
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Explaining Propagators for String Edit Distance Constraints

Felix Winter,1 Nysret Musliu,1 Peter J. Stuckey2

1Christian Doppler Laboratory for Artificial Intelligence and Optimization for Planning and Scheduling
DBAI, TU Wien, Vienna, Austria
{winter,musliu}@dbai.tuwien.ac.at

2Monash University, Melbourne, Australia
peter.stuckey@monash.edu

Abstract

The computation of string similarity measures has been thor-
oughly studied in the scientific literature and has applications
in a wide variety of different areas. One of the most widely
used measures is the so called string edit distance which cap-
tures the number of required edit operations to transform a
string into another given string. Although polynomial time al-
gorithms are known for calculating the edit distance between
two strings, there also exist NP-hard problems from practi-
cal applications like scheduling or computational biology that
constrain the minimum edit distance between arrays of deci-
sion variables. In this work, we propose a novel global con-
straint to formulate restrictions on the minimum edit distance
for such problems. Furthermore, we describe a propagation
algorithm and investigate an explanation strategy for an edit
distance constraint propagator that can be incorporated into
state of the art lazy clause generation solvers. Experimental
results show that the proposed propagator is able to signif-
icantly improve the performance of existing exact methods
regarding solution quality and computation speed for bench-
mark problems from the literature.

Introduction

String comparison and matching are well studied topics in
computer science which have spawned a large number of
publications in the past e.g. (Wagner and Fischer 1974;
Ukkonen 1985; Navarro 2001). One of the most widely used
methods to quantify the similarity of two given strings is the
so called string edit distance (Wagner and Fischer 1974), that
counts the number of required edit operations to transform a
string into another given string.

Algorithms that can compute the edit distance between
two given strings have been thoroughly studied, and sev-
eral methods that use dynamic programming have been sug-
gested to efficiently calculate the minimum edit distance in
polynomial time e.g. (Ukkonen 1985). However, there also
exist NP-hard combinatorial optimization problems that aim
to minimize the edit distance between strings in the liter-
ature (Nicolas and Rivals 2003; Winter and Musliu 2019).
Solving such problems requires the repeated computation
of the string edit distance, and although an exact algo-
rithm using dynamic programming for one of these prob-

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

lems has been proposed by Kruskal (1983), such an ap-
proach has a run-time complexity which is exponential to the
instance size in the worst case. Therefore, several other tech-
niques have been proposed in the literature to tackle prac-
tically sized instances e.g. (Hayashida and Koyano 2016;
Jiang et al. 2003; Olivares-Rodrı́guez and Oncina 2008). Al-
though, most of these algorithms rely on approximations or
heuristic techniques (Jiang et al. 2003; Olivares-Rodrı́guez
and Oncina 2008) an exact approach using integer linear
programming has been recently proposed by Hayashida and
Koyano (2016). An important open research question is if
methods using constraint programming can improve the re-
sults of existing approaches.

In this paper, we propose a novel global constraint prop-
agator that can be used to efficiently solve subproblems
of constraint satisfaction and combinatorial optimization
problems that aim to minimize the string edit distance be-
tween arrays of decision variables. Furthermore, we in-
vestigate the incorporation of this constraint into a lazy
clause generation based solver (Ohrimenko, Stuckey, and
Codish 2009) and study how constraint propagation can be
explained. To show the practical applicability of the pro-
posed propagator, we solve two problems from the literature
that make use of edit distance constraints (Kohonen 1985;
Winter et al. 2019) using lazy clause generation and our
novel propagator. We evaluate the performance of the pro-
posed method by performing a large number of experiments
for these two problems and compare the outcomes with re-
sults produced by state of the art exact methods from the
literature.

Preliminaries

In this section we briefly provide background on the string
edit distance and lazy clause generation, as we will later as-
sume that the reader is familiar with these topics.

String Edit Distance

The notion of edit distance was first introduced by Wagner
and Fischer (1974) and has been thoroughly studied in the
literature ever since e.g. (Ukkonen 1985; Navarro 2001). In
the following we give a short review of the definition as well
as the traditional dynamic programming routine to calculate
the edit distance.

1676

The edit distance between two given strings s and t over
alphabet Σ is defined as the minimum number of editing op-
erations required to transform s into t (or vice versa). Let a
given string s consist of n characters s1, s2, . . . sn and an-
other string t consist of m characters t1, t2, . . . , tm, then we
distinguish between three different editing operations:

1. si → tj denotes a change of the character at position i in
string s to the character at position j in the second string
t.

2. si → ε denotes a removal of the character at position i in
string s.

3. ε → tj denotes an insertion of the character at position j
in string t.

