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Abstract

We propose a hard thresholding method based on stochas-
tically controlled stochastic gradients (SCSG-HT) to solve
a family of sparsity-constrained empirical risk minimization
problems. The SCSG-HT uses batch gradients where batch
size is pre-determined by the desirable precision tolerance
rather than full gradients to reduce the variance in stochastic
gradients. It also employs the geometric distribution to de-
termine the number of loops per epoch. We prove that, sim-
ilar to the latest methods based on stochastic gradient de-
scent or stochastic variance reduction methods, SCSG-HT
enjoys a linear convergence rate. However, SCSG-HT now
has a strong guarantee to recover the optimal sparse estima-
tor. The computational complexity of SCSG-HT is indepen-
dent of sample size n when n is larger than 1

ε
, which en-

hances the scalability to massive-scale problems. Empirical
results demonstrate that SCSG-HT outperforms several com-
petitors and decreases the objective value the most with the
same computational costs.

Introduction
We consider the following sparsity-constrained empirical
risk minimization (ERM) problems, which have been widely
used in high-dimensional data analyses (Donoho and oth-
ers 2006; Tropp and Gilbert 2007; Bahmani, Raj, and
Boufounos 2013; Jalali, Johnson, and Ravikumar 2011),

min
x∈Rd

f(x) :=
1

n

n∑

z=1

fz(x) subject to ‖x‖0 ≤ k, (1)

where f(x) is a smooth and (non-strongly) convex function,
fz(x) (z ∈ [n] := {1, 2, . . . , n}) is an individual loss as-
sociated with the zth sample, ‖x‖0 denotes the l0-norm of
a vector, i.e., computes the number of nonzero entries in x,
and the integer k is the required sparsity parameter. Prob-
lem (1) plays an essential role in many statistical learning,
machine learning, and signal processing problems.

Due to the non-convexity of the cardinality constraint,
finding a solution to Problem (1) is generally NP-hard
(Natarajan 1995). The l0-constrained linear regression prob-
lems or those with a quadratic loss function gained sig-
nificant attention first. Many greedy-based algorithms have
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been developed to solve the problems such as matching pur-
suit (Mallat and Zhang 1993), orthogonal matching pur-
suit (Pati, Rezaiifar, and Krishnaprasad 1993), compressive
sampling matching pursuit (Needell and Tropp 2009), hard
thresholding pursuit (Foucart 2011), iterative hard thresh-
olding (Blumensath and Davies 2009) and subspace pursuit
(Dai and Milenkovic 2009). These algorithms largely fall
into the regimes of either matching pursuit methods or it-
erative hard thresholding (HT) methods.

For an arbitrary loss function (not restricted to quadratic
functions), (Bahmani, Raj, and Boufounos 2013) proposed a
greedy algorithm called Gradient Support Pursuit (GraSP).
However, GradSP requires to find an optimal solution to
argmin f(x) over the identified support after thresholding,
which does not have analytical solutions for an arbitrary
loss, and thus could be time-consuming. For the general
form of Problem (1), matching pursuit methods encounter
the same issue as GraSP. Later, coordinate-wise algorithms
and block decomposition algorithms also were developed
(Patrascu and Necoara 2015; Yuan, Shen, and Zheng 2019).
However, they may either cycle indefinitely, if the minimiza-
tion step has multiple solutions, or need to solve a subprob-
lem globally using combinatorial search methods at each it-
eration, which may fail for very large sparsity k. Hence, it-
erative gradient-based HT methods have gained significant
interest and become popular for nonconvex sparse learning.

Iterative HT methods include gradient descent HT (GD-
HT) method (Jain, Tewari, and Kar 2014), stochastic gra-
dient descent HT (SG-HT) method (Nguyen, Needell, and
Woolf 2017), hybrid stochastic gradient HT (HSG-HT)
method (Zhou, Yuan, and Feng 2018), and stochastic vari-
ance reduced gradient HT (SVRG-HT) method (Li et al.
2016b). These algorithms update the parameter iterate xt

via gradient descent or its variants, and then apply the HT
operator to enforce sparsity of x. The computation can be
concisely written as xt+1 = Hk(x

t − ηvt), where η is the
learning rate, vt can be the full gradient, stochastic gradi-
ent or variance reduced gradient at the tth iteration, and
Hk(·) : Rd → R

d denotes the HT operator that preserves
the top k elements in x and sets other elements to 0.

Importantly, we point out that the computational com-
plexity of iterative HT methods mainly consists of two parts:
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Table 1: Comparisons of different iterative hard thresholding algorithms for Problem (1) where κs = Ls

ρs
is the restricted

condition number with step size η and s = 2k + k∗. The number of IFO, number of hard thresholding and estimation error are
calculated based on the analysis of parameter estimation error, i.e., ‖xt−x∗‖, between the k−sparse iterate xt at iteration t and
the optimal solution x∗ to Problem (1). Estimation error function g(x∗) is the residual term, which is determined by ∇f(x∗).

