful, and its gain-from-trade approaches the opti-
mum when the optimal market size (k) approaches ∞.

Proof. SBB, IR and truthfulness are obvious — just as in
Theorem 2. We now analyze the gain-from-trade. Let c∗ be
the final value of c. Note that the number of agents remaining
in each category g is at least rg · c∗ and at most rg · (c∗ +1).

We claim that c∗ ≤ k ≤ c∗ + 1:

• First, suppose that the price pg of each category g is in-
creased such that exactly rg · c∗ agents remain. Now the
sum of prices is positive, and each price pg equals the
(rg · c∗ + 1)-th highest value in category g. This means
that there are at least c∗ procurement-sets with a positive
GFT, so k ≥ c∗.

• Second, suppose that the price pg of each category g is
decreased to its value at the end of round c∗+1, such that
exactly rg · (c∗+1) agents remain. Now the sum of prices
is negative. Each price pg equals the (rg · c∗ + rg + 1)-th
highest value in category g. The expression (rg ·c∗+rg+
1) is at most rg ·(c∗+2), with equality holding iff rg = 1.
This means that there are not (c∗ + 2) procurement-sets
with a positive GFT, so k ≤ c∗ + 1.

Hence, in each category g, the number of agents is at least
rg · (k− 1) and at most rg · (k+1). At least k− 1 deals are
done, and the participants are from the at most k+1 highest
sets of rg traders in each category g. From here, the proof is
similar to the gain-from-trade proof in Theorem 1.

5 Related Work

The literature on two-sided markets is large and we do
not attempt to cover it here; see e.g. (Brustle et al. 2017;
Babaioff et al. 2018; Babaioff, Goldner, and Gonczarowski
2020) for some recent references. Below we focus on auc-
tions for markets with three or more sides.

Babaioff and Nisan (2004) handle a multi-sided mar-
ket using multiple two-sided sub-markets, where each sub-
market hosts an independent double-auction. Their exam-
ple is the lemonade industry, which consists of lemon pick-
ers, squeezers, and drinkers. In our auction, all three cate-
gories bid together in a single centralized auction with recipe
(1, 1, 1); in their setting, there are three different double-
auctions, one each for pickers, squeezers and drinkers. The
sub-markets are constructed so that the optimal number of
deals is the same in all of them. So if the double-auction
mechanisms make deals as a function of the optimal num-
ber only, their protocol is guaranteed to have a material bal-
ance. However, their protocol does not preserve SBB: in
https://github.com/erelsgl/auctions we have a runnable ex-
ample in which the same SBB double-auction is used in
all sub-markets, but the combined outcome is not SBB.
Babaioff and Nisan (2004) do present a SBB variant of their
mechanism, but only in expectation, and it requires a prior

distribution on the agents’ valuations. In contrast, our mech-
anism is SBB with probability 1, and requires no prior.

Babaioff and Walsh (2005) extend the above work from
a linear supply-chain to an arbitrary directed acyclic graph.
For example, they consider a market in which pickers sell
lemons to squeezers, sugar-makers and squeezers sell to
manufacturers, and manufacturers sell lemonade to drinkers.
It still does not guarantee SBB.

Chen et al. (2005) consider a supply-chain auction with
a sole buyer and single item-kind, but there are different
producers in different supply-locations. The buyer needs a
different quantity of the item in different demand-locations.
The buyer conducts a reverse auction and has to pay, in addi-
tion to the cost of production, also the cost of transportation
from the supply-locations to the demand-locations. They do
not guarantee SBB. (Gonen, Gonen, and Elan 2007) general-
ized the above settings to a unified trade reduction procidure.

(McAfee 2008) designs fixed price SBB double auction
under the assumptions that the buyer’s distribution domi-
nates the seller’s distribution or that there is exponential dis-
tribution. Our result does not assume knowledge of the dis-
tribution of participating categories. Additionally, we also
allow for general number of categories as opposed to two.

Colini-Baldeschi et al.; Colini-Baldeschi et al. (2016;
2017) also presents SBB auctions. Their auctions target
double-sided and combinatorial markets respectively. How-
ever, their goal is to maximize social welfare as opposed to
our goal which is maximizing gain from trade2. Thus their
mechanisms are not asymptotically-optimal for gain from
trade. They also require a prior on the agents’ valuations.

(Feldman, Frim, and Gonen 2018; Feldman and Gonen
2018) presents a multilateral randomized market with buy-
ers, mediators and sellers in the context of ad auctions. Their
sellers are pre-associated with the mediators and they as-
sume that mediators and buyers arrive over time in some
uniform random order. Moreover, their trade matches are
conducted in two stages: first the mediator trade with the
buyer on behalf of his sellers and then the mediator transfers
payments to his matched sellers. Our auction unites all three
categories of buyer, seller and mediator actions into a single
simultaneous trade step.

Some works attempt to handle mechanisms with buy-
ers and sellers interacting through an intermediary or trader
such as (Feldman et al. 2010) and (Blume et al. 2007). How-
ever, their design reduces to a one-sided auction or a two-
sided auction.

The present work handles multiple categories of agents,
but each agent is single-parametric. An orthogonal line of
work (Segal-Halevi, Hassidim, and Aumann 2018a; 2018b;

2When optimizing gain from trade we optimize the difference
between the total value of the sold items for the buyers and the total
value of these items for the sellers. When optimizing social welfare
in a market we optimize the sum of the buying agents’ valuations
plus the sum of the unsold items’ value held by selling agents at the
end of trade. Despite their conceptual similarity, the two objectives
are rather different in approximation. In many cases the social wel-
fare approximation is close to the optimal social welfare solution;
however, the gain from trade approximation may not be within any
constant factor of the optimal gain from trade.
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Gerstgrasser et al. 2019; Gonen and Egri 2017) remains with
two agent categories (buyers and sellers), but aims to handle
multi-parametric agents. Another orthogonal line of work
gets around Myerson –Satterthwaite in a different way: it
relaxes truthfulness but keeps the maximum GFT. See e.g.
Lubin et al. (2008).

6 Future Work

The results in this paper can be generalized in several ways.
1. Allow several recipes of procurement-sets. For exam-

ple, suppose there are three categories: buyer, seller and pur-
chaser. Each PS should contain either a buyer and a seller,
or a purchaser and two sellers. In this case, even calculating
the optimal trade, without any strategic considerations, may
already be non-trivial.

2. Allow transaction costs. In general, each procurement-
set may have a different cost-of-transaction, depending on
the geographic locations of the agents in the PS, as well as
other factors. Again, such transaction costs make the com-
putation of the optimal trade difficult, even before strategic
considerations, and even when all transaction costs are com-
mon knowledge. We have preliminary results showing that,
without any restrictions on the transaction costs, there might
be no auction that satisfies all the desirable properties of
Theorem 1. We believe that such an auction can be found
given some natural restrictions on the transaction costs.
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