
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Augmenting the Power of (Partial) MaxSat Resolution with Extension∗

Javier Larrosa, Emma Rollon
Universitat Politècnica de Catalunya,
Jordi Girona 1-3, Barcelona 08034
{larrosa, erollon}@cs.upc.edu

Abstract

The refutation power of SAT and MaxSAT resolution is chal-
lenged by problems like the soft and hard Pigeon Hole Prob-
lem PHP for which short refutations do not exist. In this paper
we augment the MaxSAT resolution proof system with an ex-
tension rule. The new proof system MaxResE is sound and
complete, and more powerful than plain MaxSAT resolution,
since it can refute the soft and hard PHP in polynomial time.
We show that MaxResE refutations actually subtract lower
bounds from the objective function encoded by the formulas.
The resulting formula is the residual after the lower bound ex-
traction. We experimentally show that the residual of the soft
PHP (once its necessary cost of 1 has been efficiently sub-
tracted with MaxResE) is a concise, easy to solve, satisfiable
problem.

Introduction

The MaxSAT resolution proof system (Larrosa and Heras
2005; Bonet, Levy, and Manyà 2007; Larrosa, Heras, and
de Givry 2008) generalizes SAT resolution (Robinson 1965)
allowing it to reason with both hard and soft clauses. A refu-
tation under this proof system corresponds to a subtraction
of a lower bound of the optimum from the formula. The re-
maining formula is called residual since it is what remains
after the extraction. Although MaxSAT is a more general
language than SAT, it is known that it does not improve over
problems such as the hard and soft Pigeon Hole Problems
PHP for which no short refutations exist.

In this paper we augment the MaxSAT resolution proof
system with an extension rule. Roughly, the new rule al-
lows to reason in the realm of negative weights, which is not
possible using just resolution. We show that the new proof
system MaxResE is sound and complete. The potential of
MaxResE is demonstrated by the fact that it can produce
short refutations for the hard and soft PHP.

We conjecture that a potential application of MaxResE is
to extract from a formula lower bounds that would not be

∗This work was funded partially by the Spanish MINECO and
MICINN projects TIN2015-69175-C4-3-R and RTI2018-094403-
B-C33.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

obtained efficiently otherwise, and solve the residual with
an off-the-shelf solver. We demonstrate this idea with the
soft PHP: The size of the original formula is O(m3) with
m being the number of holes. We show that a lower bound
of 1 can be extracted in O(m3) inference steps producing
a residual formula of size O(m4). We show experimentally
that the satisfiability of the residual can be proved in time
linear on its size (i.e, O(m4)).

Our work shares some similarities with the dual rail
encoding (Ignatiev, Morgado, and Marques-Silva 2017), a
method to refute unsatisfiable SAT instances by transform-
ing them into horn MaxSAT. Our approach can do sim-
ilar SAT refutations (as we show when we address the
hard PHP) but it is more general since it can also compute
lower bounds, compute optimums and proof unsatisfiability
in MaxSAT formulas.

Our approach also shares similarities with the notion of
soft arc consistency (Cooper et al. 2010) in the context of
Cost Networks where weights are soundly propagated and,
as we do in this paper, weights may be negative during the
process as long as they are positive at the end. The main dif-
ference is that MaxResE is a complete (possibly exponen-
tially costly) method, while soft arc consistency is incom-
plete but polynomial method.

Preliminaries

MaxSAT

In this paper we will denote boolean variables as x, p, q,
A literal is a boolean variable (positive literal) or its nega-
tion (negative literal) and a clause is a disjunction of literals.
We will denote (parts of) clauses as A,B,C, The empty
clause, noted �, cannot be satisfied and will play a special
role in this paper. A weighted clause is a pair (C,w) where
C is a clause and w is its weight given as a positive natural.
The weight indicates the cost of falsifying it.

A MaxSAT formula F is a set of weighted clauses and
the (weighted) MaxSAT problem corresponds to finding the
truth assignment that minimizes the sum of weights of fal-
sified weighted clauses. We will write MaxSAT (F) to de-
note that minimum value.

MaxSAT formulas can be simplified using simple rules
such as the elimination of tautological clauses, or replacing

1561

pairs of identical clauses (C, u), (C, v) by (C, u+ v).
Abusing notation sometimes we will write (A∨¬(l1∨l2∨

· · · lr), w) with r > 1, which means that a cost w is incurred
if A∨¬(l1 ∨ l2 ∨ · · · lr) is falsified. It is a short-hand for its
clausal equivalent {(A∨¬l1, w), (A∨ l1∨¬l2, w), . . . , (A∨
l1 ∨ l2 ∨ . . . ∨ lr−1 ∨ ¬lr, w)}.

MaxSAT formulas may contain the weighted empty clause
(�, k). We will often refer to formulas as,

F = {(�, k)} ∪ Fδ

making explicit their weighted empty clause. If F does not
contain the empty clause, then k = 0 and F = Fδ . Note
that, since � is unsatisfiable, k is a MaxSAT lower bound
(i.e, if (�, k) ∈ F then k ≤ MaxSAT (F)).