Algorithm Reference Constraint
on κs

Constraint
on ρs

# of IFO # of Hard
Thresholding

Estimation Error
g(x∗)

GD-HT (Yuan, Li, and Zhang
2014)

No No O(nκs log(
1
ε )) O(κs log(

1
ε )) O(η‖∇f(x∗)‖)

SG-HT (Nguyen, Needell,
and Woolf 2017)

≤ 4
3 No O(κs log(

1
ε )) O(κs log(

1
ε )) O( 1n

∑n
z=1‖∇fz(x
∗)‖)

HSG-HT (Zhou, Yuan, and
Feng 2018)

No Yes1 O( κs

ρsε
) O(κs log(

1
ε )) O(‖πĨ(∇f

(x∗))‖)
SVRG-HT (Li et al. 2016b) No No O((n+ κs)

log( 1ε ))
O((n+ κs)

log( 1ε ))
O(

√
s‖∇

f(x∗)‖∞)
SCSG-HT Ours No No O(min{n, 1

ε }
κs log(

1
ε ))

O(min{n, 1
ε }

κs log(
1
ε ))

O(
√
η‖πĨ

(∇f(x∗))‖)

1 The constraint of ρs is for asymptotic IFO complexity.

i) the computation of gradients and ii) the operation of hard
thresholding, which are represented by the number of IFO
calls (see Definition 2) and the number of HT operations,
respectively. The number of IFO calls takes more weight
than the number of HT operations in complexity analysis for
Problem (1) because gradients are more expensive to com-
pute than sorting a vector to take the top k elements.

It has been proved that the sequence of parameter iter-
ates xt generated by the GD-HT can approximate the op-
timal sparse solution with an arbitrary precision tolerance.
As shown in Table 1, the expected error between the iter-
ate xt and the optimal solution x∗ can be bounded in the
order of η‖∇f(x∗)‖. Although ‖∇f(x∗)‖ is a fixed non-
zero term due to the sparsity constraint on x∗, η can be cho-
sen small. However, its computational complexity depends
on the sample size n which makes the algorithm hard to
scale. Stochastic versions of the GD-HT method, such as
SG-HT and HSG-HT, and SVRG-HT, have then been devel-
oped to improve computational efficiency, but a fixed term
based on the norm of ‖∇f(x∗)‖ is introduced to the bound
of estimation error. The algorithms no longer guarantee to
produce solutions arbitrarily close to the optimal solution.
There are also other problems in the convergence analysis of
these algorithms. For instance, the SG-HT assumes that the
condition number κs of the objective function is very small
(≤ 4

3 ), which is hardly satisfied in practice. For a restricted
ρs-strongly convex objective function f , the computational
complexity of HSG-HT is proportional to 1

ρs
, so it requires

ρs to be relatively large. The sample size n comes back to
affect the IFO complexity of the SVRG-HT.

We propose to use stochastically controlled stochastic
gradients (SCSG) in the HT method. Our main contribu-
tions are summarized as follows.
• It is the first time that SCSG methods are incorporated

into a HT operator which shows clear advantages over the
state of the art. It uses batch gradients to approximate the

computationally-expensive full gradients in variance re-
duction. Although it introduces a bias to the updating di-
rection vt, we have used new theoretical ingredients to
control the balance between this bias and batch size to
show a strong convergence result.

• As shown in Table 1, the convergence and complexity
analysis of SCSG-HT does not need strong assumptions
as required by the SG-HT and HSG-HT methods. More
importantly, the step size η comes back to the estima-
tion error bound (similar to the full gradient GD-HT) to
achieve better parameter accuracy with a linear conver-
gence rate.

• The computational complexity of SCSG-HT is indepen-
dent of the sample size n when n is larger than 1

ε where
ε is a pre-chosen error tolerance. Extensive experiments
also show that it decreases the objective value fastest
among all competitors in both situations when a small ε is
required (high precision regime) and when ε can be bigger
(medium precision regime).