The minimum edit distance between two strings s and
t can be calculated with the use of dynamic programming
(where ε denotes an empty string, s(i) denotes the sub-string
s[1 : i] of s, that is the first i characters of the string s or ε
if i = 0, γ denotes the cost of an edit operation, and d(i, j)
denotes the minimum edit distance between s(i) and t(j)):

d(0, 0) = 0

d(i, j) = min

⎧⎨
⎩
d(i− 1, j − 1) + γ(si → tj)

d(i, j − 1) + γ(ε → tj)

d(i− 1, j) + γ(si → ε)

(1)

The dynamic programming routine can be used to com-
pute the edit distance between two strings as long as the
following triangle inequality holds for the costs of the edit
operations:

γ(si → tj) ≤ γ(ε → tj) + γ(si → ε) (2)

We assume that if si = tj then γ(si → tj) = 0, that is
the edit distance of making no change is 0.

Throughout the paper in our examples we assume γ(ε →
c) = γ(c → ε) = 1 forall c ∈ Σ and γ(c1 → c2) = 2 if
c1 �= c2 forall {c1, c2} ⊆ Σ. Nevertheless, the presented
techniques can be applied also on any other cost assign-
ments, as long as the triangle inequality holds.

Example 1: As an example, consider two given strings s
and t where s = ABBC and t = ACB and assume that
costs for insertion/deletion are set to 1 while substitution
cost is set to 2. We can use the dynamic programming ap-
proach shown in Equation 1 to find out that the minimum
edit distance between s and t is 3. To visualize the calcu-
lation of the dynamic programming routine it is helpful to
illustrate intermediate results for all recursion steps as a ma-
trix, where each line in the matrix represents a letter of string
s while each column represents a letter of string t (ε repre-
sents an empty string). Each cell of such a dynamic pro-
gramming matrix will be set to the value of d(i, j) where i
is the associated row number and j is the associated column
number. Figure 1 illustrates the full dynamic programming
matrix for Example 1, and shows that finding the minimum
edit distance corresponds to finding the shortest path through
the dynamic programming matrix if one imagines a directed
arc network that connects adjacent single cells of the matrix.

Horizontal/vertical arcs will go in rightwards/downwards di-
rection and have a length of one in our example, as they
represent single character insertion/removal. Diagonal arcs
represent single character substitution and have a length of
two if the characters mismatch or a length of zero if two
characters are equal. �

ε A C B

ε 0 1 2 3

A 1 0 1 2

B 2 1 2 1

B 3 2 3 2

C 4 3 2 3

0

1

0

1

1

(a) DP Matrix

A − B B C

A C B − −

(b) Alignment of Strings

Figure 1: The dynamic programming matrix for calculating
the edit distance between two given strings s = ABBC
and t = ACB is shown in Figure 1a, where each in-
sertion/deletion causes a cost of one and each substitution
causes a cost of 2. It also shows the shortest path through
the dynamic programming matrix that leads to the minimum
edit distance of 3 in this case. The small number next to each
arrow denotes the cost for a single edit operation (a diagonal
move denotes keeping a single character, a downwards move
will delete a single character from string s and a rightwards
move will insert a single character to string t). Figure 1b
shows the alignment corresponding to the edits.

Lazy Clause Generation

In this paper we propose an explaining propagator that can
be used with a lazy clause generation (LCG) solver (Ohri-
menko, Stuckey, and Codish 2009). A LCG solver tracks
information about the reasons for any propagated domain
changes during search and stores explanations for each prop-
agation. In case of a failure, these explanations can then be
used to compute so called nogoods, which record the rea-
son for the failure in form of novel constraints. These no-
goods can then prevent the search from making similar sets
of faulty decisions later.

A LCG solver furthermore uses Boolean variables to rep-
resent integer variables. For example, a variable x with a do-
main D(x) = [l . . . u] will be represented by Boolean vari-
ables �x = d�, l ≤ d ≤ u and �x ≤ d�, l ≤ d < u. We use
�x �= d� to represent ¬�x = d� and �x ≥ d� to represent
¬�x ≤ d − 1�. To explain a propagation, a LCG solver will
define clauses over these Boolean variables. We will provide

1677

some examples later when we describe how to explain prop-
agation for the constraint propagator that we propose in this
paper.

Propagating Lower Bounds on the Minimum

Edit Distance

In this section we propose a novel global constraint prop-
agator that propagates lower bounds on the minimum edit
distance between two strings that are represented by posi-
tive integer arrays.

Assuming two positive integer variable arrays X and Y of
length n (X = [x1, . . . , xn], [y1, . . . , yn]) and a positive in-
teger variable ed, we introduce the edit distance constraint
ED(X,Y, ed) that will constrain ed to any value greater
or equal to the minimum edit distance between X and Y
(ed ≥ d(x, y)). In the following we refer to the domain of
any variable x as D(x).

The constraint ED additionally constrains all values x ∈
X and y ∈ Y to be in the range 0..|Σ|, where a value of
zero represents the end of a string and a positive value c
the cth character in an alphabet Σ. We specifically allow the
use of zero values so that the arrays X and Y can hold any
string of length ≤ n including the empty string. For reasons
of simplicity and to avoid symmetries, we further specify
that the constraint ED (separately) enforces that whenever
a variable xi is set to 0, all variables xj , j > i have to be set
to 0 as well, similarly for yi.