MaxSAT Resolution

MaxSAT resolution (Larrosa and Heras 2005; Larrosa,
Heras, and de Givry 2008) is the generalization of standard
resolution (Robinson 1965) to MaxSAT. It is written as,

(x ∨A, v) (¬x ∨B,w)
(A ∨B,m)

(x ∨A, v −m) (¬x ∨B,w −m)
(x ∨A ∨ ¬B,m) (¬x ∨B ∨ ¬A,m)

where m = min{v, w}. When A (resp. B) is empty, ¬A
(resp. ¬B) is constant true, so x∨¬A∨B (resp. x∨A∨¬B)
is tautological. In MaxSAT resolution the clauses at the top
are replaced by the clauses at the bottom in the formula.

Example 1. The application of MaxSAT resolution to (x ∨
y ∨ z, 2) and (¬x ∨ y ∨ p, 1) corresponds to,

(x ∨ y ∨ z, 2) (¬x ∨ y ∨ p, 1)
(y ∨ z ∨ p, 1)

(x ∨ y ∨ z, 1) (¬x ∨ y ∨ p, 0)
(x ∨ y ∨ z ∨ ¬y, 1) (¬x ∨ ¬y ∨ y ∨ p, 1)

(x ∨ y ∨ z ∨ y ∨ ¬p, 1) (¬x ∨ y ∨ ¬z ∨ y ∨ p, 1)

Removing zero-cost clauses, tautologies and repeated lit-
erals, the resulting set of clauses is {(y ∨ z ∨ p, 1), (x ∨ y ∨
z, 1), (x ∨ y ∨ z ∨ ¬p, 1), (¬x ∨ y ∨ ¬z ∨ p, 1)}.

A proof of length e under the MaxSAT resolution proof
system MaxRes is a finite sequence F0 � F1 � . . . � Fe

where F0 is the original formula and each Fi is obtained by
applying resolution to two clashing clauses in Fi−1 (sim-
plification rules are assumed to be applied implicitly). We
will use �∗ to denote an arbitrary number of inference steps.
A short proof is a proof whose length can be bounded by a
polynomial on |F|.
Theorem 1. (Soundness (Larrosa, Heras, and de Givry
2008)) Given a MaxRes proof F0 � F1 � . . . � Fe, we have
that MaxSAT (F0) = MaxSAT (Fi) for all 0 < i ≤ e.

Let F0 be a formula not containing the empty clause and
such that MaxSAT (F0) > 0. A MaxRes refutation is a
proof F0 �∗ {(�, k)} ∪ Fδ

e with k > 0. We call formula
Fδ

e the residual of F0. When MaxSAT (Fδ
e) = 0, due to

soundness we know that k = MaxSAT (F0). In that case,
we say that the refutation is full.

�

res

p¬p
res

¬q ∨ p

¬p ∨ q ¬q

res

¬r ∨ ¬p

p ∨ r ¬r

(�,−1) p ¬p ∨ q ¬q ¬p p ∨ r ¬r

ext

res

p ∨ ¬q q

res

(�, 1)(�, 0)

res

¬p ∨ ¬r r

res

(�, 1)

Figure 1: DAG representation of a MaxRes refutation (top)
and a MaxResE refutation (bottom). All clauses have cost 1
unless otherwise indicated.

Theorem 2. (Completeness (Bonet, Levy, and Manyà
2007; Larrosa, Heras, and de Givry 2008)) For any for-
mula F0 not containing the empty clause and such that
MaxSAT (F0) = k > 0, there is a MaxRes full refutation
F0 �∗ {(�, k)} ∪ Fδ

e .
Example 2. Refutations can be graphically represented as
directed acyclic graphs DAGs, where parentless nodes are
original clauses, childless nodes are final clauses, circled
nodes correspond to resolution steps (parents are replaced
by children). Figure 1 (top) depicts a length 3 refutation
of formula G = {(¬p ∨ q, 1), (¬q, 1), (p ∨ r, 1), (¬r, 1)}.
Note that because MaxSAT resolution replaces clauses, each
clause in the DAG has at most one child. The residual is
Gδ = {(¬q∨p, 1), (¬r∨¬p, 1)}. Since MaxSAT (Gδ) = 0,
the refutation is full, which implies that MaxSAT (G) = 1.

The Soft Pigeon Hole Problem

In the (m holes) Pigeon Hole Problem PHP the goal is to
assign m+1 pigeons to m holes without any pair of pigeons
sharing their hole. In the usual encoding there is a boolean
variable xij (with 1 ≤ i ≤ m + 1, and 1 ≤ j ≤ m) asso-
ciated to pigeon i being in hole j. There are two groups of
clauses. For each pigeon i, we have the clause,

Pi = {xi1 ∨ xi2 ∨ . . . ∨ xim}
indicating that the pigeon must be assigned to a hole. For
each hole j we have the set of clauses,

Hj = {¬xij ∨ ¬xi′j | 1 ≤ i < i′ ≤ m+ 1}
indicating that the hole is occupied by at most one pigeon.
Let PHP be the union of all these sets of clauses,

PHP = ∪1≤i≤m+1Pi ∪1≤j≤m Hj

1562

Note that |PHP | = O(m3)
In the soft PHP the goal is to find the assignment that fal-

sifies the minimum number of clauses. In MaxSAT language
it is encoded as,

PHPsoft = {(C, 1) | C ∈ PHP}
Although the solution to this problem is obvious

(MaxSAT (PHPsoft) = 1), it is known that there is no
short MaxRes refutation for it (Bonet, Levy, and Manyà
2007).