Related Work

The GD-HT methods have been comprehensively stud-
ied in compressed sensing community and sparse learning
community (Blumensath and Davies 2009; Foucart 2011;
Yuan, Li, and Zhang 2014; Jain, Tewari, and Kar 2014;
Garg and Khandekar 2009). At the tth iteration, xt+1 =
Hk(x

t − η∇f(xt)) where ∇f(xt) is the full gradient. For
GD-HT methods, linear convergence rate to the optimal so-
lution x∗ can be guaranteed with an arbitrary estimation ac-
curacy (Yuan, Li, and Zhang 2014; Jain, Tewari, and Kar
2014). Compared with convex relaxation of the cardinality
constraint, such as imposing l1-norm of ‖x‖1 ≤ δ (Tibshi-
rani 1996; Van de Geer and others 2008), solving Problem
(1) via GD-HT methods often achieves comparable empiri-
cal performance and can be more computationally efficient.
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However, despite these desirable properties, GD-HT meth-
ods still need to compute the full gradient at each iteration
and thus can be difficult to scale with large datasets.

The SG-HT methods have been recently proposed to
improve computational complexity utilizing the finite-sum
structure of Problem (1) (Nguyen, Needell, and Woolf 2017;
Li et al. 2016a; Zhou, Yuan, and Feng 2018). At the tth it-
eration, xt+1 = Hk(x

t − η∇fz(x
t)), where ∇fz(x

t) is the
stochastic gradient computed on sample z. Even though the
computational complexity of SG-HT is independent of sam-
ple size n, it requires the restricted condition number κs to
be ≤ 4

3 , which is a strong constraint and is hard to satisfy
in real-life high-dimensional problems. To overcome this is-
sue, (Zhou, Yuan, and Feng 2018) proposes HSG-HT algo-
rithm, which increases mini-batch size over iterations and
successfully removes its dependence on the restricted con-
dition number, at the cost that the number of IFO calls for
gradient computation is linearly dependent on 1

ε instead of
log( 1ε ) in the SG-HT algorithm, and is also linearly depen-
dent on 1

ρs
, where ρs can be difficult to control in practice.

The SVRG-HT method has been designed for sparse
learning inspired by the success of SVRG methods (Li et
al. 2016b). Variance reduction methods have been exten-
sively studied for convex optimization, such as, the SVRG
(Johnson and Zhang 2013) and stochastic average gradient
(SAGA) (Defazio, Bach, and Lacoste-Julien 2014) methods,
are well known for their fast convergence. In nonconvex op-
timization, variance reduction methods have been proved to
converge to first-order stationary points (Reddi et al. 2016;
Lei et al. 2017). Benefiting from the variance reduction tech-
nique, the SVRG-HT method can converge more stably and
efficiently with a higher estimation accuracy than SG-HT
methods. Unlike SG-HT methods, the convergence analy-
sis for the SVRG-HT method allows an arbitrary bounded
restricted condition number. Although the IFO complexity
of SVRG-HT is substantially improved over SG-HT meth-
ods, the overall complexity still scales linearly with respect
to the sample size n. Therefore, for large-scale datasets, the
SVRG-HT method may still suffer.

Preliminaries

We use lowercase letters, e.g. x, to denote a vector and
use ‖ · ‖ to denote the l2−norm of a vector. In this paper,
the notations O(·) and Ω(·) are asymptotic upper bounds
and asymptotic lower bounds respectively. The operator E[·]
represents taking expectation over all random variables, [n]
denotes the integer set {1, ..., n}, ∇f(·), ∇fI(·) and ∇fz(·)
are the full gradient, the stochastic gradient over a mini-
batch I ⊂ [n] and the stochastic gradient over a training
example indexed by z ∈ [n], respectively, and I(·) is an in-
dicator function. The notation supp(x) means the support
of x or the index set of non-zero elements in x. The sup-
port I(j)

t+1 = supp(x∗) ∪ supp(x
(j)
t ) ∪ supp(x

(j)
t+1), is as-

sociated with the t + 1 iteration at the jth epoch (and I is
used throughout the paper without ambiguity). The projector
πI(x) takes only the elements of x indexed in I.

Definition 1. A random variable N follows a geometric dis-

tribution Geom(γ), denoted as N ∼ Geom(γ), if N is a
non-negative integer and the probability distribution is

P (N = k) = (1− γ)γk

for any k = 0, 1, · · · . Then, we know E[N ] = γ
1−γ .

Definition 2. (Agarwal and Bottou 2014) (Incremental
First-order Oracle (IFO)) An IFO is a subroutine that takes
a point x ∈ R

d and an index z ∈ [n] and returns a pair
(fz(x),∇fz(x)).

The Proposed SCSG-HT Method

In this section, we present our new algorithm – SCSG-HT
in Algorithm 1 for solving Problem (1). The SCSG algo-
rithm belongs to the SVRG family, and was first proposed
in (Lei and Jordan 2017) that showed competitive time com-
plexity in convex optimization, and was later extended to
non-convex optimization in (Lei et al. 2017). Similar to the
SVRG method, SCSG method has an outer loop, and each
outer iteration also includes an inner loop. The main dif-
ferences between SCSG and the classic SVRG are the fol-
lowing. Before starting the inner loop, the SCSG calculates
batch gradient over small batch I(j) with batch size B(j) ,
whereas the SVRG calculates the full gradient. The number
of iterations in the inner loop for the SCSG is stochastically
determined by the geometric distribution, rather than a fixed
number of O(n) (usually n) used in the SVRG.