Example 2: Let arrays X = [1, 1, 2, 0, 0] and Y =
[1, 2, 2, 1, 1] represent two strings AAB and ABBAA. The
ED constraint would then propagate ed ≥ 4 and remove
any values smaller or equal to 3 in D(ed), as 4 is the min-
imum edit distance in this example. Another example ar-
ray X = [1, 0, 1, 2, 0] would violate the constraint indepen-
dently of the values assigned to Y and ed, since the zero
values of array X are not properly aligned at the end. �

We now propose an adaption of the standard dynamic pro-
gramming routine to propagate lower bounds on the edit
distance between two variable arrays. The idea is to build
an “optimistic” dynamic programming matrix similar to the
example shown in Figure 1, where we assume the best case
for variables that are unfixed (in other words we will as-
sume a zero cost diagonal move is possible when any char-
acter still appears in both corresponding variable domains).
In addition to the standard dynamic programming routine
previously defined in 1, we also have to include exceptional
cases for insertion and removals of empty string characters
as the variable arrays X and Y may contain less than n
characters. Therefore, whenever a variable domain contains
the value zero which denotes an empty string character, we
will assume that the insertion or removal costs of an empty
character will be 0, i.e. γ(ε → 0) = γ(0 → ε) = 0 and
γ(0 → c) = γ(c → 0) = 1, ∀c ∈ Σ. Algorithm 1 describes
the detailed propagation function and Figure 2 further shows
how a dynamic programming matrix can be used to calcu-
late a lower bound on the edit distance between two integer
variable arrays.

Algorithm 1: Propagate Edit Distance Lower Bound
fn PropagateEditDistance(X,Y, ed)

d = CalculateDpMatrix(X,Y)
lb = d(length(X), length(Y))
D(ed) = {x|x ∈ D(ed) ∧ x ≥ lb}

fn CalculateDpMatrix(X,Y)
n = length(X); m = length(Y)
d(0, 0) = 0 � d is a (n+ 1×m+ 1) matrix
for j = 1 to m do

insCost = min{γ(ε → c) | c ∈ D(yj)}
d(0, j) = d(0, j − 1) + insCost

for i = 1 to n do
remCost = min{γ(c → ε) | c ∈ D(xi)}
d(i, 0) = d(i− 1, 0) + remCost

for i = 1 to n; j = 1 to m do
insCost = min{γ(ε → c) | c ∈ D(yj)}
remCost = min{γ(c → ε) | c ∈ D(xi)}
subCost = min{γ(cx → cy)

| cx ∈ D(xi) \ {0}, cy ∈ D(yj) \ {0}}

d(i, j) = min

⎧⎨
⎩
d(i, j − 1) + insCost

d(i− 1, j) + remCost

d(i− 1, j − 1) + subCost

return d

Explaining Propagation

In a LCG solver we need to provide an explanation clause
which the solver can use to build an inference graph. When
a conflict occurs during search, the solver can then find no-
good constraints that are automatically created by analyzing
the inference graph. In the following we will describe how
inferences made by the edit distance propagator can be rep-
resented as an explanation clause.

Whenever a lower bound lb on the ed variable is propa-
gated, essentially what we have to achieve is to enforce the
corresponding Boolean variable �ed ≥ lb� to be set to true.
A correct explanation expl therefore consists of a set of lit-
erals so that the following proposition is valid:

∧
l∈expl

l → �ed ≥ lb� (3)

Furthermore, an explanation is considered to be minimal,
whenever it is not possible to remove any single literal l from
expl without invalidating Equation 3. In the following we
show how a minimal explanation can be generated for infer-
ences on the lower bound of the edit distance.

If we consider the example shown in Figure 2 we can see
that in this case a lower bound of 3 has been determined
for the edit distance and therefore the associated Boolean
variable �ed ≥ 3� would be set to true as a result of the
propagation. To explain this inference, we can think about
what could possibly be changed in the domains of variable
arrays X and Y to allow an edit distance ≤ 2, and then
negate such changes in our explanation.