MaxRes with Extension

Here we present a new MaxSAT proof system, called
MaxResE. The difference with respect to MaxRes is that
we remove the condition of weights being strictly positive.
Negative weights may appear during proofs with the appli-
cation of the following new inference rule, called extension:

(C,−u) (x ∨ C, u) (¬x ∨ C, u)

where C is an arbitrary clause, u is an arbitrary natural num-
ber and x is an arbitrary variable not in C. Note that the rule
also applies with C = �. The extension rule adds a triplet
of fresh clauses that cancel each other into the formula.

A proof under the MaxResE proof system is a sequence
F0 � F1 � . . . � Fe where F0 is the original formula and
each Fi is obtained by applying resolution to clauses with
positive weight or extension to Fi−1.

Theorem 3. (Soundness) Given a MaxResE proof F0 �
F1 � . . . � Fe, we have that MaxSAT (F0) =
MaxSAT (Fi) for all 0 < i ≤ e.

Proof. It is known that MaxSAT resolution is sound in
MaxRes. By definition, MaxResE only applies resolution to
clauses with positive weight, so its application is also sound.
Therefore, we only need to prove that the cost associated
to an arbitrary truth assignment does not change with an
extension inference step Fi−1 � Fi where (C,−u), (x ∨
C, u), (¬x ∨ C, u) are the added clauses. There are three
possible cases: If the truth assignment satisfies C, then the
new clauses do not affect its cost; if the truth assignment
does not satisfy C and satisfies x (respectively, does not sat-
isfy x), the cost will be decreased by −u because of the first
clause and increased by u because of the third (respectively,
the second) clause.

Let F0 be a formula not containing the empty clause and
such that MaxSAT (F0) > 0. A MaxResE refutation is a
proof F0 �∗ {(�, k)} ∪ Fδ

e with k > 0 and all weights of
Fδ

e being positive.

Example 3. Figure 1 (bottom) shows a MaxResE refutation
of formula G in Example 2. In this particular toy example,
it is longer than the alternative MaxRes refutation at the top
of the figure (length five vs three). The MaxResE potential
of producing shorter refutations will become apparent in the
next Section. Note that the negative weight introduced by the
extension is eventually cancelled.

Next we show that in MaxResE proofs it is possible to use
extensions without losing completeness. We find useful the
following lemma.
Lemma 1. There is a MaxResE proof F �∗ F ∪
{(�,−w), (C,w), (¬C,w)} for any formula F , clause C
and weight 0 < w.
Proof. Let C = l1 ∨ l2 ∨ · · · ∨ lr. The inference is done as
a sequence of r extensions,

F � F ∪ {(�,−w), (¬l1, w), (l1, w)} �
� F ∪ {(�,−w), (¬l1, w), (l1 ∨ ¬l2, w), (l1 ∨ l2, w)} �
. . .
� F ∪ {(�,−w), (¬l1, w), (l1 ∨ ¬l2, w), . . . ,
(l1 ∨ l2 ∨ . . . ∨ ¬lr, w), (l1 ∨ l2 ∨ . . . ∨ lr, w)} =
= F ∪ {(�,−w), (¬C,w), (C,w)}

Theorem 4. (Completeness) Consider a formula
F0 not containing the empty clause and such that
MaxSAT (F0) = k > 0. Let F0 �∗ Fi be an arbitrary
MaxResE proof (possibly containing extensions). There is a
MaxResE full refutation F0 �∗ Fi �∗ (�, k) ∪ Fδ

e .
Proof. We only need to proof that there is a MaxResE
proof Fi �∗ (�, k) ∪ Fδ

e , where Fi may contain negatively
weighted clauses.

Let k = MaxSAT (F0) and N ⊆ Fi the set of
clauses with negative weights. If N = ∅ then complete-
ness follows trivially by completeness of MaxRes. Other-
wise, for each (C,−w) in N we add (using the previous
lemma) {(�,−w), (C,w), (¬C,w)} Clearly, after simplifi-
cation (clause aggregation), the resulting formula is Fj =
{(�, r)} ∪ F ′

j with r =
∑

(C,−w)∈N −w being a negative
number and F ′

j contains only positive weights because each
(C,−w) vanishes when aggregating (C,w). Since MaxResE
is sound, we have that k = r + MaxSAT (F ′

j). Because
MaxRes is complete, we can derive a full refutation F ′

j �∗

(�, k − r) ∪ Fδ made exclusively of resolution steps. Join-
ing the two proofs we obtain a full refutation F0 �∗ Fi �∗
{(�, r)}∪F ′

j �∗ {(�, r), (�, k−r)}∪Fδ
e = {(�, k)}∪Fδ

e .