Algorithm 1 SCSG-HT
Require: Number of outer loops J , initial state x̃1, stepsize

η, batch size (B(j))Jj=1 and mini-batch size (b(j))Jj=1

1: for j = 1, 2, ..J do
2: Uniformly sample a batch I(j) ⊂ {1, ..., n}, where

|I(j)| = B(j)

3: μ̃(j) = ∇fI(j)(x̃(j))

4: x
(j)
0 = x̃(j)

5: (Option I) Generate N (j) ∼ Geom (B(j)/(B(j) +
b(j)))

6: (Option II) N (j) = B(j)

b(j)

7: for t = 1, 2, . . . , N (j) do

8: Randomly pick I
(j)
t ⊂ {1, ..., n}, where |I(j)t | =

b(j)

9: x
(j)
t = Hk(x

(j)
t−1 − η(∇f

I
(j)
t

(x
(j)
t−1) −

∇f
I
(j)
t

(x̃(j)) + μ̃(j)))

10: end for
11: set x̃j+1 = x

(j)

N(j)

12: end for

The outer loop consists of the steps in Lines 1 - 12 and an
inner loop in Lines 7 - 10. The batch gradient is computed
in each outer iteration (Lines 3) where batch size B(j) is to
be pre-determined. Often times, we set all B(j) = B. In
each iteration of the inner loop, the mini-batch has a size
of b(j) in general which we can also set to be a constant b.
We provide two choices to set the number of iterations of the
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inner loop N (j): in option I (Line 5) N (j) is randomly drawn
from a geometric distribution, similar to the SCSG; in option
II (Line 6) N (j) is the deterministic constant B(j)

b(j)
, which is

the expectation of the geometric distribution N (j) ∼ Geom
(B(j)/(B(j) + b(j))). Our theoretical analysis is based on
option I, which provides more general results. We observe
that the variance of N (j) in option I is larger than option II,
and option II is more stable in practice.

A variance reduction step (in Line 9) is commonly used in
the SVRG family, and it is performed inside the hard thresh-
olding operator Hk(·) in Algorithm 1. The algorithm starts
from randomly initialized x̃1. The step size η can take a con-
stant or decay over iterations. In our theoretical analysis, we
assume that η is a constant. The maximum number of itera-
tions J is typically chosen to be large, and for convex f , our
theoretical analysis provides guidance on choosing a value
for J based on ε.

Theoretical Analysis

In this section, we present our main theoretical results char-
acterizing the estimation error of parameters x and the error
of the objective value. We first show that the sparsity recov-
ery can be guaranteed in Thoerem 1. Then, we present a re-
sult of convergence performance in terms of objective value
in Corollary 1.3.

Throughout the theoretical analyses, we assume that the
objective function f(x) satisfies the following assumption,
which is commonly used in related works for Problem (1):

Assumption 1. Assume that the differentiable function f(x)
satisfies:

(i) for given s ∈ N+, restricted ρs-strongly convex at spar-
sity level s, i.e., there exists a constant ρs > 0 s.t.
∀x1, x2 ∈ R

d with ‖x1 − x2‖0 ≤ s, we have

f(x1)− f(x2)− 〈∇f(x2), x1 − x2〉 ≥ ρs
2
‖x1 − x2‖2;

(ii) for given s ∈ N+, restricted Ls-strongly smooth at
sparsity level s, i.e., there exists a constant Ls > 0 s.t.
∀x1, x2 ∈ R

d with ‖x1 − x2‖0 ≤ s, we have

f(x1)− f(x2)− 〈∇f(x2), x1 − x2〉 ≤ Ls

2
‖x1 − x2‖2;

(iii) σ2-bounded for stochastic gradient variance, i.e.,
E[‖∇fz(x) − ∇f(x)‖2] ≤ σ2, ∀x ∈ R

d, where index
z ∈ [n].

The following theorem is our main result on the pa-
rameter estimation accuracy of the SCSG-HT for sparsity-
constrained problems. Although this paper is focused on the
cardinality constraint, the theoretical analysis can be applied
to other sparsity constraints such as on matrix rank. Due to
page limit, we include a complete proof of Theorem 1 in
Appendix and provide a proof sketch in the next section.