If we look at the possible shortest paths in Figure 2, we

1678

ε {2, 3} {2, 3} {1} {0, 1}

ε 0 1 2 3 3

{1} 1 2 3 2 2

{2} 2 1 2 3 3

{1} 3 2 3 2 2

{3} 4 3 2 3 3

2
1

1

1

1

0 0

1

1
0

0

1

0

1

0

1

Figure 2: The dynamic programming matrix for calculating
a lower bound for the edit distance between two given vari-
able arrays X = [x1 = {1}, x2 = {2}, x3 = {1}, x4 =
{3}] and Y = [y1 = {2, 3}, y2 = {2, 3}, y3 = {1}, y4 =
{0, 1}]. Each line in the matrix represents a variable of array
X while each column represents a variable of array Y (ε rep-
resents an empty string). In the first column/line of the ma-
trix the domains of the corresponding variables are shown.
All possible shortest paths through the matrix that lead to the
lower bound for the edit distance of 3 in this case, are also
shown on the figure as arrows. As not all variables are fixed,
the best case (i.e. a possible match in characters, or a 0 cost
insertion) is assumed several times in this example.

can observe that we need to reduce the cost of at least one
of the edges towards the end of the matrix that have a cost
≥ 1. For example if x4 and y4 would allow the same value
assignment in their domain we could take another diagonal 0
cost move and improve the lower bound to 2. More generally
speaking, improvements to the edit distance can be achieved
if moves are possible that reduce the length of the shortest
path through the matrix.

The algorithm for generating a minimal explanation is
shown in Algorithm 2. It works backwards over the matrix of
(i, j) values starting from (n,m) collecting the constraints
C which must hold to ensure the lower bound lb. It stores
in s the minimal edit cost from a position to reach (n,m)
under the current set of constraint C in the explanation. The
algorithm is based on a priority queue (heap) which stores
node positions that are reachable under the current assump-
tions. We take the (lexicographically) largest node position
(i, j) off the heap, and then considers what characters c in
the domain of yj would allow a smaller lower bound via a
path from (i, j − 1) we add a constraint yj �= c preventing
this. The remaining characters are used to update the cost s
for position (i, j − 1) and it is pushed onto the heap. Note if
a node is pushed multiple times it only appears once on the
heap. Afterwards, we consider paths via (i− 1, j) similarly.
We only consider 0 edit operations (γ(ε → 0), γ(0 → ε)) as
long as no constraint �xi �= 0�, �yi �= 0� has been added to
C since the rules of correct string representation would not
allow any additional 0 operations then. Finally we consider
paths via (i− 1, j− 1). Here when a substitution (cx → cy)

Algorithm 2: Generate disequalities for minimal expla-
nation

fn GenerateExpl(X,Y, d, lb)
n = length(X);m = length(Y)
for i = 0 to n; j = 0 to m do

s(i, j) = lb+ 1

s(n,m) = 0 ; C = {} ; H = []
H.push(n,m)
while H is not empty do

(i, j) = H.popMax()
if s(i, j) ≥ lb then continue
if j − 1 ≥ 0 then

T = Σ ∪ {0 | ¬∃xk �= 0 ∈ C, k ≥ j}
for c ∈ T do

if d(i, j − 1) + γ(ε → c) + s(i, j) < lb
then

C.add(�yj �= c�)
else

s(i, j − 1) =
min(s(i, j−1), s(i, j)+γ(ε → c))
H.push(i, j − 1)

if i− 1 ≥ 0 then
T = Σ ∪ {0 | ¬∃xk �= 0 ∈ C, k ≥ i}
for c ∈ T do

if d(i− 1, j) + γ(c → ε) + s(i, j) < lb
then

C.add(�xi �= c�)
else

s(i− 1, j) =
min(s(i−1, j), s(i, j)+γ(ε → c))
H.push(i− 1, j)

if i− 1 ≥ 0 ∧ j − 1 ≥ 0 then
for cx ∈ Σ, cy ∈ Σ do

if d(i− 1, j − 1) + γ(cx →
cy) + s(i, j) < lb then

C.add(�xi �= cx�) OR
C.add(�yj �= cy�)

else
s(i− 1, j − 1) = min(s(i− 1, j −
1), s(i, j) + γ(cx → cy))
H.push(i− 1, j − 1)

return C

would lead to a path which is shorter than lb we have a
choice we can enforce xi �= cx or yj �= cy . In practice
we make choices dependent on the current domains of xi

and yj . If xi is fixed and D(xi) = {cx} then we choose
the restriction on yj and if D(xi) = {c}, c �= cx we choose
the restriction on xi. Similarly if yj is fixed. If only one of
the disequations holds in the current domain we choose that
(note that its impossible that both do not hold, otherwise lb
would not be the lower bound). In the remaining cases we
can choose arbitrarily.