MaxResE and the Soft Pigeon Hole Problem

In this section we show that there is a short MaxResE full
refutation for the soft PHP. The refutation extracts a unit cost
from PHPsoft producing its residual PHP δ

soft. Because it
does not have any obvious syntactical property characteriz-
ing its (un) satisfiability, it is not obvious if the refutation
is full or not 1. However, our experiments will show that its
satisfiability can be trivially proved by any SAT or MaxSAT
solver, which indicates that the refutation is a full refutation
and therefore MaxSAT (PHPsoft) = 1.
Theorem 5. Consider the encoding of the soft PHP,

PHPsoft = {(C, 1) | C ∈ PHP}
and let m be the number of holes. There is a MaxResE refu-
tation PHPsoft �∗ {(�, 1)} ∪ PHP δ

soft of length O(m3)

1Since we know the semantics of the problem, we know that
the residual has to be satisfiable, but this is not obvious from just
inspecting the formula.

1563

¬xn

res
¬xn−1 ∨ ¬xn

xn−1 ∨ ¬xn ¬xn−2 ∨ ¬xn ∨ ¬xn−1

res
¬xn−2 ∨ ¬xn

xn−2 ∨ xn−1 ∨ ¬xn ¬xn−3 ∨ ¬xn ∨ ¬(xn−2 ∨ xn−1)

res
¬xn−3 ∨ ¬xn

x3 ∨ . . . ∨ xn−1 ∨ ¬xn ¬x2 ∨ ¬xn ∨ ¬(x3 ∨ . . . ∨ xn−1)

res

x2 ∨ . . . ∨ xn−1 ∨ ¬xn

¬x2 ∨ ¬xn

¬x1 ∨ ¬xn ∨ ¬(x2 ∨ . . . ∨ xn−1)

x1 ∨ . . . ∨ xnres

x1 ∨ . . . ∨ xn−1 ¬x1 ∨ ¬xn

Figure 2: Proof of Lemma 2. All clauses have cost 1.

where,

PHP δ
soft = ∪1≤i≤m+1Pδ

i ∪1≤j≤m Hδ
j

Pδ
i = {(¬xij ∨ ¬(xij+1 ∨ . . . ∨ xim), 1) | 1 ≤ j < m}
Hδ

j ={(¬xij ∨ ¬xi′j ∨ ¬(xi+1j ∨ . . . ∨ xi′−1j), 1) |
1 ≤ i < i′ − 1 ≤ m}

∪ {(x1j ∨ . . . ∨ xm+1j , 1)}
Note that |PHPsoft| is O(m3) and |PHP δ

soft| is O(m4).
In the rest of this section we give the proof of Theorem

5. Herein all clauses have weight 1, so we omit it for the
sake of clarity. Also for clarity purposes, we will give proofs
graphically as DAGs.

Let us first consider three useful lemmas.
Lemma 2. Consider a MaxSAT formula M = {x1 ∨ . . . ∨
xn−1} ∪ {¬xi ∨ ¬xn | 1 ≤ i < n}. There is a proof

M �∗ {¬xn} ∪ {x1 ∨ . . . ∨ xn} ∪
∪ {¬xi ∨¬xn ∨¬(xi+1 ∨ . . .∨ xn−1) | 1 ≤ i < n− 1}
of length n− 1.
Proof. The resolution proceeds as shown in Figure 2.

Lemma 3. Consider a MaxSAT formula M = {x1} ∪
{¬xi ∨ ¬xp | 1 ≤ i < p ≤ n}. There is a proof

M �∗ {x1 ∨ . . . ∨ xn} ∪ {¬xi | 2 ≤ i ≤ n} ∪
∪{¬xi∨¬xp∨¬(xi+1∨. . .∨xp−1) | 1 ≤ i < p−1 < n}
of length O(n2).
Proof. The resolution proceeds as shown in Figure 3, where
each circled node corresponds to an application of Lemma
2 with its incoming/outcoming clauses.

x1 ∨ . . . ∨ xn ¬xn

{¬xi ∨ ¬xn ∨ ¬(xi+1 ∨ . . . ∨ xn−1) | 1 ≤ i < n− 1}
Lemma 2

{¬xi ∨ ¬xn | 1 ≤ i < n}

x1 ∨ . . . ∨ xn−1 ¬xn−1

{¬xi ∨ ¬xn−1 ∨ ¬(xi+1 ∨ . . . ∨ xn−2) | 1 ≤ i < n− 2}
Lemma 2

{¬xi ∨ ¬xn−1 | 1 ≤ i < n− 1}

x1 ∨ . . . ∨ xn−2 ¬xn−2

{¬xi ∨ ¬xn−2 ∨ ¬(xi+1 ∨ . . . ∨ xn−3) | 1 ≤ i < n− 3}
Lemma 2

{¬xi ∨ ¬xn−2 | 1 ≤ i < n− 2}

x1 ∨ x2 ∨ x3 ¬x3 {¬xi ∨ ¬x3 ∨ ¬(xi+1 ∨ . . . ∨ x2) | 1 ≤ i < 2}

Lemma 2

{¬xi ∨ ¬x3 | 1 ≤ i < 3}

x1 ∨ x2 ¬x2

Lemma 2

x1 ¬x1 ∨ ¬x2

Figure 3: Proof of Lemma 3. All clauses have cost 1.