Theorem 1. Let x∗ be the optimal of Problem (1), k∗ =
‖x∗‖0, and suppose f(x) satisfies Assumption 1. Define
Ĩ = supp(x∗)∪supp(H2k(f(x

∗))), the restricted condition

number κs = Ls

ρs
≥ 1, η ≤ 1

32Lsκs
, α ≤ min{ b

B , 1
64κ2

s−1}.
Then we can obtain the following result:

E[‖x̃(j+1) − x∗‖2] ≤ θ(j+1)E[‖x̃(0) − x∗‖2] (2)

+ 2γE[‖πĨ(∇f(x∗))‖2] + γ
I(B < n)

B
σ2,

where 0 < θ = 1− (η(ρs/2− (2ρsLs + 14L2
s)η))/β < 1,

β =
b
B−α

1+α + η(ρs − 2ρsLsη− 4L2
sη) > 0, α = 2

√
k∗√

k−k∗ and

γ = 4η2

(1−θ)β .

Remark 1. When η = 1
32Lsκs

, and the sparsity parameter
k ≥ max{(4(Bb )2 + 1)k∗, (4(64κs − 1)2 + 1)k∗}, we can
further increase θ to θ̃ = 1 − 1

64κ2
s

1+α
b
B+ 13

8

. It is obvious that

0 < θ̃ < 1.
In Theorem 1, the first term on the right hand side of

Ineq.(2) approaches to 0 when j increases. When the size
of the outer loop batch B takes n (equivalent to the SVRG),
the third term becomes 0. Otherwise, the second and third
terms both depend on γ. Based on the formula of γ, it de-
pends on η. Hence, when η takes a small value, the last two
terms become small. We assume a constant η here, and leave
it as our future work to optimize the decay η in our analy-
sis. We further obtain the following corollary that bounds the
number of iterations J to obtain a sub-optimal solution (i.e.
the difference between the solution and x∗ is bounded only
by the second term of Ineq.(2)).
Corollary 1.1. Assume that the setup in Theorem 1 holds,
γ ≤ 1

2σ2 and B = min{ 1
ε , n} for a given accuracy ε > 0,

then we need at most J ≤ C1 log(
4‖x̃(1)−x∗‖

ε ) outer itera-
tions to obtain

E[‖x̃(J ) − x∗‖2] ≤ ε+ g1(x
∗),

where C1 = −(log(θ))−1, g1(x∗) = 2γ‖πĨ(∇f(x∗))‖2.
Corollary 1.1 indicates that under proper conditions, the

estimation error of the SCSG-HT to the optimal solution x∗
is determined by the second term of Ineq.(2) which we de-
note as g1(x∗),

g1(x
∗) =

8η2

(1− θ)β
‖πĨ(∇f(x∗))‖2. (3)

By setting Ineq.(2) to be less than a given tolerance ε, we
can see that the convergence rate is linear or geometric be-
fore reaching ε. After that, the accuracy cannot be further
improved due to g1(x

∗). To further explain this, we can ex-
amine it from another angle. Once η is fixed (to a value de-
termined by ε), g1(x∗) produces a fixed residual O(ε) to the
estimation error. Then after enough iterations (j), the first
term of Ineq.(2) drops below this value O(ε), g1(x∗) be-
comes dominant and thus further iterations will not help.

Overall, this result guarantees that the iterates approach to
the optimal sparse estimator x∗ with an arbitrary precision in
a finite number of outer iterations. The computational com-
plexity of the SCSG-HT is characterized in the following
corollary.

1588



Considering that C1 = −(log(θ))−1, where θ is involved
with κs, we will have the the following result by using the
inequality log(1 + x) ≥ log(2)x.
Corollary 1.2. Assume assumptions and setups in the pre-
vious corollary hold, the expected number of IFO calls is

min{n, 1
ε
}(C1 log(

2‖x̃(1) − x∗‖2
ε

)) = O(min{n, 1
ε
}κs log(

1

ε
)).

Based on the above formula, if the target error tolerance
ε is not too small, then 1

ε can be smaller than n especially
when large sample is used. In this case, the IFO complex-
ity of the SCSG-HT is no longer dependent on n, an ad-
vantage over the GD-HT (Jain, Tewari, and Kar 2014) and
SVRG-HT (Li et al. 2016b). Hence, the SCSG-HT can be
more scalable than the GD-HT and SVRG-HT with large-
scale datasets. Furthermore, the computational complexity
of SCSG-HT does not require any constraints on κs and
ρs, which is different from the SG-HT and HSG-HT. More
importantly, among all stochastic iterative hard threshold-
ing methods, SCSG-HT is the first one that can effectively
diminish the statistical error term g1(w

∗), i.e., making it
smaller than a given ε. In summary, Theorem 1 and Corol-
laries 1.1-1.2 guarantee that the SCSG-HT can effectively
approximate the optimal estimator x∗ with a better compu-
tational complexity.