1679

s ε {2, 3} {2, 3} {1} {0, 1}

ε 3 2 2 3 4

{1} 2 1 1 2 3

{2} 1 2 1 1 2

{1} 2 1 0 1 1

{3} 3 2 1 0 0

d ε {2, 3} {2, 3} {1} {0, 1}

ε 0 1 2 3 3

{1} 1 2 3 2 2

{2} 2 1 2 3 3

{1} 3 2 3 2 2

{3} 4 3 2 3 3

i ii

iii

vi

iv
v

i ii

iii

vi

iv
v

i: �x1 �= 2�, �x1 �= 3�, �y1 �= 1�

ii: �x1 �= 2�, �x1 �= 3�, �y2 �= 1�

iii: �x3 �= 2�, �x3 �= 3�, �y2 �= 1�

iv: �x4 �= 1�, �x4 �= 2�, �y4 �= 3�

v: �x4 �= 0�

vi: �y3 �= 0�

Figure 3: The matrix on the left visualizes the contents of matrix s at the end of the explanation algorithm (Algorithm 2) that
is called for two variable arrays X = [x1 = {1}, x2 = {2}, x3 = {1}, x4 = {3}] and Y = [y1 = {2, 3}, y2 = {2, 3}, y3 =
{1}, y4 = {0, 1}], an edit distance lower-bound of 3 and the matrix d which is shown in the middle. Additionally, six sets of
disequalities that are determined by the explanation algorithm are listed on the right. For each set of generated disequalities
the corresponding edit operation is also visualized in the two matrices by solid arrows highlighting the operations that could
lower the edit distance bound if their cost would be reduced. The dotted arrows on the other hand indicate operations that also
would need to be lowered together with operations (ii or iii), to reach a reduced lower-bound. However, since the explanation
algorithm aims to minimize the number of generated explanation clauses and it is sufficient to only produce disequalities for
the operations that actually cause a shortest path lower than the current lower-bound in Algorithm 2, no sets of disequalities are
inserted for the dotted arrows.

The result of the code is to return C such that C → �ed ≥
lb�. Note that we can simplify C by replacing a set of dise-
quations �xi �= c�, 0 ≤ c < l by �xi ≥ l� and similarly a set
of disequations �xi �= c�, u < c < |Σ| by �xi ≤ u�.

Example 3: Consider generating the explanation for the
case shown in Figure 2. We start by setting s(i, j) = lb+1 =
4 everywhere, then resetting s(4, 4) = 0 and pushing (4,4).
We pop off (4, 4). Since d(4, 3) = 3 we cannot get a path of
length ≤ 2 via it We set s(4, 3) = 0 (for the case that y4 = 0
and push (4, 3)). Since d(3, 4) = 2 we can get a path of
length ≤ 2 via it if x4 = 0 so we add �x4 �= 0� to C. We set
s(3, 4) = 1 since all other deletions cost 1 and push (3, 4).
Since d(3, 3) = 2 we can get paths of length ≤ 2 via this po-
sition if the characters for x4 and y4 are the same. We need
to add one of each pair �x4 �= c� or �y4 �= c� for all c ∈ 1..3.
We choose �x4 �= 1�, �y4 �= 3�, because of the values in
the current domains of x4 and y4. The remaining choice is
arbitrary: say we add �x4 �= 2� to C. We set s(3, 3) = 2 and
push (3, 3). We pop off (4,3). Since d(3, 3) = 2 we could
get a path of length ≤ 2 if x4 = 0 but we already inserted a
constraint of the form �x4 �= 0�, so we do not consider 0 edit
operations in that direction any longer and do not change the
cost to of s(3, 3). Since d(3, 2) = 3 there is no path less than
lb possible, we set s(3, 2) = 0 and push it. Since d(4, 2) = 2
we can get a path of length ≤ 2 via it if y3 = 0 so we add
�y3 �= 0� to C and push (4,2) as other insertions all cost 1.
We pop off (4, 2) and its treatment is similar, followed by
(4, 1) and (4, 0). Next we pop (3, 4) and will set s(2, 4) = 2
and push (2, 4) as we cannot directly improve the lb. Sim-
ilarly we set s(2, 3) = 1 and s(3, 3) will have its as-
signed value changed to 1, since we can reach (4,4) quicker
via (3,4). The process continues eventually collecting C =
{�x1 �= 2�, �x1 �= 3�, �x3 �= 2�, �x3 �= 3�, �x4 �= 0�, �x4 �=
1�, �x4 �= 2�, �y1 �= 1�, �y2 �= 1�, �y3 �= 0�, �y4 �= 3�}.

It can be simplified to {�x1 ≤ 1�, �x3 ≤ 1�, �x4 ≥ 3�,
�y1 ≥ 2�, �y2 ≥ 2�, �y3 ≥ 1�, �y4 ≤ 2�}. �

Figure 3 visualizes matrix s after generating the explana-
tion for Example 3 and summarizes which constraints have
been produced.

We can argue that the explanation produced by Gener-
ateExpl is minimal since the only time we add constraints
to C is when otherwise there would be a path to (n,m) of
length less than lb. Removing any explanation would cause
such a path to exist, thus making the explanation incorrect,
hence it is minimal.

Experimental Evaluation

We implemented the constraint propagation and explana-
tion algorithms proposed in this paper for use with a recent
version of the lazy clause generation solver Chuffed (Chu
2011). Afterwards, we evaluated our constraint propagator
on two NP-hard problems that utilize the edit distance con-
straint described in this paper.