�

res
¬xn

xn ¬xn−1 ∨ ¬xn

res
¬xn−1

xn−1 ∨ xn ¬xn−2 ∨ ¬(xn−1 ∨ xn)

res
¬xn−2

x3 ∨ . . . ∨ xn ¬x2 ∨ ¬(x3 ∨ . . . ∨ xn)

res
¬x2

x2 ∨ . . . ∨ xn ¬x1 ∨ ¬(x2 ∨ . . . ∨ xn)

res

x1 ∨ . . . ∨ xn ¬x1

Figure 4: Proof of Lemma 4. All clauses have cost 1.

1564

ext

¬x1,1

(�,−1) x1,1 Lemma 3

H1

. . .¬x2,1 ¬xm+1,1

Hδ
1

(. . .)

ext

¬x1,m

(�,−1) x1,m Lemma 3

Hm

. . .¬x2,m ¬xm+1,m

Hδ
m

Figure 5: Proof of Theorem 5, step 1. All clauses have cost
1 unless otherwise indicated.

...

¬x1,1

P1

¬x1,m

L
e
m
m
a

4

P δ
1

�

.

¬xm+1,1

Pm+1

¬xm+1,m

L
e
m
m
a

4

P δ
m+1

�

Figure 6: Proof of Theorem 5, step 2. All clauses have cost
1.

Lemma 4. Consider a MaxSAT formula M = {¬xi | 1 ≤
i ≤ n} ∪ {x1 ∨ x2 ∨ . . . ∨ xn}. There is a refutation

M �∗ {�} ∪ {¬xi ∨¬(xi+1 ∨ . . .∨ xn) | 1 ≤ i < n}
of length n.
Proof. The resolution proceeds as shown in Figure 4.

The proof of Theorem 5 only requires to extend
(�,−1), (x1j , 1), (¬x1j , 1) for each hole 1 ≤ j ≤ m.
As a result, we obtain (�,−m). Then, we apply the pre-
vious lemmas in the following appropriate order. First, we
apply Lemma 3 for each set of clauses referring to hole j
plus unit clause (x1j , 1). We obtain the set of unit clauses
{(¬xij , 1) | 2 ≤ i ≤ m + 1} for each hole j (Figure 5).
Now we apply Lemma 4 for each set of clauses referring to
pigeon i and the corresponding negative unit clauses (Fig-
ure 6). Recall that clauses (¬x1j , 1) are obtained thanks to
the extension rule. We obtain m + 1 clauses (�, 1) (i.e.,
(�,m + 1)). After simplification (clause aggregation on
(�,−m) and (�,m+ 1)), we obtain (�, 1), plus the resid-
ual Pδ

i and Hδ
j for each pigeon i and hole j, respectively.

The length O(m3) of the refutation and the size O(m4) of
the residual is obtained by a tedious but trivial calculation.

MaxResE and the Hard PHP

In this Section we show that MaxResE can also produce
short refutations for the hard PHP, unlike MaxRes. Because
in the hard PHP case clauses are hard (i.e., they must be sat-
isfied) we need to allow hard clauses in MaxSAT formula.

This generalization of MaxSAT is sometimes referred to as
Partial (weighted) MaxSAT (Morgado et al. 2013).

In Partial (weighted) MaxSAT hard clauses (C,∞) are al-
lowed in the formulas and the goal is to find the truth assign-
ment that satisfies all hard clauses and minimizes the sum of
weights of soft clauses. If there is no such assignment we say
that the formula is unsatisfiable and MaxSAT (F) = ∞.

MaxSAT resolution can be generalized to Partial MaxSAT
just by defining ∞− w = ∞ for all weight w. It is known
that the MaxRes proof system remains sound and complete
in the Partial MaxSAT language (Larrosa, Heras, and de
Givry 2008).

As in MaxSAT, a MaxRes refutation in Partial MaxSAT is
a proof F0 �∗ {(�, k)}∪Fδ

e with k > 0. However, because
of hard clauses, k can be arbitrarily large. The following re-
sult characterizes the conditions under which a refutation ac-
tually solves the MaxSAT (·) problem.

Property 1. Consider a Partial MaxSAT formula F0 and a
refutation F0 �∗ {(�, k)} ∪ Fδ

e . If k is larger than the sum
of weights of all soft clauses (i.e, k >

∑
(C,w)∈F0| w �=∞ w),

then F0 is unsatisfiable. Else if MaxSAT (Fδ
e) = 0, then

k = MaxSAT (F0).

Proof. To proof that a refutation where k >∑
(C,w)∈F0| w �=∞ w implies unsatisfiability we proceed

by contradiction. Let us suppose that F0 is satisfiable.
Therefore, MaxSAT (F0) ≤ ∑

(C,w)∈F0|w �=∞ w. Since
MaxRes is sound, maxSAT (F0) = k + MaxSAT (Fδ

e).
Since MaxSAT (Fδ

e) ≥ 0, k ≤ ∑
(C,w)∈F0|w �=∞ w, which

is a contradiction. The else if part of the property follows
directly from MaxRes soundness.