We further investigate the convergence performance in
terms of the objective function values f(x) at snapshot
x̃(j+1) in each epoch approaching to the optimal f(x∗).
Corollary 1.3. Under the same assumptions and setup of
parameters in Theorem 1, we can obtain the following con-
vergence result for f(x̃(j)) :

E[f(x̃(j+1))− f(x∗)] ≤ θj+1Δ+ g2(x
∗) + g3(B),

where Δ = ( 1
2
√
γ + Ls

2 )E[‖x̃(0) − x∗‖2], g2(x
∗) =

( 32
√
γ + Lsγ)E[‖πĨ(∇f(x∗))‖2] and g3(B) = (

√
γ

2 +
Lsγ
2 ) I(B<n)

B σ2.
The convergence of the objective function value to the

optimal value is controlled by a linear convergence term
θj+1Δ, a multiplier of ‖πĨ(∇f(x∗))‖2 term g2(w

∗), and
a batch size B-related term g3(B). Again, because the last
two terms can be controlled by the step size η and batch size
B respectively, it results in linear convergence as well for
the objective value.

Proof Sketch for Convergence Analysis
Before diving into the detailed proof, we first analyze the
bias term e(j) = ∇fI(j)(x̃(j)) − ∇f(x̃(j)) introduced by
the batch variance reduction, which is one of the main dif-
ferences from the commonly used variance reduction tech-
nique and plays an important role in the theoretical analysis.
We show that the variance of e(j) can diminish to zero with
an increasing batch size B, which gives extra flexibility to
adaptively adjust the batch size B based on the target accu-
racy ε.

Lemma 2. Assume that v
(j)
t = ∇f

I
(j)
t

(x
(j)
t ) −

∇f
I
(j)
t

(x̃(j)) + μ̃(j) is the updating direction at the tth iter-

ation of the jth epoch in Algorithm 1, e(j) = ∇fI(j)(x̃(j))−

∇f(x̃(j)) is the bias of the updating direction v
(j)
t , where

EIj
t
[v

(j)
t ] = ∇f(x

(j)
t ) + e(j). Then we can bound

E
I
(j)
t

[‖e(j)‖2] as follows:

E[‖πI(e(j))‖2] ≤ 2L2
s

I(B < n)

B
E[‖x̃(j) − x∗‖2]

+ 2
I(B < n)

B
σ2.

In order to analyze the SCSG-HT algorithm, we further
derive the following result:

E
I
(j)
t

[‖x̃(j)
t+1 − x∗‖2]

= E
I
(j)
t

[‖x(j)
t − x∗‖2] + η2E

I
(j)
t

[‖πI(v
(j)
t )‖2]

− 2η〈πI(∇f(x
(j)
t )), x

(j)
t − x∗〉 − 2η〈πI(e(j)), x

(j)
t − x∗〉

where x̃
(j)
t+1 = x

(j)
t − ηπI(v

(j)
t ) is an intermediate state of

the estimator to bridge the analysis between the gradient-
based updating step and the hard thresholding step. Then the
hard thresholding operation x

(j)
t+1 = Hk(x̃

(j)
t+1) immediately

follows and we can get x(j)
t+1 = Hk(x

(j)
t−1 − v

(j)
t ) due to

I = supp(x∗) ∪ supp(x
(j)
t ) ∪ supp(x

(j)
t+1). Next, we will

establish connections between the intermediate state x̃
(j)
t+1

and the sparse estimator x(j)
t+1. The following lemma can be

obtained:

Lemma 3. (Li et al. 2016a) For k > k∗ and for any param-
eter x ∈ R

d, we have

‖Hk(x)− x∗‖2 ≤ (1 + α)‖x− x∗‖2

where k∗ = ‖x∗‖0 and α = 2
√
k∗√

k−k∗ .

With all above results, the relation between x
(j)
t+1 and x

(j)
t

can be established as follows:

E(j)[‖x(j)
t+1 − x∗‖2] ≤ (1 + α)E(j)[‖x̃(j)

t+1 − x∗‖2]
≤ (1 + α)E(j)[‖x(j)

t − x∗‖2] + (1 + α)η2E(j)[‖πI(v
(j)
t )‖2]

− 2(1 + α)ηE(j)[〈πI(∇f(x
(j)
t )), x

(j)
t − x∗〉] (4)

where Ej [·] is the expectation over the jth epoch,
in other words, over all randomness generated by
{I(j), I(j)0 , I

(j)
1 , ...}.

Until now, all the analyses are still based on iterations in
one epoch. Next, we need to use an important property of
the geometric distribution that we have used to set the num-
ber of inner iterations N (j) to turn previous iteration-based
analysis into epoch-based analysis.