All of our experiments have been conducted on an Intel
Xeon E5345 2.33 GHz CPU with 48 GB RAM, using a sin-
gle CPU core.

Paint Shop Scheduling

One of the problems we consider is a real life scheduling
problem that we have recently described (Winter et al. 2019;
Winter and Musliu 2019). The aim of this scheduling prob-
lem is to find a feasible production plan that minimizes
setup times and costs. Production in the paint shop is or-
ganized in cyclic production rounds, where each round has
its own scheduling sequence of different jobs that are pro-
duced within that cycle. The evaluation of setup costs for
paint shop scheduling requires calculating the edit distance
between two consecutive cycles, as the required change in

1680

CP CP+global

Instance Cost Runtime Cost Runtime

I1 775* 9.95 775* 3.63
I2 842* 1.30 842* 0.57
I3 961* 3.76 961* 1.75
I4 918* 178.46 918* 25.05
I5 530* 126.64 530* 51.03
I6 842* 9.76 842* 5.31
I7 1046 ∞ 1040 ∞
I8 1237* 2915.83 1237* 445.43
I9 1006 ∞ 992 ∞
I10 973 ∞ 966 ∞
I11 — ∞ — ∞
I12 — ∞ — ∞

Table 1: Results for the experiments conducted on bench-
mark instances 1-12 for the paint shop scheduling prob-
lem (Winter et al. 2019). Columns 2 and 3 show the best
objective value achieved within one hour as well as the run-
time needed to prove an optimal solution in seconds for the
Constraint Programming model from (Winter and Musliu
2019) (CP). Similarly, Columns 4 and 5 show the results
achieved with the Constraint Programming model that uses
the global constraint propagator proposed in this paper in-
stead of the constraint decomposition for the edit distance
constraint (CP+global). The best result within each line is
formatted in bold face and results marked with a * denote
proven optimal solutions. ∞ represent a time out (1 hour),
while — means that no solution at all could be found within
the time limit.

production utilities corresponds to the minimum edit oper-
ations between the two scheduling sequences. Paint shop
scheduling defines the following edit operation costs: γ(ε →
c) = γ(c → ε) = 1 forall c ∈ Σ and γ(c1 → c2) = 2 if
c1 �= c2 forall {c1, c2} ⊆ Σ. The full problem definition
is unfortunately too extensive to include in this paper, we
therefore refer the reader to (Winter et al. 2019) for further
details about the problem.

For our experiments we used 12 benchmarks instances
that we have previously published (Winter et al. 2019). We
used the constraint programming model from (Winter and
Musliu 2019) and replaced the edit distance constraint de-
composition with the global constraint propagator proposed
in this paper. For each of the instances we used the same pro-
grammed search strategies that have been used for the final
experiments in (Winter and Musliu 2019). Afterwards, we
ran the Chuffed solver with both the existing decomposition
model and a model that uses the propagator proposed in this
paper on all 12 instances within a time limit of 1 hour. The
results of these experiments are shown in Table 1. We see in
the table that the model using the global constraint produces
equally good or improved results for all of the benchmark in-
stances compared to the results produced by the previously
proposed constraint decomposition. Both models are able to
prove optimality for 7 of the 12 instances and can produce 3
upper-bounds within 1 hour, however all of the upper bounds

CP nolearn CP+Global nolearn

Instance Cost Runtime Cost Runtime

I1 3282 ∞ 775* 1617.15
I2 842* 13.24 842* 0.57
I3 961* 519.41 961* 1.76
I4 — ∞ 918* 79.77
I5 — ∞ — ∞
I6 17234 ∞ 842* 6.25
I7 — ∞ — ∞
I8 — ∞ — ∞
I9 — ∞ — ∞
I10 — ∞ 973 ∞
I11 — ∞ — ∞
I12 — ∞ — ∞

Table 2: Results for the experiments conducted on bench-
mark instances 1-12 for the paint shop scheduling prob-
lem (Winter et al. 2019) without clause learning. Columns
2 and 3 show the best objective value achieved within one
hour as well as the run-time needed to prove an optimal
solution in seconds for the Constraint Programming model
from (Winter and Musliu 2019) (CP nolearn). Similarly,
Columns 4 and 5 show the results achieved with the Con-
straint Programming model that uses the global constraint
propagator proposed in this paper instead of the constraint
decomposition for the edit distance constraint (CP+global
nolearn).

produced with the global constraint propagator are improved
compared to the upper bounds achieved with the decomposi-
tion. When we compare run-times for instances where both
solvers could prove optimality, we can clearly see that the
global propagator requires significantly less run-time to find
optimal solutions. Both methods are not able to produce any
solutions for the two largest instances (I11 and I12) within
one hour.

To investigate the effect of the global propagator with-
out lazy clause learning, we further repeated all experiments
with the paint shop scheduling instances without clause
learning (we set the nolearn parameter for chuffed). The re-
sults produced without the explanation algorithm are shown
in Table 2. Without clause learning, the constraint propa-
gator produced improved results compared to the constraint
decomposition for four instances and could further reduce
the required runtime to prove optimality for two instances.
The results indicate the effectiveness of the constraint prop-
agator even without lazy clause generation.