Note that with the partial MaxSAT language the hard PHP
problem is written as,

PHPhard = {(C,∞) | C ∈ PHP}
Theorem 6. There is no short MaxRes refutation for
PHPhard.

Proof. All the clauses in PHPhard are hard. MaxSAT reso-
lution applied to hard clauses is equivalent to classical reso-
lution. Therefore MaxRes proofs can only generate new hard
clauses at each inference step and these could also be gen-
erated with standard resolution. Therefore MaxRes can only
do what standard resolution can. There is no short refutation
for PHPhard with standard resolution (Haken 1985), there-
fore there is no short refutation with MaxSAT resolution.

The extension rule can also be used in partial MaxSAT
and it does not affect soundness or completeness (the proofs
of Theorems 3 and 4 do not contain any assumption about
clauses being soft). Therefore MaxResE is a proof system
also for Partial MaxSAT. The following theorem combined
with Property 1 shows that there is a short MaxResE refuta-
tion proving that PHPhard is unsatisfiable.

Theorem 7. There is a MaxResE refutation PHPhard �∗
{(�, 1)} ∪ PHP δ

hard of length O(m3).

The proof, which roughly follows the same strategy as the
proof of Theorem 5, is given as a supplemental material.

1565

Related Work

Dual Rail Encoding

In their recent work (Ignatiev, Morgado, and Marques-Silva
2017; Bonet et al. 2018) introduce the dual rail encoding
which transforms a SAT formula F over variables X =
{x1, . . . , xs} (i.e., all clauses are hard) into a MaxSAT
formula M over variables N = {n1, . . . , ns} and P =
{p1, . . . , ps}. The dual encoding of clause C ∈ F is a hard
clause in which each unnegated literal xi in C is replaced by
¬ni, and each negated literal ¬xi in C is replaced by ¬pi.
Additionally, for each variable xi the dual encoding adds
three new clauses: (pi, 1), (ni, 1) and (¬pi ∨ ¬ni,∞). The
resulting MaxSAT formula M is made exclusively of horn
clauses, where only unit clauses are soft.

It is shown that F is satisfiable iff s = MaxSAT (M).
They also show that s ≤ MaxSAT (M). Accordingly, a
dual rail MaxSAT refutation, which is a proof of F unsatis-
fiability, is defined as M �∗ {(�, s+ 1)} ∪Mδ .

Somehow unexpectedly, applying this idea to the PHP one
can proof its unsatisfiability using MaxRes in a polynomial
number of steps (the refutation shares similarities with the
proof of Theorem 7). From this work one can conclude that
MaxSAT resolution with the dual rail encoding dominates
the SAT resolution proof system. In their work it is not clear
which of the dual rail ingredients (e.g. horn, unit cost soft
clauses, renaming,...) if not all, are really needed for this
domination.

The following Theorem shows that MaxResE is at least
as powerful as the dual encoding, which seems to indicate
that the true power of the dual encoding comes only from
the introduction of the unary costs.
Theorem 8. MaxResE with variable aliases can simulate
the dual encoding.

Proof. In the proof we allow MaxResE to add for every orig-
inal variable xi a new variable yi such that xi ↔ ¬yi. It is
easy to see that the fresh variables are only syntactical sugar
in the proof (there is no gain in a proof system from adding
variable aliases) making it more intuitive. The proof shows
that any SAT formula can be transformed to its dual rail en-
coding using MaxResE inference only.

Let F be a SAT formula over X = {x1, . . . xn}. For each
variable xi, we add hard clauses xi ∨ yi and ¬xi ∨ ¬yi,
where yi is a fresh variable. The clauses only indicate that
xi and ¬yi are equivalent (i.e, no new information is added).
Now, resolve each clause xi ∨A ∈ F with ¬xi ∨¬yi which
means that a new clause ¬yi ∨ A is added to the formula.
Clearly, at the end of this process we have for each original
clause C, a new clause C ′ where positive literals in C have
been replaced by their ¬yi equivalent.

Next, for each xi we do an extension,

(�,−1) (xi, 1) (¬xi, 1)

Note that at the end of this process we have (�,−n). Next,
we resolve each (¬xi, 1) with (xi ∨ yi,∞)

(¬xi, 1) (xi ∨ yi,∞)
(yi, 1)

(¬xi ∨ ¬yi, 1) (xi ∨ yi,∞)

where the last clause can be removed because it is subsumed
by the already existing clause (¬xi∨¬yi,∞). The resulting
formula contains all the clauses of the dual rail encoding, so
we can simulate any dual rail refutation which, by definition,
ends up generating (�, n+ 1). The aggregation of (�,−n)
and (�, n+ 1) produces (�, 1). Using Property 1 we know
that this refutation proofs unsatisfiability.

MaxResE generalizes the dual encoding because its use is
not restricted to refute SAT formulas. MaxResE can be seen
as a general method for obtaining MaxSAT lower bounds or
true optimums and their corresponding residuals.