Lemma 4. Let N ∼ Geom(γ). Then for any sequence
{DN}, we have

E[DN −DN+1] = (
1

γ
− 1)(D0 − E[DN ]).
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Figure 1: Comparisons among the different HT algorithms for the the sparse linear regression problem. We first run an algorithm
long enough (e.g., 100 epochs) to get a high accuracy which gives the lower bound f∗. In view of the f(x)−f∗, our SCSG-HT
achieves the highest accuracy in 10 epochs in comparison with the SG-HT, HSG-HT and SVRG-HT.

Reorganizing the inequality (4) and taking the expectation
over N (j) yield :

2(1 + α)ηE[〈πI(∇f(x̃(j+1))), x̃(j+1) − x∗〉]
≤ (α− b

B
)E[‖x̃(j+1) − x∗‖2] + b

B
E[‖x̃(j) − x∗‖2]

+ (1 + α)η2E[‖πI(v
(j)

N(j))‖2] (5)

We now need to further bound E[‖πI(v
(j)

N(j))‖2] in the in-
equality (5) :

E
I
(j)
t

[‖πI(v
(j)
t )‖2] ≤ 4Ls(f(x

(j)
0 )− f(x∗))

+ 4Ls(〈πI(∇f(x
(j)
t )), x

(j)
t − x∗〉) + 2‖πI(∇f(x∗))‖2

+ 2‖πI(∇f(x
(j)
t ))‖2 + 2L2

s‖x(j)
0 − x∗‖2 + 2‖πI(e(j))‖2.

Then we obtain an important intermediate result, which will
be used shortly:

2(1− 2Lsη)ηE[〈πI(∇f(x̃(j+1))), x̃(j+1) − x∗〉]

+ (
1

1 + α

b

B
− α

1 + α
)E[‖x̃(j+1) − x∗‖2]

≤ −4Lsη
2E[f(x̃(j+1))− f(x∗)] + 4Lsη

2E[f(x̃(j))− f(x∗)]

+ (
1

1 + α

b

B
+ 2L2

sη
2)E[‖x̃(j) − x∗‖2] + 2η2E[‖πI(e(j))‖2]

+ 2η2E[‖πI(∇f(x̃(j+1)))‖2] + 2η2E[‖πI(∇f(x∗))‖2]. (6)

Guarantee of Sparse Estimator Recovery. Under the
condition that f is ρs-restricted strongly convex and Ls-
restricted strongly smooth, we obtain that:

(i) 〈πI(∇f(x̃(j+1))), x̃(j+1) − x∗〉 ≥ ρs

2 ‖x̃(j+1) − x∗‖2;
(ii) f(x̃(j)) − f(x∗) ≤ 1

2Ls
‖πI(∇f(x∗))‖2 + Ls‖x̃(j) −

x∗‖2.
Combining the Ineq.(6) with (i) and (ii), we obtain the

final result stated in Theorem 1:

E[‖x̃(j+1) − x∗‖2] ≤ θj+1E[‖x̃(1) − x∗‖2]
+ 2γE[‖πĨ(∇f(x∗))‖2] + γ

I(B < n)

B
σ2.

Guarantee of Convergence. We first use the Ls-restricted
strongly smooth condition to establish epoch-based conver-
gence of f(x̃(j+1))−f(x∗). Then, we take expectation, sub-
stitute the upper bound of E[‖x̃(j+1) − x∗‖2] to arrive the
convergence result in Corollary 1.3.

Experiments

We compare the proposed algorithm SCSG-HT with the
state-of-the-art stochastic sparsity-constraint methods: SG-
HT, HSG-HT and SVRG-HT, in our experiments to demon-
strate the improved performance and advantage of the
SCSG-HT. Following the convention in the stochastic op-
timization and sparse learning literature, we use the number
of IFO per epoch and the number of HT operations to mea-
sure the computational complexity. This can make the com-
putational complexity independent of actual implementation
of an algorithm. For a comprehensive comparison, we have
also included the actual algorithm run time. Five benchmark
datasets are used for evaluations: E2006-tfidf, rcv1, real-sim,
mnist and news20, all of which can be downloaded from the
LibSVM website1. In the experiments, parameters B, b and
η are determined by the following criteria. Based on Corol-
lary 1.1, B = min{1/ε, n}. For a moderate ε, e.g. 10−3

used on large datasets with a large value of n, B can take
the value of 1/ε. If the data are homogeneous, B can be
even smaller. For the inner loop batch size b, it can be 1 for
small datasets, or a large value, e.g. 10, for large datasets.
The stepsize η for each algorithm is set by a grid search from
{10, 1, 10−1, 10−2, 10−3, 10−4}. All the algorithms are ini-
tialized with x(0) = 0.
High Precision Regime. We first conduct experiments on
the linear regression problem on the E2006-tfidf dataset with
dimension 3308 × 150360,

min
x

{f(x) = 1

n

n∑

i=1

‖yi − zTi x‖2} subject to ‖x‖0 ≤ k,

to check the performance of the proposed SCSG-HT method
for achieving high precision solution. In the experiments, we
set the sparsity parameter k = 200. In Figure 1 (a), HSG-
HT uses the smallest number of IFO to achieve the accuracy