The Median String Problem

To evaluate our constraint propagator we also consider the
median string problem, which has been thoroughly studied
in the literature (e.g. (Kohonen 1985; Hayashida and Koyano
2016)).

The median string problem is formulated as follows:
Given a set of n strings S (all strings of length ≤ k) over
a finite alphabet Σ, find a string that minimizes the global
edit distance to each of the given strings.

1681

The global edit distance D(s, S) between a string s and
a set of strings S over the finite alphabet Σ is defined as
follows:

D(s, S) =
∑
s′∈S

d(s, s′) (4)

Then the median string is defined as any string m over Σ
where D(m,S) ≤ D(w, S) holds for any string w over the
alphabet Σ.

We generated a large number of instances following
the instance generation procedure that has been proposed
in (Hayashida and Koyano 2016) to evaluate the perfor-
mance of different exact solution approaches: Our instance
generation routine considered different numbers of strings
n = [2, 4, 6, 10, 15] as well as different maximum string
lengths k = [3, 5, 8, 13, 20]. We used a simple alphabet
consisting of 4 different characters Σ = {1, 2, 3, 4} to ran-
domly generate 10 different instances for each of the possi-
ble |n × k| configurations, totaling in 250 benchmark in-
stances. To randomly generate 10 different instances per
configuration we implemented two procedures: Five of the
instances are generated by randomly assigning the letters sij
at positions j ∈ {1, . . . , k} for each string i ∈ {1, . . . , n}.
Each letter is assigned to sij = min (1 +
|α|�, |Σ|), where
α follows a normal distribution with mean 0 and variance 1.
The other five instances of each configuration are generated
by performing 100 random single character edit operations
on an initial string of length k that initially contains only the
first letter of the alphabet Σ. In each of the 100 edit iterations
we randomly select a feasible single character insertion, sin-
gle character removal or single character substitution.

We compare the performance of our edit distance con-
straint propagator (CP+global) on the median string prob-
lem with an existing mixed integer programming (MIP) for-
mulation from (Hayashida and Koyano 2016) as well as
a Constraint Programming (CP) model that uses the same
edit distance constraint decomposition as for the paint shop
scheduling to solve the median string problem. In our ex-
periments we use the edit operations costs that are known as
levensthein distance, as these costs have often been used for
median string problems e.g. (Hayashida and Koyano 2016):
γ(ε → c) = γ(c → ε) = 1 forall c ∈ Σ and γ(c1 → c2) = 1
if c1 �= c2 forall {c1, c2} ⊆ Σ.

We performed experiments with all of the 250 benchmark
instances under a time limit of 10 minutes, using a recent
version of the Chuffed solver (Chu 2011) for the CP model
and the CP model that uses our propagator, as well as Gurobi
8.0.1 (Gurobi Optimization 2019) for experiments with the
MIP model that was previously proposed in (Hayashida and
Koyano 2016).

Table 3 and Figures 4 and 5 summarize the results of our
experiments with the median string benchmarks.

Looking at the results shown in Table 3, we can see that
the CP model that uses the global edit distance propagator
produces the largest number of best found solutions as well
as the largest number of optimal solutions found. Further-
more, the approach can prove optimality faster than the MIP
model and the CP model without the global propagator for

MIP CP CP+global

opt 208 180 227
proven opt 197 169 227
best 213 180 246
fastest proof 0 0 227
avg time 143.16 219.12 61.61
std dev time 243.37 277.52 175.66

Table 3: Summarized experimental results for the median
string problem. Column 2 displays results achieved with the
MIP formulation from (Hayashida and Koyano 2016), while
column 3 displays results achieved with the edit distance
constraint decomposition from (Winter and Musliu 2019).
Column 4 shows results for the global constraint propagator
proposed in this paper. Line 1 shows the number of opti-
mal solutions found, line 2 shows for how many instances
optimality could be proven within the time limit, and line
3 shows the number of solutions that have the overall best
found objective value. Line 4 displays for how many in-
stances the method could provide the fastest optimality proof
and lines 5 and 6 show the average required runtime, as well
as the standard deviation of all required runtimes in the ex-
periments.

●●●
●

●

●

●

●

●1.2

1.6

2.0

CP CP + Propagator MIP

So
lu

tio
n

co
st

 /
be

st
 k

no
w

n
co

st

Figure 4: Box plot displaying the differences in quality of so-
lutions for median string experiments, omitting 70 instances
where all three approaches gave equal results. The vertical
axis represents the relative objective value (objective value
of solution divided by best found objective). Except for three
outliers, the best solution cost was produced with the global
propagator. Some outliers with values higher than 2.5 for the
CP approach without the propagator have been omitted for a
better visualization.

all instances that can be solved to optimality. When compar-
ing the decomposition based CP model with the MIP model,
the results show that the MIP model requires less runtime
to prove optimality and can find better solutions for a larger
number of instances.