Weighted CSPs

Weighted Constraint Satisfaction Problems (WCSPs) are op-
timization problems defined by a network of local cost func-
tions defined over discrete variables. Thus, MaxSAT can
be seen as a particular type of WCSP where the local cost
functions are the clauses and variables are boolean. WCSP
solvers compute lower bounds by enforcing local consis-
tency. This is achieved by moving costs around the network
using two equivalence preserving operations: projection and
extension. WCSP projection is similar to neighborhood res-
olution (Larrosa and Heras 2005) and WCSP extension is
similar to a restricted application of the extension rule of
MaxResE that maintains the formula with positive weights.
The main difference is that in the WCSPs movements are re-
stricted to pre-defined subsets of variables (i.e, the scopes of
the original cost functions), while in MaxResE we give com-
plete freedom on the variables involved in the clauses. This
freedom is needed to guarantee completeness, which is not
a problem in the WCSP context where local consistency is
not used as a stand-alone algorithm, but only as a heuristic.

Optimal Soft Arc Consistency OSAC (Cooper et al. 2010)
introduced the idea of allowing weights to become negative
during the process. As in our case, it is shown that the lower
bound is valid (i.e, sound) as long as all the weights are pos-
itive at the end of the process. Interestingly, OSAC can be
enforced with a linear program and the optimal lower bound
is obtained (optimal with respect to the pre-defined scopes
on which costs can be moved to).

Thus, OSAC is reminiscent to a guided MaxResE process
restricting new clauses to pre-defined (and of bounded size)
sets of variables. Interestingly, the efficiency of MaxResE on
the PHPsoft problem does not rely on the size of the clauses
which is as high as the number of pigeons and holes, and
therefore unbounded.

Empirical Results

To corroborate the ideas developed in the paper and demon-
strate the potential of MaxResE, we conducted some ex-
periments on hard and soft PHPs with 5 ≤ m ≤ 75 us-
ing SAT solvers Glucose 3.0 (Audemard and Simon 2018)
and Minisat 2.2 (Eén and Sörensson 2003), and MaxSAT
solvers RC2 (Ignatiev, Morgado, and Marques-Silva 2018b)
and FM (Manquinho, Marques-Silva, and Planes 2009) (ex-
tended to the case of weighted partial formulas) provided
by the PySat 0.1.4 toolkit (Ignatiev, Morgado, and Marques-
Silva 2018a). For both MaxSAT solvers we used Minisat

1566

5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

Nb. holes
T
im

e
(s
.)

PHP (hard and soft)

Glucose 3.0
Minisat 2.2

RC2
FM

10 20 30 40 50 60 70
0

2

4

6

8

10

Nb. holes

T
im

e
(s
.)

Residual of PHPsoft

Glucose 3.0
Minisat 2.2

RC2
FM

500 1,000 1,500 2,000 2,500 3,000
0

20

40

60

80

100

120

Nb. clauses

T
im

e
(s
.)

Glucose 3.0
Minisat 2.2

RC2
FM

0 1 2 3 4 5

·106
0

2

4

6

8

10

Nb. clauses (in millions)

T
im

e
(s
.)

Glucose 3.0
Minisat 2.2

RC2
FM

Figure 7: Solving time (in seconds) as a function of the number of holes (top row) and on the number of clauses (bottom row)
on PHPhard and PHPsoft (left column) and on the residual of PHPsoft (right column).

2.2 as their underline SAT solver. All experiments were per-
formed in Ubuntu Linux 16.04.6 LTS with 8 Gb RAM and
CPU Intel i5-7400 @ 3.00 GHz.

Figure 7 shows the experimental results. The x-axis for
plots on the top is the number of holes m. The top-left plot
shows running time for solving PHPhard and PHPsoft

with the two SAT and MaxSAT solvers, respectively. As
could be expected, only the smallest m could be solved.
The reason is that pigeon hole problems are exponentially
hard for resolution and SAT and MaxSAT solvers have their
refutation power linked to the refutation power of resolution
(Zhang and Malik 2003).

The top-right plot shows running time for solving the
residual of PHPsoft after the refutation (i.e., PHP δ

soft in
Theorem 5) with the four solvers: With the two SAT solvers
all clauses are hard, so the goal is to find out whether all the
clauses can be simultaneously satisfied (i.e, proof the opti-
mality of the refutation). With the two MaxSAT solvers all
clauses are soft, so the goal is to find the minimum number
of clauses that must be falsified (which we know is zero).
Comparing times between left and right plots one can see
that the residual is much easier than the original problem.
All the residuals could be solved in less than 20 seconds.
The two SAT executions finish almost instantly (less than
a second) with both Glucose and Minisat being equally ef-
fective. The two MaxSAT executions, although efficient in
comparison to the left plot, require significantly more time,
with FM being much slower than RC2.

From the plots on the top, it is not clear what is the com-
plexity of solving the residual with the different algorithms.
The plots on the bottom report the same results but now the
x-axis is the actual size of the formula. From the bottom-

right plot we observe that solving the residual is time linear
with respect to the formula size both with SAT and MaxSAT
solvers. Therefore, the highest cost of MaxSAT solvers is
just constant overhead. Also note that this overhead is not
that high taking into account that we are dealing with for-
mulas with several millions of clauses.