1http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
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Figure 2: Comparisons of the different HT algorithms on the sparse logistic regression problem and the sparse multi-class
softmax regression problem. The first row is for the number of HT operations, the second row is for the number of epochs, and
the last row is for the CPU time. Each column in the figure is for a different benchmark dataset.

10−5, but it is not computationally efficient in later stage
due to the growth of batch size. In Figure 1 (b), we observe
that the variance of f(x) in SCSG-HT is larger than that of
SVRG-HT from epoch 2 to 4, because the batch size B in
SCSG-HT is smaller than n. However, we find that SCSG-
HT can quickly drop function value later on and find a better
sparse parameter vector x, which has a smaller optimality
gap. This may be due to the extra stochasticity introduced
by the biased variance-reduced gradients, which helps our
algorithm to jump out of bad local minimal. Overall, SCSG-
HT achieved the best performance in terms of the number of
IFO calls to achieve a high accuracy, ε = 10−8.
Medium Precision Regime. In this set of experiments, we
apply HT methods to the logistic regression problem as
follows on the rcv1 and real-sim datasets with dimension
20, 242× 47, 236 and 72, 309× 20, 958 respectively.

min
x

{f(x) = 1

n

n∑

i=1

(log(1 + exp(yiz
T
i x)) +

λ

2
‖x‖2)}

subject to ‖x‖0 ≤ k,

where zi ∈ R
d and yi is the corresponding label. For both

databsets, the regularizer λ = 10−5 and the sparsity pa-
rameter k = 1000. We then test HT algorithms on the
multi-class softmax regression problem as follows on the
mnist and news20 datasets with dimension 60, 000 × 780
and 15, 935 × 62, 061, respectively. For the mnist dataset,

we set λ = 10−5 and k = 200, and for the news20 dataset,
λ = 0.01 and k = 2000.

min
x

{f(x) = 1

n

n∑

i=1

(

c∑

j=1

(−I(yi = j) log(
exp(zTi xj)∑c
l=1 exp(z

T
i xl)

)

+
λ

2
‖xj‖2))}, subject to ‖xj‖0 ≤ k, ∀j ∈ {1, 2, ..., l}.

Figure 2 presents the learning curves of the empirical loss
versus the number of HT operations, the number of epochs
and the CPU time. For all four datasets, SCSG-HT has con-
sistently achieved the lowest objective value with respect to
the same number of HT operations, the number of epoches
and the CPU time. In general, it also consistently uses the
smallest number of HT operations to achieve the target ac-
curacy as shown in the first row in Figure 2. It is consistently
the fastest algorithm to achieve the target accuracy, as shown
in the second and third rows in Figure 2. For the logitstic loss
function on the real-sim dataset in the second column in Fig-
ure 2, SG-HT performs the best at the beginning stage, but
it fails to continue to reduce the loss function after reaching
the value 0.22. HSG-HT is not IFO-efficient since its batch
size increases to a very large number, resulting in worse per-
formance than SG-HT. Although SCSG-HT may get trapped
at a bad support for a while, it can eventually find the right
support and achieve the best function value.
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Conclusion

We have proposed a stochastic gradient-based hard thresh-
olding algorithm, which we name as SCSG-HT. We
use a batch variance reduction technique to replace
computationally-expensive full gradient and a geometric
distribution technique to choose the number of iterations in
the inner loop. The proposed SCSG-HT significantly im-
proves HT algorithms in terms of computational perfor-
mance. Without constraints on the restricted condition num-
ber κs and restricted strongly convex number ρs of the ob-
jective function, we are able to show that the SCSG-HT
enjoys linear convergence and its computational complex-
ities are sample-size-independent for large-scale sparsity-
constrained problems, where sample size n is commonly
larger than 1

ε . Empirically, we have compared SCSG-HT
with several representative greedy iterative HT algorithms.
Overall, our SCSG-HT method outperforms these strong
competitors in both theoretical results and empirical eval-
uations. In our future work, we will study the feasibility of
using varied batch size B(j), e.g., an increasing sequence in
[n], or the decaying step size η, and see how they will affect
the computational performance of SCSG-HT in practice.
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