Figure 4 compares the quality of solutions where not all
of the three considered approaches produced an equal result
within 10 minutes. The results show, that except for a few
outliers the approach using the constraint propagator always

1682

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

0

100

200

300

CP CP + Propagator MIP

So
lu

tio
n

tim
e

/ f
as

te
st

 o
pt

im
al

ity
 p

ro
of

Figure 5: Box plot comparing the run-times for the 178 in-
stances where all methods proved optimality. The vertical
axis represents the required run-time divided by the overall
shortest optimality proof time for each instance. The fastest
optimality proof was in all cases achieved with the CP model
that uses the constraint propagator proposed in this paper.
Some outliers with values higher than 300 for the CP ap-
proach without the propagator and the MIP approach have
been omitted for a better visualization.

produced the best results, while the MIP model seems to
overall produce better results regarding solution quality than
the CP model which uses a constraint decomposition.

Figure 5 compares the run-time required to prove opti-
mality for those instances where all three approaches could
prove optimality within 10 minutes. The box plots show that
the approach using the propagator always proved optimal-
ity within the shortest run-time in our experiments. Further-
more, it seems that the decomposition based CP model per-
forms similarly to the MIP model when it comes to proving
optimality, although the majority of instances have a shorter
run-time with the CP model.

Conclusion

In this paper, we propose a novel edit distance constraint
propagator which can be used to model constraints appear-
ing in NP-hard problems that limit the edit distance between
arrays of decision variables. We define algorithms to per-
form constraint propagation and to explain propagated infer-
ences for the edit distance constraint, thus allowing its use
in powerful lazy clause generation solvers, that define the
state of the art for many NP-hard combinatorial optimization
problems. Our experimental results show that a lazy clause
generation based solver that uses an edit distance constraint
propagator is able to outperform state of the art MIP and CP
techniques for these problems in terms of solution quality
for the majority of the considered benchmark instances, and
can significantly reduce the required run-time for proving
optimal solutions.

In future work we will extend the propagator to use an
upper bound on edit distance ed to reduce the domains of
string variables xi, yj .

Acknowledgments The financial support by the Austrian
Federal Ministry for Digital and Economic Affairs and the
National Foundation for Research, Technology and Devel-
opment is gratefully acknowledged. Special thanks go to
Georg Faustmann and Jakob Preininger who helped discov-
ering the appearance of string edit distance constraints in
paint shop scheduling problems.

References
Chu, G. 2011. Improving Combinatorial Optimization. Ph.D.
Dissertation, Department of Computing and Information Systems,
University of Melbourne.
Gurobi Optimization, L. 2019. Gurobi optimizer reference manual.
Hayashida, M., and Koyano, H. 2016. Finding median and center
strings for a probability distribution on a set of strings under leven-
shtein distance based on integer linear programming. In BIOSTEC
(Selected Papers), volume 690 of Communications in Computer
and Information Science, 108–121. Springer.
Jiang, X.; Abegglen, K.; Bunke, H.; and Csirik, J. 2003. Dynamic
computation of generalised median strings. Pattern Anal. Appl.
6(3):185–193.
Kohonen, T. 1985. Median strings. Pattern Recognition Letters
3(5):309–313.
Kruskal, J. B. 1983. An overview of sequence comparison: Time
warps, string edits, and macromolecules. SIAM Review 25(2):201–
237.
Navarro, G. 2001. A guided tour to approximate string matching.
ACM Computing Surveys 33(1):31–88.
Nicolas, F., and Rivals, E. 2003. Complexities of the centre and
median string problems. In CPM, volume 2676 of Lecture Notes in
Computer Science, 315–327. Springer.
Ohrimenko, O.; Stuckey, P. J.; and Codish, M. 2009. Propagation
via lazy clause generation. Constraints 14(3):357–391.
Olivares-Rodrı́guez, C., and Oncina, J. 2008. A stochastic ap-
proach to median string computation. In SSPR/SPR, volume 5342
of Lecture Notes in Computer Science, 431–440. Springer.
Ukkonen, E. 1985. Algorithms for approximate string matching.
Information and Control 64(1-3):100–118.
Wagner, R. A., and Fischer, M. J. 1974. The string-to-string cor-
rection problem. J. ACM 21(1):168–173.
Winter, F., and Musliu, N. 2019. Constraint based modeling for
scheduling paint shops in the automotive supply industry. Techni-
cal report, TU Wien, CD-TR, 2019/1.
Winter, F.; Musliu, N.; Demirovic, E.; and Mrkvicka, C. 2019. So-
lution approaches for an automotive paint shop scheduling prob-
lem. In ICAPS, 573–581. AAAI Press.

1683