Conclusions and Future Work

In this paper we have extended the MaxRes proof system
from (Larrosa, Heras, and de Givry 2008) and (Bonet, Levy,
and Manyà 2007). The new proof system, called MaxResE,
is stronger since it can produce short refutations for the hard
and soft pigeon hole problem. We have also shown that it
generalizes the recently proposed dual rail encoding (Bonet
et al. 2018) and it is closely related to optimal soft arc-
consistency (Cooper et al. 2010).

In our future work we want to take practical advantage
of this, mainly theoretical, result. We would like to find
other problems beyond the PHP where MaxResE dominates
MaxRes (and maybe Res). One serious problem of our ap-
proach is that its advantage over MaxRes seems to be hardly
automatizable (the polynomial refutation of PHP is way
too handcrafted), so we need to explore syntactical features
(such as clause width) to effectively guide MaxResE proofs.
Finally, and probably most importantly, we want to study
how to incorporate the potential of the new proof system
into branch-and-bound solvers.

References

Audemard, G., and Simon, L. 2018. On the glucose SAT
solver. International Journal on Artificial Intelligence Tools
27(1):1–25.

1567

Bonet, M. L.; Buss, S.; Ignatiev, A.; Marques-Silva, J.; and
Morgado, A. 2018. Maxsat resolution with the dual rail
encoding. In McIlraith, S. A., and Weinberger, K. Q., eds.,
Proceedings of the Thirty-Second AAAI Conference on Ar-
tificial Intelligence, (AAAI-18), the 30th innovative Applica-
tions of Artificial Intelligence (IAAI-18), and the 8th AAAI
Symposium on Educational Advances in Artificial Intelli-
gence (EAAI-18), New Orleans, Louisiana, USA, February
2-7, 2018, 6565–6572. AAAI Press.
Bonet, M. L.; Levy, J.; and Manyà, F. 2007. Resolution for
max-sat. Artif. Intell. 171(8-9):606–618.
Cooper, M. C.; de Givry, S.; Sánchez-Fibla, M.; Schiex, T.;
Zytnicki, M.; and Werner, T. 2010. Soft arc consistency
revisited. Artif. Intell. 174(7-8):449–478.
Eén, N., and Sörensson, N. 2003. An extensible sat-solver.
In Giunchiglia, E., and Tacchella, A., eds., Theory and Ap-
plications of Satisfiability Testing, 6th International Con-
ference, SAT 2003. Santa Margherita Ligure, Italy, May 5-
8, 2003 Selected Revised Papers, volume 2919 of Lecture
Notes in Computer Science, 502–518. Springer.
Haken, A. 1985. The intractability of resolution. Theoret-
ical Computer Science 39:297 – 308. Third Conference on
Foundations of Software Technology and Theoretical Com-
puter Science.
Ignatiev, A.; Morgado, A.; and Marques-Silva, J. 2017. On
tackling the limits of resolution in SAT solving. In Gaspers,
S., and Walsh, T., eds., Theory and Applications of Satisfi-
ability Testing - SAT 2017 - 20th International Conference,
Melbourne, VIC, Australia, August 28 - September 1, 2017,
Proceedings, volume 10491 of Lecture Notes in Computer
Science, 164–183. Springer.
Ignatiev, A.; Morgado, A.; and Marques-Silva, J. 2018a.
Pysat: A python toolkit for prototyping with SAT oracles. In
Beyersdorff, O., and Wintersteiger, C. M., eds., Theory and
Applications of Satisfiability Testing - SAT 2018 - 21st Inter-
national Conference, SAT 2018, Held as Part of the Feder-
ated Logic Conference, FloC 2018, Oxford, UK, July 9-12,
2018, Proceedings, volume 10929 of Lecture Notes in Com-
puter Science, 428–437. Springer.
Ignatiev, A.; Morgado, A.; and Marques-Silva, J. 2018b.
RC2: A Python-based maxsat solver. In MaxSAT Evalua-
tion, 22.
Larrosa, J., and Heras, F. 2005. Resolution in max-sat and
its relation to local consistency in weighted csps. In Kael-
bling, L. P., and Saffiotti, A., eds., IJCAI-05, Proceedings of
the Nineteenth International Joint Conference on Artificial
Intelligence, Edinburgh, Scotland, UK, July 30 - August 5,
2005, 193–198. Professional Book Center.
Larrosa, J.; Heras, F.; and de Givry, S. 2008. A logical
approach to efficient max-sat solving. Artif. Intell. 172(2-
3):204–233.
Manquinho, V. M.; Marques-Silva, J.; and Planes, J. 2009.
Algorithms for weighted boolean optimization. In SAT,
495–508.
Morgado, A.; Heras, F.; Liffiton, M. H.; Planes, J.; and
Marques-Silva, J. 2013. Iterative and core-guided maxsat

solving: A survey and assessment. Constraints 18(4):478–
534.
Robinson, J. A. 1965. A machine-oriented logic based on
the resolution principle. J. ACM 12(1):23–41.
Zhang, L., and Malik, S. 2003. Validating sat solvers us-
ing an independent resolution-based checker: Practical im-
plementations and other applications. In Proceedings of the
Conference on Design, Automation and Test in Europe - Vol-
ume 1, DATE ’03, 10880–. Washington, DC, USA: IEEE
Computer Society.

1568

